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1. INTRODUCTION AND MAIN RESULTS 

In this paper we consider the motion of a nonhomogeneous ideal incompressible 
fluid in a bounded connected open subset Q of R3. We assume that the boundary 
r is a compact manifold of dimension 2, without boundary, and that s2 is 
locally situated on one side of r. r has a finite number of connected components 

r, , r, ,..., r,, such that r, (j = I ,..., m) are inside of r, and outside of one 
another. In Sections 2 and 3 we assume that 52 is simply connected; in Section 4 
we drop this condition. We denote by o(t, x) the velocity field, by p(t, X) the 
mass density, and by rr(t, X) the pressure. The Euler equations of the motion 
are (see for instance SCdov [14, Chap. IV, Sect. 1, p. 1641) 

div 21 = 0 in 0 - To 9 

z’ . n = 0 on 10, ~,i x r, 

g+ 21 . Gp = 0 

P It=ll = PO 

2’ Itzo = a 

in JZ 

in -Q 

where n = n(x) is the unit outward normal to the boundary r, b = b(t, X) is 
the external force field, and a = a(x), p. = po( x are the initial velocity field ) 

and the initial mass density, respectively. 
Nonhomogeneous ideal incompressible fluids have been studied by several 

authors; see, for instance, SCdov [14], Zeytounian [18], Yih [17]. In some 
problems concerning oceanography (see, for instance, LeBlond and Mysak [IO]) 
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or, more generally, rotating systems (see also Kazhikhov [9]), Eq. (E), is replaced 

r 

p [ g + (v . T) Z’ + 2w A 21 - b] = -rTT, 

where w is the angular velocity. The perturbation term 2 w A o does not give 
rise to any difficulty and our results and proofs hold again if one assumes that 
w E coJ+yQTo). 

For the case in which the fluid is homogeneous, i.e., the density p. (and 
consequently p) is constant, Eqs. (E) h ave been studied by several authors. 

For the three-dimensional case see, for instance, Lichtenstein [ 1 I], Ebin and 
Marsden [6], Swann [15], Kato [S], Bourguignon and Brezis [5], Temam [16], 
Bardos and Frisch [2]. 

For nonhomogeneous fluids, Marsden [13] has proved (in the n-dimensional 
case) the existence of a local solution to problem (E), under the assumption 
that the external force field b(t, X) is divergence free and tangential to the bound- 
ary, i.e., div b = 0 in QT, and b . n = 0 on [0, To] x lY The proof relies on 
techniques of Riemannian geometry on infinite-dimensional manifo1ds.l In a 
previous paper [4], we have proved, in the two-dimensional case, the existence 
of a local solution to problem (E) without any restriction on the external field 
b(t, x). In this paper we prove the corresponding result for the three-dimensional 
case, i.e., 

THEOREM A. Let r be of class C3’ A, 0 < h < 1, and let a E C”“(~) zuith 
div a = 0 in Q and a n = 0 on r, p. E P+“(d) with po(.v) > 0 for each x ED, 
and b E C”JLA(QTo). Then there exists Tl E [0, T,], ZJ E CIJ-‘\(QT1), p E Cl+ n.1 t,‘(QT,) 
Z- E C”,z+*\(QT1) such that (w, p, n) is a solution of(E) in QT1 . 

A uniqueness theorem for problem (E) is proved by Graffi [20]. See also [3]. 
For the study of nonhomogeneous viscous incompressible fluids see Kazhikhov 

[9], [21] Antoncev and Kazhikhov [I], Ladyzhenskaya and Solonnikov [22], 
Lions [ 121, and Simon [23]. 

