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Equivariant rational homotopy theory as a closed model 
category 

Abstract 

In this note we present a variant of the algebraization of equivariant rational homotopy theory. 

For a finite group G, Ict C’(G) bc the category of its canonical orbits. WC prove that the category 

ci (G)-DGAu of I’(G)-differential graded algebras over the rationals is a closed model category. 

Then, by means of the equivariant KS-minimal models constructed in this paper, we show that 

the homotopy category of C (C)-DC,40 is equivalent to the rational homotopy category of C’(G)- 

simplicial sets provided G is a Hamiltonian group. @ 1998 Elsevier Science B.V. All rights 

reserved. 

AMS C’lrrs.vific.trtion: Primary 55P62; 55P9I ; secondary 18G30; 55U35 

0. Introduction 

Let k be a field of characteristic 0 and DGAk (resp. SS) the category of homologi- 

tally connected (i.e., H’(A)= k for A in DGAh) commutative differential graded 

k-algebras (resp. the category of connected simplicial sets). It has been proved [ 1, IO] 

that these categories form closed model categories in the sense of Quillen [IO]: NW& 

eyuivu/~rzcrs are homology isomorphisms (resp. weak homotopy equivalences); ,fihrct- 

tion.s are surjections (resp. Kan fibrations) and ~qfihrutions are maps having the Icft- 

lifting property with respect to all maps which are both fibrations and weak equiv- 

alences. An algebra A (resp. a simplicial set X) is cofihrunt (resp. $brwzt) if the 

canonical map k -A (resp. X + *) is a cofibration (resp. a fibration). 
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The most important cofibrant algebras are the tttitzitnul ones introduced by 

Sullivan [ 111. They are suficient for most homotopy theoretic purposes because every 

connected algebra A can be “approximated up to weak equivalence” by a unique-up- 

to-isomorphism minimal algebra h//I, i.e., there is a weak equivalence p4 : MA +A. 

Moreover, in [l] a pair of adjoint functors are constructed 

which determine the basic Sullivan-de Rham equivalence, where Q is the field of 

rationals. An equivariant version of the Sullivan minimal model theory was given 

in [ 12, 131 for nilpotent G-spaces of finite type with a basepoint, where G is a fi- 

nite group. Later Fine was able to remove the basepoint hypothesis in his Chicago 

Ph.D. thesis in 1992. Our aim is to present a variant of the equivariant Sullivan- 

de Rham equivalence based on the Bousfield and Gugenheim categorical 

approach [ 11. 

We now give an outline of the paper. In Section I (Theorem 1.3) we show how, 

by means of [3], a closed model structure on a category @ can be extended to the 

functor category 0-C (called the category of O-objects), where 0 is an El-category i.e., 

each of its endomorphism is an isomorphism. In particular, on the category U-DGAQ 

a closed model structure is induced from such a structure on DGAQ (see [I]) and on 

the category [l-ss from such a one (see [IO]) on the category dual to 55s. Then, we 

consider a pair of functors 

between the associated homotopy categories. We point out that for any small category 0 

the category O-56 has also been endowed in [2] with a closed model category structure 

but inherited from such a one on % and not on the dual. 

In Section 2, assuming some propertics of 0, we prove that X(X), for X in 04s 

could be chosen as an appropriate KS-minimal model. An idea for its construction 

for a special case has been given in [8] and is based on the notion of a Koszul- 

Sullivan extension presented in [7]. Then some geometric applications are presented. 

In particular, let G be a finite group and Cf (G) the associated H-category of canon- 

ical orbits. Its objects are orbits G,IH for all subgroups H C G and mor- 

phisms are G-maps between them. Then. as a result of Theorem 1.3, we may 

state 

Theorem. The cmtegovies C (G)-SS utzd C’ (G )-DGAQ NW closed ttzodt~l categories. 

