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The available experimental data on shell evolution indicate that the strength of the spin–orbit single-
particle potential may be enhanced in neutron-rich nuclei. We observe that such a simple scheme
destroys the harmonic oscillator magic numbers N = 8 and 20 and generates new magic numbers like
N = 6, 14, 16, 32 and 34. The traditional magic numbers like N = 28 and 50 and N = 14 seen in 22O
are eroded in neutron-rich nuclei due to the sensitivity of larger-l orbitals to the depth of the central
potential but they are more robust than the harmonic oscillator magic numbers. The N = 82 shell closure
persists in neutron-rich nuclei while the previously proposed shell closures like N = 40 and 70 do not
emerge. Both mechanisms contribute to enhancing the N = 56 and 90 gaps by splitting the 1d5/2 and
0g7/2 and the 0h9/2 and 1 f7/2 orbitals.

© 2013 Elsevier B.V. All rights reserved.
One of the most important and challenging frontiers of nuclear
structure physics is the study of nuclei at the limit of stability, es-
pecially neutron-rich nuclei with weakly bound neutrons. A topic
of particular interest is the evolution of the shell structure in those
nuclei. That is, the magic number may change dramatically de-
pending on the N/Z ratio when we move towards the particle
drip lines [1]. Such study is important not only due to the ex-
pected variation in properties of nuclei and the formation of island
of inversion but also for the understanding of nuclear astrophysics
as well as the nucleon–nucleon interaction. Nowadays it is rather
commonly accepted that the N = 8 and 20 Harmonic Oscillator
(HO) shell closures disappear in neutron-rich nuclei [1]. On the
other hand, new magic numbers like N = 14, 16, and 32 may
emerge. Shell-model calculations suggest that N = 34 may also be
a magic number in Ca isotopes, depending on the effective inter-
actions used (see, e.g., Fig. 2 in Ref. [2]).

Among the features intensively discussed on the mechanisms
behind the shell evolution phenomena, one can mention the ef-
fects induced by the tensor components of the two-body shell-
model interaction as well as the three-body interactions (see
Refs. [1,2] and references therein). In the shell-model scheme, it
is usually assumed that the evolution of the shells are solely de-
termined by the correlation between valence nucleons in the open
shell. The shell evolution has also been analyzed from a self-
consistent mean-field point of view without assuming an inert
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core (see, e.g., Refs. [1,3]). This study suggests that a significant
part of the spin–orbit splitting may come from the two-body spin–
orbit (SO) and tensor forces and three-body forces. The availability
of experimental data in nuclei with large N/Z ratios may provide
a ground to constrain the properties of different components of
the interaction, such as the isovector channel of the SO interac-
tion, which are not well defined but may be responsible for the
shell evolution.

The two-nucleon separation energies and excitation energies of
2+

1 states in even–even nuclei, where a jump may have its origin
in shell closure, are often used as possible signatures for the evo-
lution of shell structure within a given isotopic or isotonic chain.
In the idealized Hartree–Fock case, the one- and two-nucleon sep-
aration energies are simply related to the energy of the highest
single-particle orbital that is occupied by the last nucleons. In re-
ality, however, the situation is much complicated since the nuclear
many-body system is strongly correlated due to the strong and sin-
gular short-range interaction between nucleons [4,5]. This is also
true for states in magic nuclei which retain a significant single-
particle character [5].

Atomic nuclei show striking regular features in spite of their
complex nature. From a simple phenomenological point of view,
the shell structure is characterized by the presence of gaps in the
calculated single-particle spectrum. As pointed out in Ref. [4], the
shell-model single-particle wave functions evaluated in this picture
should be considered as model-dependent wave functions which
may be very different from the real wave functions of the nucleus.
The HO mean-field approximation with SO coupling, which is
known as the independent particle model, was the first successful
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Fig. 1. (Color online.) The evolution of the shell structure as a function of (N − Z)/A
with the HO potential plus SO coupling of the form λ(1 + κSO

N−Z
A )h̄ωl · s with

λ = 0.2 and κSO = −1 (left) and 1 (right). The 0g9/2 orbital is shifted upwards by
0.3h̄ω for a clearer presentation.

model to predict correctly the traditional magic numbers [6]. The
calculated shell structure may change if an isospin dependence
of the SO coupling is taken into account. To illustrate this point,
in Fig. 1 we evaluate the HO single-particle spectra by adding an
isospin-dependent SO coupling of the form λ(1+κSO

