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1. INTRODUCTION AND MAIN RESULTS

Inthis paper we consider the motion of a nonhomogeneous ideal incompressible
fluid in a bounded connected open subset £2 of R2. We assume that the boundary
I' is a compact manifold of dimension 2, without boundary, and that £ is
locally situated on one side of I'. I" has a finite number of connected components
Iy, I'n,..., Iy, such that I, (j = 1,..., m) are inside of I'; and outside of one
another. In Sections 2 and 3 we assume that £ is simply connected; in Section 4
we drop this condition. We denote by o(#, x) the velocity field, by p(¢, x) the
mass density, and by (¢, x) the pressure. The Euler equations of the motion
are (see for instance Sédov [14, Chap. IV, Sect. I, p. 164])

, [07,1 T (@-V)o— b] ——Vn in QO =[0,Ty] x &,

ct
dive =0 in Or,,
( v-n=0 on [0,T,] x 1T, ()
P toVp=0 i O,
P lio = po in £,
2y = @ in 0,

where n = n(x) is the unit outward normal to the boundary I', & = b(¢, x) is
the external force field, and @ = a(x), py = po(x) are the initial velocity field
and the initial mass density, respectively.

Nonhomogeneous ideal incompressible fluids have been studied by several
authors; see, for instance, Sédov [14], Zeytounian [18], Yih [17]. In some
problems concerning oceanography (see, for instance, LeBlond and Mysak [10])
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or, more generally, rotating systems (see also Kazhikhov [9]), Eq. (E); is replaced
by
o [%vt——i—(v-V)v—l—2wAv—b] — —%m,

where w is the angular velocity. The perturbation term 2 w A © does not give
rise to any difficulty and our results and proofs hold again if one assumes that
we COIA(Qr ).

For the case in which the fluid is homogeneous, i.e., the density p, (and
consequently p) is constant, Eqgs. (E) have been studied by several authors.

For the three-dimensional case see, for instance, Lichtenstein [11], Ebin and
Marsden [6], Swann [15], Kato [8], Bourguignon and Brezis [5], Temam [16],
Bardos and Frisch [2].

For nonhomogeneous fluids, Marsden [13] has proved (in the n#-dimensional
case) the existence of a local solution to problem (E), under the assumption
that the external force field b(¢, &) is divergence free and tangential to the bound-
ary, i.e, divb =0 in Qr and b7 =0 on [0, T,] x I'. The proof relies on
techniques of Riemannian geometry on infinite-dimensional manifolds.! In a
previous paper [4], we have proved, in the two-dimensional case, the existence
of a local solution to problem (E) without any restriction on the external field
b(¢, x). In this paper we prove the corresponding result for the three-dimensional
case, i.e.,

TueOREM A. Let I' be of class C*% 0 <X < |, and let ae CV ) with
diva =0 Qand a-n =0 on I, pye Ct" Q) with py(x) > 0 for each x € 2,
and b e COVNQy ). Then there exists Ty € [0, Ty], v € C1Y(Qr ), pe C1 1 HY(Qr )
me CO*NQr ) such that (v, p, m) is a solution of (E) in Qr .

A uniqueness theorem for problem (E) is proved by Graffi [20]. See also [3].

For the study of nonhomogeneous viscous incompressible fluids see Kazhikhov
[9], [21] Antoncev and Kazhikhov [1], Ladyzhenskaya and Solonnikov [22],
Lions [12], and Simon [23].

2. PRELIMINARIES AND EXISTENCE OF A LocAL SoLUTION
OF THE AUXILIARY SYSTEM (A)?

In this section and in Section 3 we assume that £2 is simply connected. We use
the notations introduced in [4]. We need only to define for a vector function ¢
the operator

Opy _ Opy Opy  Cpy Oy 3%)
0%y Oxg ' Oxy  Ox, Ox, Oxy )

curlp = (

1 For the analytic case on compact manifolds without boundary see [19].
2 See the end of this section.
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In the following ¢(t, x) € C®YQy), T €10, T,], will be a generic element of the
sphere

l@ton < A (2.1}

(where the radius A is a positive constant which we will specify below) such
that for each z € [0, T

divg =0 in 2/9Q), fqo-ndl":O Vielo,m  (2.2)
F‘l

This condition is equivalent to the existence of a vector function 7, such that
¢ = curl 7, ; see for instance Foias and Temam [7, Proposition 1.3]. We denote
by ¢, ¢, € ,..., positive constants depending at most on A and .

Under our assumptions on £, the conditions on ¢ assure the existence of a
unique solution ¢ € CO44Q;) of the elliptic system

curlv = ¢ i Qy,
dive =0 inQr, (2.3)
v-n=0 in[0, 7T x I'.