For any G-connected simplicial set X (i.e., such that all fixed point simplicial subsets 

XH are connected for subgroups H C G), we can consider differential graded Q-algebras 



of polynomial forms A*(XH) for all subgroups H c G. Therefore, we obtain a functor 

where G-% is the category of G-connected simplicial sets. On the other hand, from 

[4] one could deduce the existence of an equivalence of homotopy categories 

Now let DGA?, (resp. s@‘) be the category of homologically connected augmented 

differential graded Q-algebras (resp. the category of pointed simplicial sets) and let G 

be a finite Hamiltonian group (i.e., each subgroup of G is normal). We show that for 

a nilpotent A’ in G&s”, the equivariant KS-minimal model of .p/*(X) has the strong 

homotopy type of its injective model considered in [ 12, 131 and we prove the following 

equivariant version of the Sullivan-de Rham equivalence. 

Theorem 2.7. If’ G is u Hunliltoniun ~JI’OU~. thrn t/wrr rsists u puir of’udjoint ,firnctor.s 

ho G-!&’ e ho I’(G)-DGAL 

,f’QN-ho G-%5’ ^- a,f’Q-ho 6 (G)-DG.4;, 

In a forthcoming paper, we plan to extend this result to G-disconnected unpointed 

simplicial sets. 

1. Systems of algebras 

Various categories considered in algebraic topology have the property that endomor- 

phisms are isomorphisms. Therefore, let 0 be a small EI-cutr$]or]s which by definition, 

is a small category in which each endomorphism is an isomorphism and denote by 

Ob( 0) the set of its objects. Following [9] we define a partial order, crucial for the 

sequel, on the set Is( 0) of isomorphism classes i of objects i E Ob( 0) by 

i 5.7 if U(i,,j) # Cd. 



This induces a partial ordering on the set Is(O), since the Ef-property ensures that i<,r 

and 7 5 i implies i =,F. We write that 7 <,T if i < 7 and 5 # 5. 

Throughout, 0 is a cofinifc El-category i.e., each isomorphism class i has only finitely 

many predecessors. For any i E Ob( 0 ) we define its h~ic&t as the number of its pre- 

decessors. Observe that any group G can be treated as an El-category with a single 

object. 

Fix a complete and cocomplete category C with a closed model structure. Our aim 

is to define, by means of [3], such a structure on the category OX of all covariant 

functors from 0 to @, called O-objcc*ts of KI or q’stems of objects indexed by 0. For this 

purpose, we distinguish in this category the following three classes of maps. A map 

,f : .d --) :%I of O-objects is called a IIYY& cl/uiculr/zccJ (resp. $fihvation) if for all i E Ob( I) 

the maps f’(i) : d(i) + d(i) are weak equivalences (resp. fibrations) in the category 

@. A map ,f : .d + a is a cqfhrwtion if it has the left-lifting property with respect to 

all maps which are both fibrations and weak equivalences i.e., trivial fibrations. In par- 

ticular, for a group G the category G-c of G-ohjrcts inherits a closed model structure 

from C. 

Let Aut(i) be the automorphism group of it Oh(O) and .d an O-object. Then on 

.d(i) there is the natural Aut(i)-action and. for a map ,f : .d + W of O-objects, the 

maps ,f(i): d(i)- d(i) preserve the Aut(i)-action. Therefore, for a fixed i E Oh(O), 

we have the restriction functor 

Resi : 0-C + Aut(i)-@ 

such that Resi(,d) = .d(i) for an O-object .& and its right adjoint F, : Aut(i)-c + 04 

is called the coextmsion functor which is defined as follows. For i’ E Ob( I), let 0:’ be 

the category with objects being maps 4: i/--i and maps from 4:i’+ i to $:i’+i 

are determined by maps p : i + i such that p(f, = $. Then any Aut(i)-object C deter- 

mines an Oj’-object .YJ”(C) such that $“(C)(4 : ” I +i)=C and we put F;(C)(i’)= 

lim,,~.~~‘(C). Of course, any map (i, : i” + i’ in the category 0 determines a map 

F:C!)( 4) : fi( C)( i”) + F;( C)(i’) and this construction is functorial with respect to 

Aut(i)-objects C as well. Note that an isomorphism i’ 2 i determines an isomorphism 

C 2 F;(C)(i’). 

For a fixed i E Ob( O), let 0, be the category which objects are pairs (i’, cb), where 

4 : i’ -+ i is a non-isomorphism and maps from (ii, 41) to (ii, 42) are determined by 

maps $ : i;’ + ii such that &$ = (/I,. Then any O-object .c’/ determines an I,-object c4 

such that .g(i’, 4) = .d(i’) and a map limo, ,% + .d(i) in the category @. Note that 

limo, c(?l; is isomorphic to the initial objeczn the category C for i of height 0. We now 

&te the following description of cofibrations in the category 04. 

