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Abstract

In this note we present a variant of the algebraization of equivariant rational homotopy theory.
For a finitc group G, lct ((G) be the category of its canonical orbits. We prove that the category
((G)-DGAg of ¢ (G)-differential graded algebras over the rationals is a closed model category.
Then, by means of the equivariant KS-minimal models constructed in this paper, we show that
the homotopy category of ('(G)-DGAy is equivalent to the rational homotopy category of ¢(G)-
simplicial sets provided G is a Hamiltonian group. (©) 1998 Elsevier Science B.V. All rights
reserved.

AMS Classification: Primary 55P62; 55P91; secondary 18G30; 55U35

0. Introduction

Let £ be a field ot characteristic 0 and DG4, (resp. SS) the category of homologi-
cally connected (i.e., H%A)=k for 4 in DGA;) commutative differential graded
k-algebras (resp. the category of connected simplicial sets). It has been proved [1, 10]
that these categories form closed model categories in the sense of Quillen [10]: weak
equivalences are homology isomorphisms (resp. weak homotopy equivalences); fibra-
tions are surjections (resp. Kan fibrations) and cofibrations are maps having the Icft-
lifting property with respect to all maps which are both fibrations and weak equiv-
alences. An algebra A4 (resp. a simplicial set X) is cofibrant (resp. fibrant) if the
canonical map & — A (resp. X — *) is a cofibration (resp. a f(ibration).
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The most important cofibrant algebras are the minimal ones introduced by
Sullivan {11]. They are sufficient for most homotopy theoretic purposes because every
connected algebra 4 can be “approximated up to weak equivalence” by a unique-up-
to-isomorphism minimal algebra M,, i.e., there is a weak equivalence p;: M, — A.
Moreover, in [1] a pair of adjoint functors are constructed

F
A*

which determine the basic Sullivan—de Rham equivalence, where @ is the field of
rationals. An equivariant version of the Sullivan minimal model theory was given
in [12,13] for nilpotent G-spaces of finite type with a basepoint, where G is a fi-
nite group. Later Fine was able to remove the basepoint hypothesis in his Chicago
Ph.D. thesis in 1992, Our aim is to present a variant of the equivariant Sullivan—
de Rham equivalence based on the Bousfield and Gugenheim categorical
approach [1].

We now give an outline of the paper. In Section 1 (Theorem 1.3) we show how,
by means of [3], a closed model structure on a category C can be extended to the
functor category 1-C (called the category of l-objects), where 1 is an £/-category i.c.,
each of its endomorphism is an isomorphism. In particular, on the category [-DGAg
a closed model structure is induced from such a structure on DGAg (see [1]) and on
the category 1-SS from such a one (see [10]) on the category dual to SS. Then, we
consider a pair of functors

F
ho 1-DGAg ——— ho [-§S

b

between the associated homotopy categories. We point out that for any small category [
the category [-SS has also been endowed in [2] with a closed model category structure
but inherited from such a one on $S and not on the dual.

In Section 2, assuming some propertics of [, we prove that ¥ (¥), for Z in [-SS
could be chosen as an appropriatec KS-minimal model. An idea for its construction
for a special case has been given in [8] and is based on the notion of a Koszul-
Sullivan extension presented in [7]. Then some geometric applications are presented.
In particular, let G be a finite group and ((G) the associated E/-category of canon-
ical orbits. Its objects are orbits G/H for all subgroups H C G and mor-
phisms are G-maps between them. Then, as a result of Theorem 1.3, we may
state

Theorem. The categories (:(G)-SS and ((G)-DGAq are closed model categories.

For any G-connected simplicial set X (i.e., such that all fixed point simplicial subsets
X" are connected for subgroups H C G), we can consider differential graded Q-algebras
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of polynomial forms A*(X*") for all subgroups // C G. Therefore, we obtain a functor
A G-SS — ((G)-DGA,,

where G-SS is the category of G-connected simplicial sets. On the other hand, from
[4] one could deduce the existence of an equivalence of homotopy categories

ho G-SS ——— ho ('(G)-SS.

Now let DGAY (resp. §S") be the category of homologically connected augmented
differential graded Q-algebras (resp. the category of pointed simplicial sets) and let &
be a finite Hamiltonian group (i.e., each subgroup of G is normal). We show that for
a nilpotent X in G-SS", the equivariant KS-minimal model of ./*(X) has the strong
homotopy type of its injective model considered in [12, 13] and we prove the following
equivariant version of the Sullivan—-de Rham equivalence.