2. PRELIMINARIES AND EXISTENCE OF A LOCAL SOLUTION 
OF THE AUXILIARY SYSTEM (A)* 

In this section and in Section 3 we assume that 52 is simply connected. We use 
the notations introduced in [4]. We need only to define for a vector function v 
the operator 

curl v .= ( 
+3 a% avl av3 ave avl ~ - - 
ax2 

---,r--- . ax, ' ax, dx, dlc, ax, ) 

1 For the analytic case on compact manifolds without boundary see [19]. 
* See the end of this section. 
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In the following ~(t, X) E CO+‘(Qr), T E IO, To], will be a generic element of the 
sphere 

II v /:o,,, G -7l (2.1) 

(where the radius A is a positive constant which we will specify below) such 
that for each t E [0, T] 

divv = 0 in 9?‘(S), 
s 

q2.nnr=o Vi = l,..., nz. (2.4 
r, 

This condition is equivalent to the existence of a vector function v. such that 
cp = curl z, ,, ; see for instance Foias and Temam [7, Proposition 1.31. We denote 

by G c, , ~2 ,..., positive constants depending at most on A and 52. 
Under our assumptions on Sz, the conditions on F assure the existence of a 

unique solution z’ E C”*l+A(Qr) of the elliptic system 

Moreover, 

curl zl = 9) inQT, 
div zl = 0 inQT, 
21 .Tz = 0 in [0, T] x IY 

(2.3) 

which corresponds to inequality (3.4) in [4]. 
As in [4] we construct the functions U(s, t, x), p(t, s), and w(t, X) and we 

prove the corresponding Lemmas 3.2, 3.3, 4.1, 4.2. 
We want now to study the equation 

5 + (21 * G) 5 = /3 + a! A $ + (5 ’ V) u in 0 ,T, 

5 LO = a! in -Q, 
(2.5) 

where 01= curl a and p = curl 6. 
To solve (2.5) we use the well known method of characteristics. consider in 

Q, the Cl-change of variable (t, X) -+ (t, x’) defined by 

xt = ~(0, t, x), i.e. s = U(t, 0, N’), Vt E [O, T]. G’4 

Set y = /3 + 2~’ A (C,/$); system (2.5) becomes then 

$ (t, cc’) = y(t, qt, 0, x’)) + Dv(t, U(t, 0, x’)) . Qt, x’). 

go, x') = c+'), 
(2.7) 
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where 

i.e., 

[(t, x’) = S(t, qt, 0, x’)), (2.8) 

gt, x) = [(t, U(0, t, x)). (2.9) 

Dv is the matrix with &I~/&;- in the lth row, jth column, and Dv . 5 is the matrix 
product. 

The linear ordinary system (2.7) h as a unique solution for each s’ E Q. 
Since a(.~‘), y(t, U(t, 0, x’)) and Dv(t, U(t, 0, x’)) are not differentiable with 
respect to s’,i(t,x’) is generally not differentiable with respect to this last variable; 
hence l(t, s), being not differentiable in x, is not a classical solution of (2.5). 
For this reason we must define I;(t, x) by (2.9). We denote by C, or, Q ,..., 
positive constants depending at most on A, Q, p,, , and 6. 

LEiVMA 2.1. The solution 5 of system (2.7) satis$es 

where ~(~4, T) is nondecreasing in the variables A and T 

Proof From (2.7) we have 

d I k 4 dt < II Y I/x + II Dv I/m I &t, .v’)l , 

/ [(O, xi)1 = I ci(x’)I . 

By comparison theorems and (2.4) one obtains (2.10), . Moreover we have 

g / [(t, x’) - [(t, x”)I < 1; [&, x’) - [(t, x”)] 1 

< ([~l/lo.,+ [ulklip + II !Z II= [Dvlo,~ [W&p) I X’ - x” I’ 
+ II Dv I/cc I %(t, 4 - &t, 4 , 

j [(O, x’) - [(O, x”)] < [ct]A I x’ - x” IA. 
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From (2. lo), and estimate (3.7), of [4] we obtain 

& ) ((t, x’) -- [(t, .x”‘)l < [[r]o,A + (11 a /~I + T I/ y l/r,) [Dv],,,, P”‘~~“‘=] eATr’l”,L1~~ 

x / s’ - x” /* + II Do III j [(t, x’) - [(t, x”)l . 