Proposition 1 .l. Let 0 hr u cofinircJ .smdl El -cuttyory. A mup ,f : .d + .3 in I-@ is 

u (triciul) cofibration {f’ und on!,- (f’,fi,r rad~ i t Ob( 0) the inrhrtl Aut(i)-nzup h(i) 
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Proof. First, let ,f be a 

a commutative diagram 

‘d(i) L 

(*) h(i) 

I 

.H( i) __i 

(trivial) cofibration in 0-C and for a fixed i E Ob( I) consider 

D 

I I’ 
E 

in the category Aut(i)-C, where p is a (trivial) fibration. Define the objects 9,6 in 

0-C as follows: 

F,(D)(?) for 757, 
F;(D)(?) for i’<l, 

‘r(i’) = 
* otherwise, 

F;(E)(i’) for i’=i, 

* otherwise, 

where * is the terminal object in @ and maps are induced either by projections or p 

or being trivial. Then we obtain the commutative diagram in the category 0-C 

where p(i’) is either the identity or induced by p. Thus, the map p is a (trivial) 

fibration. The maps x(i’) are induced from the composite maps 

.v/(i’)+~(.d(i))(i’)iF;(~(i))(i’) ‘o(i’) T(i’) 



b.;(;,)(I’ 1 

&(i’) +F;(limo$ :99,)(i’) + /Z(‘d(i))(i’) “z &(i’) 

for 7<7 and .#(i)i E 5 R(i’) 

have the commutative diagrams 

for 7 =i. So. there exists a filler q in (**) and we 

d(i’) 
cc(i’) 

;%(i’) 

f (0 
I 

y(P),-** 
,’ .’ .’ 

&9(C)” 
II 

PW 
1 &(i’) 

for il<i and 

d(i) Mi) t 9(i) = D 

I 

,A 

f(i) 
di! _ ’ ’ ’ 
,’ 

I 

P 
*’ 

,’ 

g(i)” B(i) 
) G(i) = E . 

To show that y(i) is a filler in (*), it is sufficient to prove that q(i)h(i)=h. 

Now let all h(i) be (trivial) cotibrations and consider a solid-arrow commutative 

diagram in the category 0-C 

in which the map p is a (trivial) fibration. We construct components q(i) of a filler y 

inductively with respect to the height of i. If i G Ob( 0) has height 0, then X’(i) = .~/(i), 

j’(i) = h(i) and there exists a filler q(i): 

d(i) = Q?(i) a(i) + S(i) 
,’ , 

/’ 
/’ 

f(i)= h(i) 
s@,- 
,’ 

P(i) 

,’ 
,,’ 

93(i),’ 
B(i) + a(i) . 



Suppose that for all i’ E Ob( 0) of height smaller than that of i there exist g(i’): .a(?) 

+ ‘/(i’) such that diagrams 

cc(F) 
d(i’) - 9!(C) f@i”) 

cf(i”) k G?(i”) 
I’ 

, 
/’ 

f (0 
g(i’),,” 

/’ p(i’) 
,’ 

<’ 
,’ 

@if)’ 
DC0 

t &‘>, B(i’) 
g(i’) 

) 9(i’) 

commute for i” < 7. 

At first we define a map 6 :X(i) + P(i) assuming commutativity of the diagrams 

d(i’) - lim,i d, - d(i) 

S(i’) 7k 9(i’) 

and we get the solid-arrow diagram 

9?(i) 
6 

,: Wi) 

h(i) 

I 

y!‘p” 
p(i) 

,’ 
I’ 

93(ij’ B(i) 
1 

) b(i) 

which is commutative because p(i) o 6 o (.F/( i) --‘t’(i))=p(i)ox(i)=~~(i)of’(i)= 