Theorem 2.7. If G is a Hamiltonian group, then there exists a pair of adjoint functors

ho G-§S"

ho ¢((G)-DGAY,

which restrict to inverse equivalences

fQN-ho G-SS" fQ-ho ((G)-DGAY,

where fQN-ho G-SS° is the full subcategory of ho G-SS" induced by those
G-connected pointed simplicial sets which are nilpotent and of finite type and
JQ-ho ((G )—DGAOQ is the full subcategory of ho ((‘(G)-DGA& induced by those aug-
mented ((G)-algebras which are equivalent to equivariant KS-minimal ¢(G)-algebras
and with finitely many multiplicative generators.

In a forthcoming paper, we plan to extend this result to G-disconnected unpointed
simplicial sets.

1. Systems of algebras

Various categories considered in algebraic topology have the property that endomor-
phisms are isomorphisms. Therefore, let [ be a small E/-category which by definition,
is a small category in which each endomorphism is an isomorphism and denote by
Ob(l) the set of its objects. Following [9] we define a partial order, crucial for the
sequel, on the set Is(1) of isomorphism classes i of objects i € Ob(l) by

i<j if Ui ) #0.
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This induces a partial ordering on the set Is(1), since the E/-property ensures that 7 < ;
and j <i implies i=/. We write that i</ if i <j and { # j.

Throughout, { is a cofinite £I-category i.c., each isomorphism class i has only finitely
many predecessors. For any /€ Ob([) we define its height as the number of its pre-
decessors. Observe that any group G can be treated as an E/-category with a single
object.

Fix a complete and cocomplete category C with a closed model structure. Our aim
is to define, by means of [3], such a structure on the category [-C of all covariant
functors from [ to C, called 1-0bjects of C or systems of objects indexed by [. For this
purpose, we distinguish in this category the following three classes of maps. A map
[ .o/ — % of l-objects is called a weak equivalence (resp. fibration) if for all i € Ob(1)
the maps f(i):.o/(i)— (i) are weak equivalences (resp. fibrations) in the category
C. Amap ..o — # is a cofibration if it has the left-lifting property with respect to
all maps which are both fibrations and weak equivalences i.e., trivial fibrations. In par-
ticular, for a group G the category G-C of G-objects inherits a closed model structure
from C.

Let Aut(i) be the automorphism group of i€ Ob(l) and .7 an [-object. Then on
&/(i) there is the natural Aut(i)-action and, for a map f:.o/ —# of l-objects, the
maps f(i):.e/(i)— (i) preserve the Aut(i)-action. Therefore, for a fixed i € Ob(l),
we have the restriction functor

Res; : I-C — Aut(i)-C

such that Res;(.e/) =./(i) for an l-object .o/ and its right adjoint F;: Aut(i)-C — [-C
is called the coextension functor which is defined as follows. For i’ € Ob(l), let IJ;:/ be
the category with objects being maps ¢ :i’ —i and maps from ¢:i' —i to y:i' —i
are determined by maps p:i—i such that p¢p=. Then any Aut(i)-object C deter-
mines an ¢ -object Z(C) such that #/(C)(¢:i' —i)=C and we put F(C)(i')=
limn,u‘ﬁ’/'fi"/(C). Of course, any map ¢:i” —i in the category | determines a map
HC)((;&):E—(C)(i”)—>F}(C)(i’) and this construction is functorial with respect to
Aut(i)-objects C as well. Note that an isomorphism i/ Z, i determines an isomorphism
C 5 FON).

For a fixed i € Ob(l), let I; be the category which objects are pairs (7, ¢), where
¢ i’ —i is a non-isomorphism and maps from (7}, ¢ ) to (7}, ¢2) are determined by
maps  : ij — i5 such that ¢y = ¢,. Then any [-object ./ determines an [;-object .2/
such that .(i’, ) =.9/(i") and a map lim;, .o/ — .<7(i) in the category C. Note that
limy, ./ is isomorphic to the initial objecﬁn the category C for i of height 0. We now
state the following description of cofibrations in the category [-C.