By comparison theorems we have (2.10), . 
Finally, from (2.7), (2.10), , and 

one easily gets (2.10), . 1 

From this lemma, (2.9), and estimate (3.7), , (3.7), of [4], one easily obtains 

LEMMA 2.2. The function {(t, x) dejked in (2.8) is such that 5 E CA-*(Qr) and 

/I< 11% = iI 5 Il., < I; a 11% ecTA + Tf(A, T), 

[<lo.,\ < [[]o.,+ [c’]~,li,, < [alA PA -t WA, T) (1 + II a llm)q 

[5]A.o G [&.,, + [Qo.,l [tJ]:i,,,, < ~1-4”[&],\ errA + T’WJ~, T) (1 -t II 0~ I!x)- 
(2.1 I) 

Now we want to prove that for each t E [0, T] div 5 = 0 in Y(G) and 
Jr> 5 . ndr = 0 for each i = I,..., rrz. First of all we observe that 

y = curl g, g E C”J+*(Qr) 

since zL’ A ~f~/o/ps = curl m/p, as one easily sees. 

LEMMA 2.3. Let <(t, x) be dejined by (2.9). Then 

dir 5 = 0 in Y(Q) 

and (2.12) 

1 
<.ndr=O Vi = I,..., m, Vt E [0, TJ. 

- r* 

Proof. Suppose that a E C2(o), g E C”aa(QT), z, E C”*2(Qr), 

div v = 0 in QT , and a . n = 0 on [0, T] x r. 

Then the solution 5 of (2.7) belongs to P(Qr), and consequently 5 E Cr(Qr) 
is a classical solution of (2.5). 

Since 

(V . V)< - (5 . K’)v = v div i - 5 div v - curl(n A 0, (2.13) 
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we obtain that 5 is the solution of 

$ + v div 4 = curl(v A 5) + y in Q,. 

5 It+) = a in 9. 

Let 6 E Ps2(QT), 19 = 0 on [0, T] x T, O( T, x) = 0 for each x E D. We obtain 

J Q6 dx dt + 
s 

jdiv [)v * QO dx dt = 0, 
or 

since curl grad = 0 and QO A 11 - 0 on [0, T] x r. By integrating by parts 

- S,, 5 . Q g dx dt + J^BT (div <)v ’ Qfl dx dt = ot 

sinceO/,=,==O,div~~,=,=diva.=Oand8=Oon[O,T] XT. 

Moreover 

- J‘ 
QT 

[ . Q z dx dt = 1 
QT 

div 5 $- dx dt 

since 0 l[o,rjxr = 0. 
Hence we have 

and consequently 

s 
(div 5) # dx dt = 0 

QT 

since the solution f?(t, x) of 

$+ 1,. ve = 3) 

0 Its = 0 

is in C1si(QT) and satisfies 0 I[o,Tlxr = 0. 

w E 9(QT)r 

in 0 ,T, 

in I=2 

In conclusion we have div 5 = 0 in QT . Moreover 

d 
_ f 5.ndr=Sp,~.ndr=Sr,y.ndr+~~,[(5.Q).-(,.Q)5].ndT 
dt er, 

=o 
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by using (2.13). Hence for each i z I ,..., m 

jr, 5 . n dl- = jr m . n dl- = 0 Vt E 10, T]. 

If a, g, and ZI are not regular, we can approximate them in the following way. 
By using the Friedrichs mollifiers we can find 

Hence we have that 

01”’ .=E curl a”’ --f LY. in CA12(A7), 

Y nL E curl g7” + y in Ca*Al”(Qr), 

qF K curl 5,“’ + v in C”*“12(Qr), 

From this last result we see that the solutions ZY” of 

curl 7p1 = ~3’~ in QTI 
div ZI”” = 0 in QT, 
C’“’ . n -_ 0 on [0, T] x r 

are such that YP E C”.2~,\(QT), a”’ -z, in COJ+^‘“(Qr). Define now the vector 
function 5” by using LPI, y”, and v”; by the first part of the proof it follows that 
div 5”’ = 0 in QT and srt <‘I’ n dr = 0 for each t E [0, T]. Moreover, by using 
(2.7) we easily see that 5”” + 5 in Co (QT); hence the lemma is proved. 1 