/j(i)oh(i)o(,d(i)--,%(i)) and p(i)obo ~o(.~(i’)+lim~,.Wj)=p(i)o~(i’+i)oy(i’)= 

r4’(i’ii)op(i’)og(i’)=A(i’ii)oP(i’)=B(i)o,n(”- 1 --) i) = B(i) 0 h(i) 0 7 0 (.d(i’) -3 

limu,.#,). Thus, there exists a filler y(i) and we have q(i)o,f(i) =g(i)oh(i) 0(&(i) 

ii’r;(i))=ho(.d(i)+4!(i))=x(i), p(i) o cl(i) = P(i) and y(i) 0 &(i’ + i) = 

q(i) 0 h(i) 0 ;‘o (&(i’) +limfl,.49j) = V(i’ + i) o g(i’) for ? 5 7. So, the inductive step 
- 

is done. 0 



Proof. For i E Ob( I), consider the commutative diagram 

Then we see that the map liml,f; is a cofibration in @ and f“(i) is also. By Proposition 

1.1 the map h(i) is a cofibrzon and, consequently, the composite map h(i)f’(i) = ,f’(i) 

is a cofibration. 0 

The above results and a dualization of the procedure presented in [3, Section 31 

yield 

Now let k be a field and DGAk (resp. $25) the category of homologically connected 

commutative differential graded k-algebras (resp. the category of connected simplicial 

sets). On the category O-DGAk of all O-algebras, a closed model structure is determined 

from such a structure on DGAI, (considered in [I]) and, on the category I-!%, from 

such a structure (considered in [IO]) on the dual category to Ss. For k= Cl, the pair 

of adjoint functors 

considered in [l] induces such a pair between functor categories 

For .d in [I-DGAk and A in DGAk define an O-algebra A 8 .d E I-DGAk by (A @d)(i) = 

A @ d(i) for i E Ob( 0). Then we get a functor 

F: [l-DC?& x I-DGA,, i s!5 

such that F(.L~,.#)~ = I-DGAk(.cJ, A*(d[n]) :e 2) for n 2 0, where A*(d[n]) is the 

de Rham k-algebra on the n-simplex d[n] ([I]). 
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Proposition 1.4. Let 0 he u cojinitc smuts .!?I-catego?“?>. 

( 1 ) !f’ p : B + ~9 is u (triviul) jhrution und % cofibrunt in I-DGA,: then tfze inducrd 

mup p* : F(%. A ) + F(% , ,&) is u (triuiul) jbrution in tlw cutegory SS. 

(2) [f’i: % 4 9’ is u (triviul) &ibrution in the cuttyor,: O-DGAk tkrn tk induced 

mup .5%*(i): .FI( ‘2) + ,F*(%) is II (triviul) ,jhrution in tlie cutegory I-SS. 

Proof. (1) We must show that the map p* : F(%,b) + F(%,,d) has the right lifting 

property with respect to the canonical maps u : A”‘[n] - d[n] (resp. u : i[n] + d[n]) 

for n > 0 and 0 <m 5 II, where A”‘[n] (resp. A[,]) is the mth “boundary cone” (resp. 

“boundary”) of the n-simplex d[n]. But this means that the cofibration k+ % should 

have the left lifting property for the map 

in the category I-DGAk. By [l] this map is a (trivial) fibration and this completes the 

proof of ( 1). 

(2) follows from Proposition I .l and its dual in the category I-SS. 0 

Observe that A*(d[l]) is the free DGAk on two generators t and dt of degree 0 

and 1, respectively, with d(t) = dt. We say that two maps ,f,{~ : d+ .H are lzomotopit 

(denoted by ,f = CJ) if there is a map H : .d +.$9~3A*(il[l]) such that p()oH=f and 

p, oH=y, where p. is the projection .&$?A*(d[l])+.+9 with t=O, dt=O and pl 

the projection with t = I, dt = 0. We define the notion of homotopy between two maps 

,f’. .L/ : .d’ 4 9 of I-simplicial sets similarly. 