N−Z
A )h̄ωl ·s [7]

to the HO potential. From this equation one sees that, if κSO < 0,
then the SO coupling gradually diminishes as N − Z increases, i.e.,
approaching neutron-rich nuclei. In other words, as ones departs
from N = Z nuclei, the SO interaction has less and less impor-
tance and, therefore, traditional SO shell closures like N = 28 and
N = 50 will disappear. In the limit, when the SO coupling vanishes
completely, the spectra will be characterized by only HO magic
numbers. This can be seen in the left panel of Fig. 1. However, this
contradicts most available experimental information on the shell
evolution even though there is indication that the N = 28 shell
may have been eroded in 42Si [8–12]. On the other hand, a positive
κSO induces an enhancement of the SO coupling in neutron-rich
nuclei. In such a case, the N = 8 and 20 HO magic numbers will
disappear while SO shell closures like N = 6, 14, 16, 32, 34 and 56
will appear, as seen in the right panel of Fig. 1. It should be kept in
mind, however, that the gaps at N = 28 and 50 will be enhanced
in neutron-rich nuclei within this naive picture.

In reality, we may expect that the SO coupling will be reduced
in neutron-rich drip-line nuclei with a diffusive surface since the
SO interaction is peaked at the nuclear surface. One also has to
consider that the single-particle orbitals may show different l de-
pendence, depending upon the strength of the potential, which can
lead to a systematic change of the shell structure [13]. Thus a more
realistic description of the shell structure may be obtained with
the Woods–Saxon potential which has a glorious history of success
and is still one of the most suitable models in describing the nu-
clear single-particle structure. A variety of parameterizations of the
Woods–Saxon potential exists (see, e.g., Refs. [7,14–16] and Table
II in Ref. [17]). In the “standard” one [7,14], the strengths of the
central and SO potentials are given as

V = V 0

(
1 + 4κ

A
t · Td

)
, (1)

and

V SO = λV 0

(
1 + 4κSO t · Td

)
, (2)
A

Fig. 2. (Color online.) Evolution of the N = 20, 28, 50 and 82 gaps as a function
of proton number Z for calculations with the standard Woods–Saxon parameter
and κSO = κ (open circles) and −κ (solid circles). The black squares denote the
experimental one-neutron addition/removal energies [18] of the nuclear states with
the same spin and parity as the corresponding calculated single-particle states (see
text for details).

where we have replaced the original N − Z term with 4t · Td to
get a consistent description of both protons and neutron orbitals.
t and Td denote the isospin quantum numbers of the last nucleon
and of the daughter nucleus, respectively. The total isospin of the
system is T = t + TA−1. It is 4t · TA−1 = −3 for the T = 0 ground
state of a N = Z nucleus and

4t · TA−1 = N − Z − 1 for neutron orbits

= −(N − Z + 3) for proton orbits (3)

in N > Z nuclei with T = (N − Z)/2 [17]. In Ref. [7], the isospin-
dependent terms in Eqs. (1) and (2) are parameterized as

κ = κSO = −33

51
, (4)

where the SO potential depth is assumed to have the same isospin
dependence as that of the central potential. This assumption is
rather commonly used [16,17]. The typical strength of κ is in the
range (−0.6)–(−0.9).

We have done a systematic calculation on the shell evolution
with the standard Woods–Saxon parameters (see also Ref. [13]).
No correlation effect is considered at this stage. The calculated
single-particle energies of neutron orbitals that are close to the
N = 20, 28, 50 and 82 shell closures are plotted in Fig. 2. As can
be seen from the figure, such calculations suggest that SO shell
closures like N = 28, 50 and 82 will erode in neutron-rich nuclei
but this seems to proceed too fast. Moreover, it cannot explain in
a straight-forward way the disappearance of HO shell closures like
N = 8 and 20. The predicted N = 40 gap is also too strong. As we
will show below, this problem may be fixed if we assume a strong
positive κSO . We have found that calculations with other parame-
ters [16,17] will lead to the same conclusion. For comparison, in
Fig. 2 we also plotted the experimental one-neutron addition/re-
moval energies of the nuclear states with corresponding spin and
parity. In general, however, it should be mentioned that the single-
particle energy is not an observable. The energies calculated from
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Fig. 3. (Color online.) Evolution of the single-particle energies of the 1p3/2, 1p1/2,
0 f5/2 and 0g9/2 orbitals in Ca isotopes as a function of the neutron number N for
calculations with the standard Woods–Saxon parameters and κSO = κ (open sym-
bols) or κSO = −κ (solid symbols). In the former calculations, the N = 40 shell gap
is significantly enhanced in neutron-rich isotopes while the N = 34 sub-shell gap is
eroded.