Moreover,

[ 2llp, 140 S cll@llon < cd, (2.4)

which corresponds to inequality (3.4} in [4].

As in [4] we construct the functions U(s, ¢, x), p(¢, ), and (¢, x) and we
prove the corresponding Lemmas 3.2, 3.3, 4.1, 4.2.

We want now to study the equation

%ﬁ——f—(z"V)C:B—}—w/\—}g—qL({-V)-v in

{ltp=n in

QT s
a (2.5)

where a = curl @ and 8 = curl b.
To solve (2.5) we use the well known method of characteristics. Consider in
O the C'-change of variable (¢, x) — (¢, ") defined by

¥ =U(O,t %), ie x=U(t04), Vie[0, T]. (2.6)

Set y = 8 + w A (Vp[p?); system (2.5) becomes then

Z—f (t, x') = 9(t, U(t, 0, x")) + Do(t, U(t, 0, x')) - &, v).

2.7)
{0, x') = o(x"),
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where

U{t, x') = i, U(t, 0, x)), (2.8)
Le.,

U, x) = {(t, U, t, x)). 2.9)
Dw is the matrix with dv,/8x; in the ith row, jth column, and Dy - { is the matrix
product.

The linear ordinary system (2.7) has a unique solution for each x' e Q.
Since a(x"), y(t, U(t, 0, x")) and Do(t, U(t, 0, ")) are not differentiable with
respect to v, {(t,x') is generally not differentiable with respect to this last variable;
hence (¢, x), being not differentiable in «, is not a classical solution of (2.5).

For this reason we must define {(¢, ) by (2.9). We denote by ¢, ¢, & ,...,
positive constants depending at most on A, 2, p,, and b.

Lemma 2.1, The solution { of system (2.7) satisfies

10 = (lalle + Tlylle) e <l ol e+ Te(4, T),
[Z]o.)\ { ([a])\ 4 Te'\T[”]D‘“I’['y]O',\) eTHDme
+ (Il + Tiyll) T[De]y,, "2 et s
< [a]y T4 + Te(A, T) (1 + || a|l2),
KMy le+ G als+ Tyl || Dol %] 72
< T4, T) (L + | i),

(2.10)

[0

where ¢(A4, T) is nondecreasing in the variables A and T

Proof From (2.7) we have

a1, ) _ | di x) ‘
dt dt

1 20, )] = | o).

<yl + I Dol | 2, x),

—
<|

By comparison theorems and (2.4) one obtains (2.10); . Moreover we have

D18 ) — L) < | S ) — L)

< (Yo [UL1ip + 11 Tl [D2lgn [UTp 11p) | %" — &” 1
+ 1l Dol | U, x7) — Lt 2"
1200, x'y — (0, )| < [ady | & — " |A
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From (2.10), and estimate (3.7), of [4] we obtain

d 4 7 Dy v
— 1862 — Lt 3 < [vloa + (Il + Ty i) [Dol.s eT'PVx] A TTtlo.uip
K=" P Del L ) — Lt 2]

By comparison theorems we have (2.10), .

Finally, from (2.7), (2.10), , and

| &t *) — s, ©)] = \ J 71“{: U, ¥y dr
one easily gets (2.10);. ||

From this lemma, (2.9), and estimate (3.7), , (3.7), of [4], one easily obtains

LemMa 2.2.  The function {(t, x) defined in (2.8) is such that { € C*¥Qr) and
1Tl =1Ll < all, T4 Te(4, T),
(o < [Con [Uk11y < [y €™+ Te(d, TY(1 + [ ),

[(ho =< [Z]A.l) + [Z]o.,\ [U]i‘iu.o < 51‘4/\[“].\ e + TliAC_(A: Y1+ [ i)
(2.11)

Now we want to prove that for each 7€[0, T] div { =0 in Z'(£2) and
fr { - ndl" = 0 for each 7 = 1,..., m. First of all we observe that

y = curl g, g€ C¥0p)

since w A Vp/p? = curl w/p, as one easily sees.
Pip P

Lemma 2.3. Let {(t, x) be defined by (2.9). Then
divi =0 m ')
and (2.12)
( {-nd[ =0 Vi=1,.,m, Vte[0, T].

Jp,
Proof. Suppose that a € C¥Q), g € C*%(Qr), v e CO¥Qy),
dive = 0in Oy, and o -n=0on[0, T] x I

Then the solution ¢ of (2.7) belongs to CYQ7), and consequently ¢ e CY(Qy)
is a classical solution of (2.5).
Since

(v VY —({ Vo =vdiv{— {divy — curl(z A {), (2.13)
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we obtain that { is the solution of

.

%—E—vdivé:curl(v/\i)+y m  Of.
{limg =10 in 0.