Proposition 1.1. Ler | he a cofinite small El-category. A map o — % in 1-C is
a (trivial ) cofibration if and only if for each i € Ob(l) the induced Aut(i)-map h(i)
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in the pushout diagram

is a (trivial ) cofibration in the category Aut(i)-C.
Proof. First, let f be a (trivial) cofibration in [-C and for a fixed i € Ob(l) consider

a commutative diagram

%(i) D

(*) h(i) P

ABi) — s E

in the category Aut(/)-C, where p is a (trivial) fibration. Define the objects &, & in
[-C as follows:

) - . F(D)i')y for i’ <i,
. F(DYi') for i’ <1, y . = -
& / = (f = F ! f I =
7(i’) { . otherwise. (i) *,(E)(z ) Ocz;et 1sle

where x is the terminal object in C and maps are induced either by projections or p
or being trivial. Then we obtain the commutative diagram in the category 1-C

x
oA —— &

(%%) ! P

B — 8,

il

where p(i’) is either the identity or induced by p. Thus, the map p is a (trivial)
fibration. The maps x(i’) are induced from the composite maps

F(owi’
A A O — BN ) it
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for i’ <i, the maps f(i’) from

o . BRI (0 U g E
B — F(limy, B, )00") —— F(C())N) — &31)
—

for 7 <i and B(i)— E = &(i') for 7 =i. So, there exists a filler ¢ in (%%) and we
have the commutative diagrams

A7) —2D gy

,4
gay, -~
16

B ) ———— &)

for 7 <i and

(i) M 9@()=D
f(i)j A JP
B0) 55 E()=E .

To show that ¢g(i) is a filler in (%), it is sufficient to prove that g(i)h(i) = 0.
Now let all A(i) be (trivial) cofibrations and consider a solid-arrow commutative
diagram in the category [-C

Pl

in which the map p is a (trivial) fibration. We construct components ¢g(i) of a filler ¢
inductively with respect to the height of /. If i € Ob(l) has height 0, then € (i) = ./ (i),
f(i)=h(i) and there exists a filler y(/):

(i) = 6() —2 . 9()
f)=h(i) oo pli)

BGY L) £G) .
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Suppose that for all i € Ob(l) of height smaller than that of i there exist g(i') : (i)
— &(i') such that diagrams

d(l,) a(i’) g([;) .%(l”) gi") 9(,//)
(", "
i) P

commute for i </
At first we define a map 0:%(i) — (i) assuming commutativity of the diagrams

A () — limy, o/ ——— o/ (i)

I

By — lim, B, —— ()

g

(") D0")
and we get the solid-arrow diagram

G()———— ()
gy - }p(f)

.@(l)/ - B

h(i)

10

which is commutative because p(i)odo(/(i)—€(i))= p(Hoxu(iy=pf(i)o f(i)=
B()oh(i)o (A (i)— % (i))and p(iYodoyo(HB(')—1limyB;)= p(i)yo (i —i)og(i')=
S — i)Yo pli')og(i') = E( —iyo f(i') = i) o AU —i) = Bi) o h(i) o o (A(i') —
lim;, #;). Thus, there exists a filler y(i) and we have g(i)o f(i)=g(i)oh(i)o (A (i)
—%(i))=00(Ai)—C(i))=ni), pli)oy(i)= i) and g(Yo B — )=
g(i)oh(iyoyo (A(i"y—limy#;) = (i’ —i)og(i'") for i/ <i. So, the inductive step
is done. [ -

Corollary 1.2. Let | be a cofinite small El-category and [ ..o/ — # a cofibration
in 1-C. Then for each i € Ob(l) the map f(i): /(i) — B(i) is a cofibration in the
category Aut(i)-C.
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Proof. For i € Ob(l), consider the commutative diagram

lim, o7,
—

(i)

Then we see that the map lim;, f; is a cofibration in € and /(i) is also. By Proposition
1.1 the map A(i) is a cofibration and, consequently, the composite map A(:) f'(i) = (i)
is a cofibration. [

The above results and a dualization of the procedure presented in [3, Section 3]
yield

Theorem 1.3. If U is « cofinite small El-category, then the category 1-C, together
with the above structure, is a closed model category.