mean-field models do not necessarily agree with measured nuclear
energy levels, especially for those around middle shell that may be
highly correlated [5].

To get a qualitative idea on the role played by κSO , we per-
formed two kinds of calculations using the standard Woods–Saxon
parameter [7] and taking κSO = κ or −κ . The numerical code
GAMOW was used [19]. Calculations on the evolution of the N =
20, 28, 50 and 82 magic numbers are plotted in Fig. 2. The N = 20
shell closure is expected to disappear in neutron-rich nuclei like
32Mg [1] (see also Ref. [20]). In calculations with the standard pa-
rameters, however, the gap in nuclei like 28O is as large as 4.2 MeV.
The N = 20 shell persists even if one takes κSO = 0, as shown in
Ref. [17]. If one takes κSO = −κ , however, the N = 20 gap in 28O
would be reduced to only 1.2 MeV.

The situation around N = 28 is somewhat complicated [8]. The
N = 28 gap will be reduced in neutron-rich nuclei as expected
from the standard Woods–Saxon (WS) calculations [13]. But the
reduction of this shell gap will be significantly retarded if a posi-
tive κSO is assumed, as can be seen in Fig. 2. Similarly, the N = 82
shell closure may be reduced in very neutron-rich nuclei like 110Ni
since the large l orbital 0h11/2 will lose energy faster than other
smaller-l orbitals when the potential becomes shallower. Indeed,
the distance between the 0h11/2 and 1 f7/2 orbitals decrease from
4.1 MeV in 132Sn to 0.65 MeV in 110Ni in calculations with stan-
dard parameters. The gap increases to 2.5 MeV with κSO = −κ .
It should be mentioned that experimental data in Ni isotopes are
available only up to N = 50. The 1 f7/2 orbital in 110Ni is predicted
to be unbound in both calculations.

The sign of κSO can have significant influence on the relative
strength of the N = 40 and 50 shell gaps in neutron-rich nuclei. As
examples, in Fig. 3 we plot the calculated single-particle spectra
of Ca isotopes. The N = 40 shell gap in 60Ca is predicted to be
as large as 4.4 MeV in calculations with the standard parameters.
While in the unbound nucleus 70Ca the N = 50 gap is only 0.67
MeV. The N = 50 shell gap may disappear if the 0g9/2 orbital lose
too much energy due to the shallowing of the central potential
[13]. On the other hand, the 60Ca and 70Ca gaps are calculated to
be 0.43 MeV and 2.3 MeV, respectively, if we take kSO = −k, which
means that a positive kSO will restore the N = 50 magic number
by “destroying” the N = 40 HO shell closure. However, there is no
experimental indication that N = 40 will emerge as a new magic
number in neutron-rich nuclei [21,22].

The N = 32 gap between the orbitals p3/2 and p1/2 is not much
affected by the κSO term. The N = 32 gap in 52Ca is calculated to
be 1.8 MeV by using the standard WS parameters. But it increases
to 2.3 MeV with kSO = −k. The energy difference between 1p1/2
and 0 f5/2 is only 0.92 MeV in 54Ca. The N = 34 gap increases to
1.7 MeV by taking kSO = −k.

Recent experiments suggest that 22O and 24O should be dou-
bly magic nuclei [1] (see also Refs. [23–25] for recent results). 24O
is the heaviest bound oxygen isotope that has been observed so
far. The N = 16 gap between the neutron 1s1/2 and 0d3/2 states
is measured to be 4.86 ± 0.13 MeV in Ref. [23]. The values given
by calculations with κSO = κ and −κ are 3.3 MeV and 4.5 MeV,
respectively. The calculated N = 14 gap in 20O increases from
1.8 MeV (κSO = κ ) to 2.7 MeV (κSO = −κ ).