Let € CY%Qy), 8 =0on [0, T] x I, (T, x) = O for each x € . We obtain

f Zf VOdxdt + | {div{)w-V0dxdt =0,
o

T or
since curl grad = 0 and V6 A n = 0 on [0, T] X I'. By integrating by parts

~J' CVa—dedt—{—f (div {)v - VO dx dt = 0,
or

since 8 |,y ==0,div{ |,y =diva =0and 8 =0on [0, T] x T.

Moreover

¥ o0 o0
— V——dxdt = div{—-dxdt
Jor ¢ ot or ¢ ot

since 6 o770 = 0.
Hence we have

| dnvC( + v~ V8) dx dt =0,
or
and consequently
[ @ivDypdedt=0  VgeD(Qr),
or
since the solution (¢, x) of

,.

o0

+1v Vo =4 in

QO

0li—r =0 in

1s in CV¥(Qy) and satisfies @ (o 714 = 0.
In conclusion we have div { = 0 in Q; . Moreover

d d
Wf,«,c'””:fr,a“f'”d’":fm'""”fn[(z-vw—@-vml-ndr

=0
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by using (2.13). Hence for each 7 == 1,..., m

jz;-ndr:f «-ndl[=0 Vte[0, T).
r, r

H

If a, g, and v are not regular, we can approximate them in the following way.
By using the Friedrichs mollifiers we can find

ame Cz%\(g), a™ - ain C1+A/2(Q); gne C0.2+A(QT))
gm—gin C"'”"/z(QT); om e C0.2+/\(QT)’ M s ¢ In CO,IM,’Z(QT).

Hence we have that

a™ = curl a® — « in C"/z(g),
ym = curl g” — in  C%*%(0y),
(p"‘ = curl 9" — @ in CO"‘/Z(QT).

From this last result we see that the solutions 2™ of

curl o™ = o™ n Qr,
diveo™ =0 in Qr,
om-n =0 on [0, T]x T

are such that o™ e C%24((Q;), v” — v in C%1+/2((0,). Define now the vector
function {™ by using o™, y™, and ¢™; by the first part of the proof it follows that
div{" = 0inQr and [ {" - ndI’ = 0 for each € [0, T]. Moreover, by using
(2.7), we easily see thati"‘—»{ in C° (Qr); hence the lemma is proved. [

The function { defined in (2.9) trivially satisfies (2.5), ; moreover { is a solution
of (2.5), in the following weak sense:

Lemma 2.4. For each @ € CY82) one has
%(C, D)=P+ (- V)2, )+ (v V)P0, (2.14)

where (, ) is the scalar product in L¥(S2).
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Proof. We have
L it, x) - B(x) dx = L i, ') - BU(t, 0, ') do’;
hence by (2.7),

< [REER-CF

-3 [ [

i=1

-3 L) 0,0, - it UG, 0, )| d

P

> [ e+ 3 S0 b0 9] 20+ 10 T 0t 9] as
) I

Now we define the map F as follows. The domain of F consists of the functions
@ of the sphere defined by (2.1) with A satisfying

A>alh, (2.15)

and such that (2.2) holds.

Finally we put { = F[g].

It follows from estimates (2.11) and from Lemma 2.3 that there exists
T, €10, Ty] such that the set

={pe C*¥Qr) |l pllon < 4, [plo < 4™, o satisfies (2.2))

satisfies F[S] C S, where F, the norms, and the seminorms correspond to the
interval [0, TY].
S is a convex set and by the Ascoli-Arzeld theorem it follows that S is compact

in C(Qr.).

Moreover, as in [4], we obtain

Lemma 2.5. The map F: S — S has a fixed point.
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Hence we have construct a solution {, z, p,  of the auxiliary system

Z—§+(0-V)C:B+w/\—\;§+(€-v)v in O,
curlv = in Or, .
dive = in Or,»
von=20 on [0, T)] x I,
%—FT'VP:O in  Qf,
P lico = Po in £,
curlw =0 in Or,»

dive = AL @+ pY (Do) (D) — pdivd in O,
P

2.

wen=—py (Dm)ve, —pb-n on [0,T4] x T,

2.J

Lo = in 0,

where equation (A), is satisfied in the sense described in Lemma 2.4.

3. ExiSTENCE OF A SoLUTION OF SysTeEM (E)

First we prove that Dy exists in the classical sense and belongs to C*YQr. ).
We need two lemmas:

Lemma 3.1. IfoeCY2),dive =0, andv-n =0 on I, then

div[(z - V) o] =¥ (D)) (D) in L,

3.1
(e V2] -n=—Y (Dn) vz, on I,

where the operator div is in the sense of distributions in L.
See Bourguignon and Brezis [5, Sect. 3] or Temam [16, Lemma [.1].