Now let k be a field and DGA; (resp. SS) the category of homologically connected
commutative differential graded k-algebras (resp. the category of connected simplicial
sets). On the category I-DGA; of all l-algebras, a closed model structure is determined
from such a structure on DGA, (considered in [1]) and, on the category 1-SS, from
such a structure (considered in [10]) on the dual category to SS. For k = Q), the pair
of adjoint functors

F.
DGAg =——S§S$
Ax

considered in [1] induces such a pair between functor categories

F

1-DGAg [-SS.

o/

For .o/ in [-DGA; and A in DGAj, define an [-algebra A & o7 € 1-DGA;, by (4 ® . )i)=
A /(i) for i € Ob(l). Then we get a functor

F:1-DGA;, x 1-DGA;, — SS

such that F(.of, %), =1-DGA (., A*(A[n]) > #) for n>0, where A*(4[n]) is the
de Rham k-algebra on the n-simplex A[n] ([1]).
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Proposition 1.4. Let | be a cofinite small El-category.

(LY If p:& — A is a (trivial ) fibration and € cofibrant in 1-DGA;. then the induced
map pxF(€.6)— F(¢,A4) is a (trivial) fibration in the category SS.

(2) If i:6 — 7 is a (trivial ) cofibration in the category 1-DGA; then the induced
mdp Fu(i): F( L) — F5(6) is a (trivial) fibration in the category 1-SS.

Proof. (1) We must show that the map p«:F(%,8)— F(%,%) has the right lifting
property with respect to the canonical maps u:A"[n] — A[n] (resp. u: A[n] — A[n))
for >0 and 0 <m < n, where A"[n] (resp. A[n]) 1s the mth “boundary cone” (resp.
“boundary”) of the n-simplex A[x]. But this means that the cofibration £ — % should
have the left lifting property for the map

(A u@idide p): A¥(An) & & — A (A[n)) & & X ge o A A]) @ A

in the category [-DGA;. By [1] this map is a (trivial) fibration and this completes the
proof of (1).
(2) follows from Proposition 1.1 and its dual in the category [-§S. O

Observe that A*(A[1]) is the free DGA, on two generators ¢ and dt of degree 0
and 1, respectively, with d(t)=dt. We say that two maps f,g:.«/ — # are homotopic
(denoted by f ~¢) if there is a map H :.o/ — B A*(4[1]) such that pyo H = f and
p1oH =g, where py is the projection #© A*(A[1]) —.# with t=0, dt=0 and p,
the projection with r =1, dt = 0. We define the notion of homotopy between two maps
f.g:4 — 4 of l-simplicial sets similarly.

For any closed model category C, a homotopy category hoC is constructed in [10]
by adjoining formal inverses of weak equivalences in C. This category is equivalent
to the more simple homotopy category, hoC = nC,.;, whose objects are the “fibrant—
cofibrant” objects of C and maps are “homotopy classes” of maps in C. We will use
the homotopy category hol-SS (resp. hol-DGA ), whose objects are fibrant [-simplicial
sets (resp. cofibrant l-algebras) and maps are given by hol-SS(&, #)=[4,#] (resp.
hol-DGA(.«/, #)=[.«/, #]), where [4,%] (resp. [.«/, #]) denotes the set of homotopy
classes of maps from & to # (resp. from .« to #). Then we may state the following:

Corollary 1.5. Let | be a cofinite small El-category. If [ :.of — B is a weak equiva-
lence and € is cofibrant in 1-DGA;, then the induced map . F(6,./)— F(€, %) is
a weak equivalence in the category SS. In particular, the induced map of homotopy
clusses [6,./]1— [€.8] is a bijection.

Proof. By Theorem 1.3, we can factor f as .o/ ——.«// —*~ % with ¢ a cofibration
and p a fibration and both are weak equivalences. But any object in [-DGA; is fi-
brant, hence there is a map ¢':.o/' — .o/ such that ¢'og=1id.. Thus, ¢’ is a triv-
ial fibration and by Proposition 1.4 the induced maps gl : F(%,.o/")— F(%,./) and
px F(6,5/"y— F(%,4) are trivial fibrations. Therefore, the induced maps ¢x and
Jx = px ogx are weak equivalences. L[]
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It follows from Proposition 1.4 that the functor .7y : 1-DGAg — 1-SS carries cofibrant
objects to fibrant and one may easily show that this functor preserves the homotopy
relation, hence we get the induced functor .7 :hol-DGAg — hol-§S in an obvious
way. Although the functor .&/*:1-SS — 1-DGAy may not carry fibrant to cofibrant
objects, the induced adjoint functor ¢ :hol-SS — hol-DGAg may be constructed as
well. For each [-simplicial set 4', choose a weak equivalence %, — «Z*(Z) with €.,
cofibrant, and for each f: 4" — # choose (by Corollary 1.5) a map 4, : %4 — €.+ such
that the diagram

%,
Cy ——— by

. an T
AWy ——— ()
commutes up to homotopy. We define the functor 4 by 6(2) =%, and €(f)=[%,].