The N = 14 gap disappears in C and N isotopes with nearly
degenerate 0d5/2 and 1s1/2 orbitals. This is easily understood
since the 0d5/2 orbital loses its energy faster when going to-
wards the dripline, resulting in a nearly-degenerate 0d5/2 and 1s1/2
shells [13]. From a shell-model point of view, where the above-
mentioned mechanism is missing, this fact is related to the com-
plicated interplay between the isovector and isoscalar two-body
interactions [26].

A possible different form of isospin dependence in the SO po-
tential than that of the central potential has been the subject of
several studies [15,17,27]. Ref. [17] assumed that κSO = 0. The
study of Ref. [15] showed that κSO ∼ 0.2 to 0.7 can also explain
the single-particle spectra in the neutron-rich nuclei 132Sn and
208Pb. They suggest that such an opposite value is consistent with
the two-body SO interaction as well as the Walecka and Skyrme–
Hartree–Fock calculations. The study of Ref. [3] showed that the
isoscalar SO coupling in the Skyrme force is reduced while the
tensor coupling is strongly attractive, which may also indicate that
the SO splitting can be enhanced in neutron-rich nuclei. However,
it should be mentioned that the spectra of heavy stable nuclei are
quite insensitive to the sign of κSO since the values of the term
t · Td/A are usually much smaller than those in light nuclei with
large neutron excess. As a result, it is not determined by a normal
global fitting procedure [27].

The effect of the κSO term may be partly swallowed by other
Woods–Saxon parameters, in particular the SO radius parameter
rSO . rSO was taken as a free parameter in several calculations [16,
17], with values which are smaller than that of the central poten-
tial, i.e., r0. To explore this point further, we re-fitted the Woods–
Saxon parameters under the restriction κSO = −κ . The parame-
ters of the Woods–Saxon potential are adjusted to single-particle
and single-hole states around the doubly-magic nuclei 16O, 40,48Ca,
56Ni, 100Sn, 132Sn and 208Pb, as listed in Refs. [15,17]. We use
the same fitting procedure as employed in Ref. [28]. The fitting
to nuclear single-particle energies usually favors larger values for
the radius parameter r0, which may lead to a bad description of
nuclear charge radii and moments of inertia [29]. In this work
we restrict that r0 < 1.3 fm. The results thus obtained are pre-
sented in Table 1. Calculations on the evolution of the N = 20,
28, 50 and 82 magic numbers are plotted in Fig. 4, which show
similar trends to those in Fig. 2. In this work we concentrated
our attention on the structure of light nuclei. But calculations
with the re-fitted parameter shown in Table 1 can describe the
states in heavy magic nuclei equally well in comparison with
those with the potentials given in Refs. [16,17]. This is because
in heavy nuclei the isospin-dependent term in Eq. (2) are usually
small and does not change much for a given isotopic or isotonic
chain.



250 X. Zhen-Xiang, C. Qi / Physics Letters B 724 (2013) 247–252
Table 1
Woods–Saxon potential parameters obtained by fitting to the available single-particle and single-hole states around doubly-magic nuclei with the restriction κSO = −κ and
comparison with some existing parameters.

V 0 (MeV) r0 (fm) rSO (fm) a,aSO (fm) λ κ

50.92 1.285 1.146 0.691 24.07 0.644 κSO = −κ
Refs. [7,14] 51 1.27 1.27 0.67 32.13 0.647 κSO = κ
Ref. [16] 49.6 1.347(n)/1.275(p) 1.31(n)/1.32(p) 0.7 35(n)/36(p) 0.86 κSO = κ
Ref. [17] 52.06 1.260 1.16 0.662 24.1 0.639 κSO = 0
Fig. 4. (Color online.) Same as Fig. 2 but for calculations with the re-fitted parameter
and κSO = κ (open symbols) and κSO = −κ (solid symbols).