LevMa 3.2, If ve CYQ), { = curl v, we have

(¢ Vo, curl @) = —((2 - V)B, ) — ({ - Vo, @) Y@ e Cy=(R). (3.2)
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Proof. If v e C¥£), by a direct computation we have

curll(v * V)o] = (v - V){ — ({ * V)z + (div 9)¢,

and this leads easily to (3.2).
If v € CY({2), we approximate it with v, € C%(2). ||
Now we can prove the existence of D.

Lemma 3.3, We have

~

ov «w :
= b+ - (z-V)o in Or,; (3.3)

hence ov)ot € CO‘A(er)-
Proof. Let @ € Cy=(£2). We have

Dy(v, curl @) = D({, D)

since curl v = @ = {. Moreover from (2.14), (3.2), and the equation y =
curl(b + w/p) we obtain

Dyfe, curl @) = (v, ®) + (£ - V) 2, ®) + (= - V) B, 1)
= (5, ®) — ((v - V) v, curl ®) = (b + % — (= V) o, curl <1>) .
Hence

. _ . ‘ ® _ (-
(c, curl @) = (7;(0, ), curl @) - L (b o= (2 V), curl @) dr
= (v(O, Y+ f: [b T %_ (v-V)v] (r, -)dr,curl@),
and consequently for each ¢ € [0, T}]
o(t, x) — (0, x) — fo t [b + % —(2-V) v] (r, x) dr = VE(t, ),

where 5e C1(2), Vt e [0, T}]. From (2.3),, (2.3);, (A)g, (A)g, and (3.1) we
conclude that divVE = 0 in the distributions sense, and VZ -z =0 on

[0, T\] x T, hence (3.3). ||
From (3.3) and (A), it follows that

cv .
p[at—{—(v-V)w——b]:—V-n n Or,»

409/73/2-4
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i.e., (E), holds, with = € C%2*X(Qr. ) (see Lemmas 4.1 and 4.2 in [4]). Furthermore

cur{e [.g — @) = { ;g — =0 in £,
div(v ;g —a) =0 in Q,

(V]|teo—a) =0 on I,

and consequently (E)g holds.
Finally, as in Remark 5.5 in [4], we prove that pe CU14(Qyr ), and the
proof of Theorem A is complete.

4. Tae Case 2 Nor SimpLY CONNECTED

By the hypotheses on the domain £ (see Section 1), it is clear that if Q is not
simply connected, one can make it so by means of a finite number of regular cuts.
The number N of these cuts is the dimension of the first cohomology space
H,(2) of 2, ie., the quotient of the space of closed differential forms by the
space of exact differential forms.

Moreover one can construct N functions ¢ , ¢s ..., g such that ¢'¥) == grad ¢,
are linearly independent and satisfy v® e C1*(£), div o) = 0, curl o» == 0,
2 - n = 0 on I'. These o'*) are a basis of the space H (£2).

Finally, one sees that a function @ is a gradient if and only if curl = = 0
and (w, v*)) = 0 for each & = 1,..., NV (for these results see Foias and Temam
[7, Remark 1.2, Lemma 1.3, and Proposition 1.1]).

We can orthonomalize the v*); if we denote the orthonomal system thus
obtained by #'*, we have constructed a system of vectors which has the properties
of that introduced in [8, Sect. 1].

The difference between two solutions z, and ¢, of {2.3) is given by

vy(t, x) — wo(t, x) = Y, () u'®(x),

where the 6,(t) € C%[0, T]) are arbitrary.
We denote by o(t, x) the solution of (2.3) such that (z, ') = 0 for each
k = 1,..., N. Such a solution is obviously unique, and we have

Nollgina <clle flo.a -

Moreover each solution @ of (2.3) can be written in the form
T8, x) = o(t, x) + Y Ox(t) u®(x).
3

Hence, arguing as is [4], we obtain a solution 7, p, @ of system (6.1)—(6.5) and
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we prove Lemmas 7.2 and 7.3 and Remark 7.4 of [4]. Hence, by proceeding

as

before, we construct a function { which satisfies the usual properties and we

find a fixed point @ = { (see Section 2 of this paper). The regularity of D&

is

proved as in Lemma 3.3 of this paper, by also using the fact that

D@, u®)y = (—f— — (@ Vot bu®),  Vie[0,T], VE=1..N;

finally one has

curl(@ |y — a) = Llig—a =0 in Q
(D ]i—g — @, u'¥) =0, Vk = 1,.., N,
div(7 ;o —a) =0 in 0,

(Zlto—a) n=0 on I

that is, T |,_y = a in £2.

10.
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