Remark 1.6. If DGA& (resp. $S") is the category of homologically connected aug-
mented commutative differential graded Q-algebras (resp. the category of connected
pointed simplicial sets), then by [1] there exists also a pair of adjoint functors
F?
DGAY ———SS"

*
A;

which induces a pair between functor categories

7!

*

1-DGAY, 1-ss’

S+
o/

with the above properties.

2. Applications to rational homotopy theory

For a map 7:B—E in DGA;, where B is augmented, Halperin [7] considers its
“minimal factorization”. Namely, he defines a minimal KS-extension as a special se-
quence of augmented DGA’s

[:8-5c-5a
In [7] the following result is proved.

Theorem 2.1. For any map v:B— E of connected DGAy’s, where B is augmented,
there is a unique (up to isomorphism) minimal KS-extension

E:B-C -4

and a homology isomorphism p:C — E such that poi=r1.
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The extension [ together with the map p: C — E is called a KS-minimal model for y.
In particular, a minimal algebra M, together with a homology isomorphism p;: M4 — A
is isomorphic to the minimal model for A.

Now let G be a finite group and G-DGA; the category of differential graded algebras
with an action of G. Then a notion of a minimal KS-extension may be considered in G-
DGA; as well and in [6] it has been shown that an equivariant version of Theorem 2.1
yields a G-KS-minimal model of a map y: 8 — £ in G-DG4;.

For further convenience, we will suppose that a cofinite small E/-category | has the
additional property:

() for any its map ¢ : i/ — i, there is an epimorphism ¢ : Aut(i’) — Aut(i) with poy=
d() o ¢ for all ;€ Aut(?).

Then for a given ./ in 1-DGA; and a map ¢ : i’ — i there is an action of Aut(i’) on
/(i) and Z(P):.#(i')— 4(i) is an Aut(i’)-map. Denote by /,(i’)(.=/) the ideal in
/(i') generated by elements a—ga for a € «/(i') and g € ker ¢. Then Ay (i) = (1)1
(i")(e/) is an Aut(i)-DGAy and the induced map .o/4(i") — .o/(i) preserves the Aut(i)-
action. Moreover, we get a functor .«/; : I; — DGAy such that .</;(i’, ¢) = .<Z4(i’). Hence
,J(i):limg, o/; is an Aut(i/}-DGA; and there is the induced Aut(i)-map p(i):
o (i) —<7{i). The algebra 7 (i) is augmented, hence we may take the Aut(i)-KS-
minimal model

o —20 . 6)

)

A (i)
of the map p(i).

We say that an object .# in -DGA, 1s KS-minimal if #(i)= ,/‘7(1') for any object
i€ Ob(l).

Proposition 2.2. If a cofinite small El-category | satisfies the condition (x), then any
minimal object .4 in 1-DGAy is cofibrant.

Proof. Consider a commutative diagram

k
!* [I
M —s &

in 1-DGAy, where k is the constant [-algebra determined by the field £ and p is a trivial
fibration. For any object i € Ob(l) of height 0, there is a map f(i):.# (i) — %(i) such



282 M. Golusinski] Journal of Pure and Applied Algebra 133 (1998) 271-287
that p(i) o B(i)= x(i). Now suppose that for all i’ € Ob([) of height smaller than height
of i there are maps B(i'):. #(i') — «/(i’) such that p(i')o f(i") =a(i"). Hence, we get

a map B . 4(iy=lim;.#; — 7(i). Then in the commutative diagram

B

M (i) -7 (i)
l y ‘PU)
My —20 . g)

there is a filler (i) since the map . /(i) — . #(i) is a cofibration in the category Aut(i)-
DGA;. O

Let ./ be in 1-DGA; and let p:.# — o/ be a weak equivalence, where .# is
KS-minimal. Then .# is called the KS-minimal model of /. Proposition 2.4 (cf.
[1,8]) implies that this definition is meaningful.