In Fig. 5 we show the influence of the isospin dependence in
the SO coupling on the calculated proton single-particle spectra
in neutron-rich nuclei. As seen from Eq. (3), a positive κSO would
suggest that the proton SO splitting is reduced in neutron-rich nu-
clei. Ref. [30] does show that the splitting between the binding
energies of the last proton in the lowest 7/2+ and 11/2− states,
which seem to have consistent spectroscopic factors and exhibit
near-single-particle-like character, increases with neutron excess in
neutron-rich Sb isotopes. As already shown in Ref. [31], this fact
can be reproduced if we take a positive value for κSO . Within the
Skyrme–Hartree–Fock approach, the splitting is related the effect
of the two-body tensor force [32]. It is difficult to draw any conclu-
sion on the situation in light neutron-rich nuclei since experimen-
tal results are still inadequate. However, shell-model calculations
tend to suggest that the splittings in the calculated shell-model
effective single-particle energies (centroid eigenvalues in relation
to the monopole interaction) between SO partners like 0p3/2 and
0p1/2 and 0 f7/2 and 0 f5/2 are diminished with neutron excess
[26,33]. This is consistent with the binding energy systematics
in Ref. [1] which shows that the Z = 8 and 20 gaps increase in
neutron-rich nuclei. On the other hand, the Z = 28 gap decreases
in those nuclei [1,34]. These results are consistent with our as-
sumption that κSO is positive. However, it should be mentioned
that these quantities mentioned above may not be fully equivalent
from a microscopic many-body point of view (see Ref. [5] for a
detailed explanation).

The single-particle scheme provides a zeroth-order approxima-
tion of nuclear structure which may be influenced by correlation
effects including deformation, particle–vibration coupling and pair-
ing correlation [35–39] (see also Refs. [40,41] for reviews on earlier
Fig. 5. (Color online.) Same as Fig. 4 but for calculations on the Z = 8, 20, 28 and
50 proton shell gaps as a function of neutron number N in neutron-rich nuclei.
The open and solid symbols stand for calculations with κSO = κ and κSO = −κ ,
respectively.

Fig. 6. (Color online.) Experimental [43,46] and calculated ground-state energies of
Ca isotopes, relative to that of 40Ca, as a function of mass number A.

calculations on the particle–vibration coupling in magic nuclei).
As in Refs. [15,17], the particle–vibration coupling is not explic-
itly taken into account in our optimization of the parameters of
the Woods–Saxon potential for simplicity. It is hoped that part of
the effect of the particle–vibration coupling may be taken into ac-
count through the optimization of the parameters. A similar route
is also used in some recent self-consistent mean-field calculations
(see Refs. [35,38], for further comments concerning this point).

To explore the influence of pairing correlation, we solved ex-
actly the single-particle Woods–Saxon plus pairing Hamiltonian
with a Lanczos diagonalization approach from Ref. [42]. We as-
sumed that the ground states of even–even nuclei are all paired
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Fig. 7. (Color online.) Potential energy surface (PES) calculations for 32Mg ground
state with the re-fitted Woods–Saxon parameter and κSO = −κ (left) and κ (right).
For each (β2, γ ) point the energy is minimized with respect to the β4 deformation.
The interval between neighboring contours is 0.1 MeV.

with seniority zero whereas those of odd-A nuclei are assumed to
be of seniority one. We will present the semi-magic Ca isotopes
as examples. These have been studied recently both experimen-
tal and theoretically [2,43–45]. We performed calculations within
a model space containing the 0 f7/2, 0 f5/2, 1p3/2, 1p1/2, 0g9/2 and
1d5/2 neutron orbitals by assuming 40Ca as the core. To minimize
the number of free parameters, a simple constant pairing strength,
G = 1.795 MeV, was employed in all calculations. The ground state
energies thus calculated are presented in Fig. 6 together with the
corresponding experimental data. Calculations with κSO = −κ pre-
dict larger binding energies for the neutron-rich nuclei 51–58Ca
than the extrapolation values given in Ref. [46]. This is consistent
with Ref. [43] where an additional binding is measured for the nu-
clei 51,52Ca. The increased binding in Ca isotopes may indicate a
significant subshell gap at N = 32 [43]. There is a kink in the sys-
tematics of calculated two-neutron separation energies at N = 34,
which suggests that N = 34 may also be a subshell. However, the
1p1/2 particle and 1p3/2 hole states are calculated to be nearly de-
generate in the nucleus 53Ca even though there is a noticeable gap
in the calculated single-particle spectrum (cf. Fig. 3).