The function 5 defined in (2.9) trivially satisfies (24, ; moreover 4 is a solution 
of (24, in the following weak sense: 

LEMMA 2.4. For each @ E Cl(a) one has 

$ (5, q = (Y, @> + ((1 * V) nu, @I + ((cv * 9 @, 0, (2.14) 

zuhere ( , ) is the scalar product in L2(Q). 
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Proof. We have 

j, ((t, x) . a(x) dx = s, [(t, x’) - @( U(t, 0, x’)) dx’; 

345 

hence by (2.7), 

& i, &, 4 . @(x) dx 

3 

=Cj[ i-1 a 

-g (4 x') Qi( U(t, 0, x')) 

mt i l<(t, X’) z (U(t, 0, X’)) . Wj(t, U(ty 0, Xf))l dx’ 
J=l . I > 

Now we define the map F as follows. The domain of F consists of the functions 
v of the sphere defined by (2.1) with iz satisfying 

A > II ct IIA > (2.15) 

and such that (2.2) holds. 
Finally we put 5 = F[v]. 
It follows from estimates (2.11) and from Lemma 2.3 that there exists 

T1 ~10, TO] such that the set 

s G (9’ E CAJ(QT1) I /I T llo.A < A, [P)]~.~ < +++A3 v satisfies (2.2)) 

satisfies F[S] C S, where F, the norms, and the seminorms correspond to the 
interval [0, TJ. 

S is a convex set and by the Ascoli-Arzela theorem it follows that S is compact 

in C”(QT1). 
Moreover, as in [4], we obtain 

LEMMA 2.5. The map F: S -+ S has a &red point. 
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Hence we have construct a solution 5, v, p, ZL of the auxiliary system 

curl v = 5 

div 2” = 0 

2’ - n = 0 
r 

-g+ 
v * K-p = 0 

P It=0 = PO 

curl 20 = 0 

div ZL’ = F . w $- p c (Da,) (D,vi) - p div b 
1.) 

zc . 12 = -p 1 (Dinj) v,v, - pb . n 
1.) 

5 LO = 01 

in 

in 

in 

on 

in 

in 

in 

in 

on 

in 

where equation (A), is satisfied in the sense described in Lemma 2.4. 

3. EXISTENCE OF A SOLUTION OF SYSTEM (E) 

First we prove that D,v exists in the classical sense and belongs to C”*“(QT,). 
We need two lemmas: 

LEMMA 3.1. If v E C’(a), div zj = 0 in Q, and v .z = 0 on r, then 

div[(zj * C) z,] = 2 (Div,) (D,z~,) 
L,l 

[(v . G) zq . n = - c (D,n,) vzv, 
L., 

in l>, 

(3.1) 
on r, 

where the operator div is in the sense of distributions in Q. 

See Bourguignon and Brezis [5, Sect. 31 or Temam [16, Lemma 1.11. 

LEnnvta 3.2. If v E Cl(o), 5 = curl v, u’e have 

((29 V)z, curl @) = -((v . V)@, 5) - ((5 . Y)v, @) V@ E c,qq. (3.2) 
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Proof. If w E C”(a), by a direct computation we have 

curl[(v * V)o] = (w . V)< - (5 * V)v + (div v)c, 

and this leads easily to (3.2). 
If ZI E Cl(o), we approximate it with z’, E Ca(@. i 

Now we can prove the existence of D,a. 

LEMMA 3.3. We have 

g = b + 3 - (e! . V) Z, in 0 ; - Tl (3.3) 

hence au,iiit E C”.A(QTI). 

Proof. Let @ E Cam(Q). We have 

since curl ZI = q~ = 5. Moreover from (2.14) (3.2), and the equation y = 
curl(b + .z~/p) we obtain 

@(r, cm-1 @) = (Y, @) + ((5 . V) z’, @) + ((u . v) 0, 5) 

= (y, @) - ((U . V) z’, curl @) = (b + $ - (z’ * V) z’, curl @) . 