Lemma 2.3. If a cofinite small El-category [ satisfies the condition (x), then for a
commutative up to homotopy diugram in 1-DGAy

,52/ [
q b !
B- u 2,

where q is a cofibration and [ « weak equivalence, there exists an arrow y making
this diagram commutative up to homotopy.

Proof. Using Theorem 1.3, we may factor f as ¢ L, @ s & with ¢ a trivial

cofibration and p a trivial fibration. Every object in 1-DGA; is fibrant, hence by [10]
the map ¢’ :% — %’ has a homotopy inverse ¢’ :%4’ —%. But the map q:.«/ — % is a
cofibration, so there is a map f’: %4 — % such that f~ 8’ and the diagram

g'on
A"
q y p
P

N
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strictly commutes, where the map ;' : 4 — %’ is determined by Theorem 1.3. Then
»=¢g" oy is the required map. [
Proposition 2.4. Let | be a cofinite small El-category satisfying the condition (x),
let . & and 4" be KS-minimal 1-algebras and p: .4 — .o/, p' . 4" — of weak equiva-
lences. Then:

(1) there is an isomorphism 0:.4 — . #' in 1-DGAy such that p'(i)o 0(i) = p(i) in
the cuategory Aut(i)-DGA; for all i€ Ob(l);

(2) if 0: & — .4 is a map in 1-DGA; such that p’(i)o()(i):p(i) in the category
Aut(i)-DGAy then 0 is an isomorphism and ()(i Y= O(i) in the category Aut(i)-DGAy,
Jor all i € Ob(l).

Proof. (1) We proceed inductively with respect to the height of /€ Ob(l). If i € Ob(ll)
has height 0, then .#(i) and .#'(i) are Aut(i)-minimal and by [7, Proposition 4.3]
there is an Aut(i)-isomorphism ((i):.# (i) — .#'(i) such that p’(i)o 0(i)~ p(i) in the
category Aut(i)-DGA;.

Suppose that for all i/ € Ob(l) of height smaller than that of /, there exists 0(i'):
Y — (1) such that p/(i7)o 0(i") = p(i’) in the category Aut(i’)-DGA; and the
diagrams commute

1

()
Y ——— (i

N

Gy ———— ()

for " <i’. Then we get the induced isomorphism 0i):.#/(i)—.4'(i). But the map a(i):
A (i)y—.#(i) is a cofibration in the category Aut(i)-DGA;, and p(i):
JH(i)y— /(i) 1s a weak equivalence, hence by Lemma 2.3 there is an Aut(i)-map
O'(i):.4(i)y— .&'(i) such that the diagram

i 20— i)

w

0] M0 (i)

(@)

MG ——— A
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commutes up to homotopy. In particular, (/(i)o (i)~ «'(i) o 6(i). But the map a(i) is
a cofibration, hence there is a map (i) such that (/ (i)~ 6(i) and 6(i)oa(i)=o/(i)oO(i).
The maps (i) and «/(i) are Aut(i)-KS-minimal extensions and 0(i):.7% (i) — .4 (i) is
an isomorphism, hence by [7, Proposition 4.6] the map 6(i) is an isomor-
phism.

(2) If i€ Ob(l) has height 0, then .# (i) and .#'(i) are Aut(i)-minimal and by [7,
Proposition 4.3] the map (j(i) is an Aut(/)-isomorphism and 0(i) ~ 9(1‘) in the category
Aut(i)-DGAy.

Suppose that, for all /"< Ob(l) of height smaller than that of i, the maps 0(1”)
are Aut(i’)-isomorphisms and there exists an Aut(i’)-homotopy 0"y~ 0(i"). Then the
diagram

x(i

[,/7(1’) — (D)
0(i) 0" (i)
_ %' (i)

M) ————— (i)

satisfies the hypothesis of Theorem 10.4 in [7], hence (i)~ f)(i) in the category Aut(i)-
DGA; and the map 6(i) is an isomorphism. []

We now show the existence of a KS-minimal model.

Proposition 2.5. Let | be a cofinite small El-category satisfving (x). Then for any
o in 1-DGAy. there exist a KS-minimal model .4, and a weak equivalence p:.#.,
— .