To analyze the influence of nuclear deformation on the shell
evolution, we evaluated the potential energy surfaces of the nu-
cleus 32Mg which has been intensively discussed recently [47–51].
Relativistic and non-relativistic mean-field as well as Woods–Saxon
calculations result in a spherical shape for the ground state of
this nucleus [52–54]. This problem may be related to the fact that
the predicted N = 20 gap is rather large [55]. Whereas the ob-
served large B(E2) value for 32Mg indicates that the nucleus is
strongly deformed with β2 ∼ 0.5 [56]. Our calculations using the
re-fitted parameter of Table 1 are plotted in Fig. 7. The minimum
is around β2 = 0.38 and γ = 4.8◦ corresponding to the calcula-
tion with κSO = −κ . It should also be mentioned that the shape
of 32Mg is rather soft against β2 deformation. The nucleus is cal-
culated to be a rigid sphere with κSO = κ . Calculations with other
parameters [7,16] lead to a similar conclusion.

For the calculations with κSO = κ presented in Figs. 4–7, we
have used the same Woods–Saxon parameters as those with
κSO = −κ in order to explore the effect of inversion of the sign
of κSO . It should be mentioned that a quite similar result is ob-
tained if we re-fit the Woods–Saxon parameters for calculations
with κSO = κ or do the calculations with other parameter sets
[7,16].

In a recent paper a second 0+ state in 34Si was observed,
which shows a large deformation parameter of β2 = 0.29 [57]. The
ground state of this nucleus is calculated to be spherical with a
Fig. 8. (Color online.) PES for the ground states in nuclei 34Si (left) and 42Si (right).

Fig. 9. (Color online.) PES for N = 40 isotones 64Cr (left) and 66Fe (right). These
nuclei are both calculated to be rigid spheres if we took κSO = κ .

coexisting shallow deformed minimum (or more exactly a shoul-
der). The calculated deformation of the second minimum is around
β2 = 0.38. This second minimum in 34Si disappears if one takes
κSO = κ . This nucleus was also studied recently based on Hartree–
Fock calculations [58,59]. The nucleus 42Si is calculated to be of
oblate shape (Fig. 8). This agrees with the shell-model calculations
with tensor force of Ref. [10] and the relativistic mean-field cal-
culations in Ref. [60]. Recent study on the ratio of the 4+

1 and
2+

1 energies in Si isotopes also indicate that the nucleus 42Si is
characteristic of a well-deformed rotor [61]. The ground state in
the N = 28 isotone 44S is calculated to be of oblate shape with
β2 = 0.27 but the minimum is much shallower than that in 42Si. It
is expected that in 44S both deformed and spherical configurations
coexist and mix weakly with each other [12].

It is expected that the quadrupole collectivity increases in
neutron-rich nuclei around N = 40 [62–66]. This is supported by
our calculations with κSO = −κ , as can be seen in Fig. 9. The cal-
culated nuclear deformation in 64Cr is close to that given by the
five-dimensional quadrupole collective Hamiltonian calculation in
Ref. [65]. Such an enhanced collectivity also indicates that N = 40
does not emerge as a magic number in neutron-rich nuclei.

In summary, we analyzed the shell structure of neutron-rich
nuclei from a simple phenomenological single-particle point of
view. We concentrated our attention on the attractive SO interac-
tion since it determines the shell-model magic numbers. We found
that, if the SO splitting is relatively enhanced (i.e., with a strong
positive value of κSO) in neutron-rich nuclei, both HO and Woods–
Saxon calculations show that it will destroy the HO magic numbers
N = 8 and 20 and generate new SO magic numbers like N = 6, 14,
16, 32 and 34 instead. The traditional magic numbers N = 28 and
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50 will be eroded somehow in neutron-rich nuclei due to the sen-
sitivity of larger-l orbitals to the central potential depth. These SO
shell closures are more robust than the HO magic numbers since
their erosion is retarded by the relative enhancement of the SO
splitting. In stable nuclei the 1d5/2 and 0g7/2 and the 0h9/2 and
1 f7/2 orbitals are close to each other. These mechanisms both may
split those shells, resulting in new shell closures like N = 56 and
90. This is in agreement with the Skyrme–Hartree–Fock calcula-
tions with tensor force shown in Ref. [3]. Such a simple scheme
may give a quick estimation on the bulk properties of the single-
particle spectra. It may also provide a convenient starting point for
a variety of shell-model calculations in the continuum (see, e.g.,
Ref. [67]) and to explore the effect of the pairing correlation and
deformation which may influence the shell structure.
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