Hence 

(,z, curl @) = (v(0, e), curl @) + jot (b + $ - (z~ . 0) v, curl @) dr 

= (~(0, *) + It [b + $ - (v . V) z~] (T, .) d7, curl @) , 
0 

and consequently for each t E [0, Tr] 

a(t, x) - ~(0, x) - jO’ [b + ; - (zl . V) n] (7, X) d7 = VE(t, x), 

where 8 E Cl’-“(o), Vt E [0, TJ. F ram (2.G , (2.3)s , (A), , (& , and (3.1) we 
conclude that div VE = 0 in the distributions sense, and VE . n = 0 on 
[0, TJ x r, hence (3.3). 1 

From (3.3) and (A), it follows that 
r 

p $f(c.V)a--b 
[ 1 =-v7T in 0 - T, 1 

409/73/W 
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i.e., (E), holds, with n E C”*2+A(QrJ (see Lemmas 4.1 and 4.2 in [4]). Furthermore 

curl(o ItzO - a) = 5 ltzO - (Y = 0 in 8, 

div(v ltcO - a) = 0 in IIn, 

(w IfGO - u) . 11 = 0 on r, 

and consequently (E)s holds. 
Finally, as in Remark 5.5 in [4], we prove that p E C1+~,l+A(Qrl), and the 

proof of Theorem A is complete. 

4. THE CASE f2 NOT SIMPLY CONNECTED 

By the hypotheses on the domain J2 (see Section l), it is clear that if G is not 
simply connected, one can make it so by means of a finite number of regular cuts. 
The number N of these cuts is the dimension of the first cohomology space 
H,(O) of Sz, i.e., the quotient of the space of closed differential forms by the 
space of exact differential forms. 

Moreover one can construct N functions q1 , us ,..., qN such that z’(~) = grad qe 
are linearly independent and satisfy z@) E C1fA(@, div z+~) = 0, curl ~9~) = 0, 
~9) . 71 = 0 on lY These z@) are a basis of the space H,(Q). 

Finally, one sees that a function w is a gradient if and only if curl u’ = 0 
and (w, v(~)) = 0 for each k = 1 ,..., N (for these results see Foias and Temam 
[7, Remark 1.2, Lemma 1.3, and Proposition 1 .l]). 

We can orthonomalize the r+); if we denote the orthonomal system thus 
obtained by uth), we have constructed a system of vectors which has the properties 
of that introduced in [8, Sect. 11. 

The difference between two solutions r+ and os of (2.3) is given by 

q(t, x) - zgt, x) = c e,(t) zqx), 
k 

where the 0,(t) E CO([O, T]) are arbitrary. 
We denote by v(t, X) the solution of (2.3) such that (c, z@) = 0 for each 

k = I, . . . . N. Such a solution is obviously unique, and we have 

Moreover each solution ti of (2.3) can be written in the form 

qt, x) = a(& x) + 1 e,(t) zP’(X). 
k 

Hence, arguing as is [4], we obtain a solution V, p, w of system (6.1)-(6.5) and 
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we prove Lemmas 7.2 and 7.3 and Remark 7.4 of [4]. Hence, by proceeding 
as before, we construct a function [ which satisfies the usual properties and we 
find a fixed point C+I = c (see Section 2 of this paper). The regularity of D,v 
is proved as in Lemma 3.3 of this paper, by also using the fact that 

D,(z; zP) = F - (e?. V) 6 + b, dk)) , Vt E [O, T,], Vk = I)...) iv; 

finally one has 

curl(VI,=,-u) = [I,=,--(Y =0 in a, 

(v It=0 - a, u’“‘) = 0, Vk = I,..., N, 

div(8 lfzO - a) = 0 in 0, 

(5 / t=o - u) tz = 0 on r, 

- 
that is, zq llzo = a in n. 
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