Proof. For any .o/ in [-DGA,, we construct its KS-minimal model .#, as follows:
(1) if i€ Ob(l) has height 0, then for .# (/) take the Aut(i)-minimal model of
/(D). Let p(i):.# (i) — /(i) be a fixed Aut(i)-weak equivalence;
(2) suppose that for all /€ Ob(l) of height smaller than height of i there are
Aut(i’)-weak equivalences p(i'):./4.,(i')— .</(i') such that for i, <7 with i| <7,
all diagrams

Py
M (i) ——— A (i)

pliz)
M (15 ———— (i)
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commute. To get .#,(i) and an Aut(i)-weak equivalence p(i):.# (i) — ./(i), con-

sider the induced Aut(i)-map p(i):.#y(i)— /(i) and its Aut(i)-KS-minimal
model

(i)

M, (i)

()

M, (@) |

Now let G be a finite Hamiltonian group (i.e., each subgroup of G is normal). Then
the category (“/(G) of canonical orbits is a cofinite E/-category satisfying the condition
(*). We say that a G-simplicial set X is G-connected if all fixed point simplicial
subsets X/ are connected, for subgroups H C G. Write G-SS (resp. G-SS") for the
category of all G-connected (resp. pointed) simplicial sets. Then from [4] it follows
that there is an equivalence of homotopy categories

ho G-SS =——— ho ((G)-SS.

On the other hand, the de Rham functor A* (resp. A;) of polynomial forms determines
a functor

A% G-SS — ((G)-DGAg  (resp. o : G-SS* — ((G)-DGAY),

such that .</*(X ) G/H)=A"(X") (resp. 4 (XNG/H)=AJ(X")) for X in G-SS
(resp. in G-SS°) and H C G, where Q is the field of rationals. Choosing a weak
equivalence .#y — .«/*(X) in the category ((G)-DGA, with .#y a KS-minimal model
of .«&/*(X), we consider a pair of adjoint functors

ho G-§8 ho ((G)-DGAg (resp. ho G-SS® ———— ho ((G)-DGAY)
Q

constructed in Section 1.

By [12,13], for any X in G-SS there is a minimal model .#%, injective as an ((G)-
module, and a weak equivalence .#} — .</*(X) such that, for nilpotent G-connected
pointed simplicial sets X, Y of finite type, there is a bijection

(XY~ 4}, 40,

where [X,Y]s is the set of pointed G-homotopy classes of G-maps from X to Y.
From Proposition 2.4 one gets that the KS-minimal models of .#% and .«/*(X) are
isomorphic. Hence, there is a weak equivalence p: .4y — .#.. By [12, Proposition 5.5]
there is a map p’:.#, — .#y such that pop’:id_,,(r. Thus, the map p’ is a weak
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equivalence and by Corollary 1.5 and Proposition 2.2 there is a map p':. 4y — .}
such that p’ o p” ~id ,,. Therefore, we have

Proposition 2.6. Let G be a finite Hamiltonian group. If X and Y are nilpotent
G-connected pointed simplicial sets of finite type, then there is a bijection

(X, Y]g = [y, -y,
provided Y is rational.
Finally, we can extend the Sullivan-de Rham equivalence to the equivariant case.

Theorem 2.7. If G is a Hamiltoniun group, then there exists a pair of adjoint functors

ho G-SS° ——— ho ("(G)-DGAY
which restrict to inverse equivalences
FQN-ho G-SS° ———— £0-ho ((G)-DGA,.

where  fQN-ho G-SSY is the full subcategory of hoG-SS° induced by those
G-connected pointed simplicial sets which are nilpotent and of finite tvpe and (-
ho((‘(G)-DGA% is the full subcategory of ho( (G)-DGA?J induced by those ((G)-
augmented algebras which are equivalent to equivariant KS-minimal (G )-algebras
and with finitely many multiplicative generators.

Remark 2.8. (1) In [5] it was shown that any system of ((G)-differential graded
algebras can be mapped into an injective ( (G)-system of such algebras via a homology
isomorphism.

(2) The above result also holds for nilpotent G-connected unpointed simplicial sets
X (of finite type) with XY ().

(3) A construction of the equivariant KS-minimal model of any nilpotent
G-disconnected simplicial set and a formulation of an appropriate version of the equiv-
ariant Sullivan—de Rham equivalence require more subtle methods and will be published
elsewhere.
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