For any closed model category @, a homotopy category ho@ is constructed in [IO] 

by adjoining formal inverses of weak equivalences in @. This category is equivalent 

to the more simple homotopy category, ho@ = K,., , whose objects are the “fibrantt 

cofibrant” objects of C and maps are “homotopy classes” of maps in @. We will use 

the homotopy category ho!-SS (resp. hoO-DGAL), whose objects are fibrant I-simplicial 

sets (resp. cofibrant O-algebras) and maps are given by holl-SS(X, 9) = [.X, !‘/I (resp. 

hol-DGAk(.p/, M) = [x/, ./A]), where [X, !‘/I (resp. [.d, A?]) denotes the set of homotopy 

classes of maps from Y’ to !V (resp. from .d to 9). Then we may state the following: 

Corollary 1.5. Let 0 br u cojinite smull .!?I-cutegor_)l. If‘,f : .d - .#I is u nwk ryuivu- 

1cwt.e unrl % is cc$ihrmt in I-DGA,: tlwn tke induced mup ,f; : F(%, .PI> + F(%, 9) is 

u Itwli eyuirwlrtw in tlw cutcyrlor~, SS. In purticulur, tlw induced mup qf lwmotop~~ 

clussrs [%, .d] --t [%, .M] is u hijrction. 

Proof. By Theorem 1.3, we can factor ,f as ~12 .c/’ 2 .&4 with q a cofibration 

and p a fibration and both are weak equivalences. But any object in O-DGAk is fi- 

brant, hence there is a map 4’ : xi’ + .d such that q’ o q = id,,. Thus, q’ is a triv- 

ial fibration and by Proposition 1.4 the induced maps q!+ : F(%..n/‘) ---t F(%, .c/) and 

p* : F(%, .r/‘) + F(%, ./A) are trivial fibrations. Therefore, the induced maps q* and 

,f* = p* oq* are weak equivalences. 0 



It follows from Proposition I .4 that the functor .& : I-DGAQ 4 0-S carries cofibrant 

objects to fibrant and one may easily show that this functor preserves the homotopy 

relation, hence we get the induced functor ,& : hol-DGAQp 4 hoO-SS in an obvious 

way. Although the functor .d* : I-SS 4 O-DGAep may not carry fibrant to cofibrant 

objects, the induced adjoint functor % : hoO-SS - boll-DGAQ may be constructed as 

well. For each I-simplicial set .d’, choose a weak equivalence %.I + SKI* with % I 

cofibrant, and for each .f’ : .9‘ -+ !U choose (by Corollary 1 S) a map %, : %‘,v + (6 / such 

that the diagram 

commutes up to homotopy. We define the functor % by %(X) =‘@f and %(,f) = [%,I. 

Remark 1.6. If DGA& (resp. SS”) is the category of homologically connected aug- 

mented commutative differential graded Q-algebras (resp. the category of connected 

pointed simplicial sets), then by [I] there exists also a pair of adjoint functors 

which induces a pair between functor categories 

with the above properties. 

2. Applications to rational homotopy theory 

For a map y:B4E in DGAk, where B is augmented, Halperin [7] considers its 

“minimal factorization”. Namely. he defines a nzinirnul KS-rstension as a special se- 

quence of augmented DGAh’s 

[E:BLCL-A. 

In [7] the following result is proved. 



The extension iE together with the map p : C 4 E is called a KS-minimul model for 1’. 

In particular, a minimal algebra MA together with a homology isomorphism p~ : MA + A 

is isomorphic to the minimal model for A. 

Now let G be a finite group and G-DGAk the category of differential graded algebras 

with an action of G. Then a notion of a minimal KS-extension may be considered in G- 

DGAx as well and in [6] it has been shown that an equivariant version of Theorem 2.1 

yields a G-KS-minimal model of a map 3’ : B + E in G-DGAk. 

For further convenience, we will suppose that a cofinite small EZ-category 0 has the 

additional property: 

(*) for any its map d, : i’ + i, there is an epimorphism $ : Aut(i’) + Aut(i) with 40 ;I= 

J(r) o 4 for all ;’ E Aut(i’). 

Then for a given .d in O-DGAA and a map 4 : i’ 4 i there is an action of Aut(i’) on 

.d(i) and .&(4):.d(i’)+ ,o;l(i) is an Aut(i’)-map. Denote by 1+(i’)(&) the ideal in 

.d(i’) generated by elements a-ga for u E ,&(i’) and 9 E ker 4. Then .&$(i’) = ~l(i’)/Z$ 

(i’)(d) is an Aut(i)-DGAk and the induced map c&‘c~(i’)+r&‘(i) preserves the Aut(i)- 

action. Moreover, we get a functor c&i : 0, + DGAk such that .cyli(i’, $) = .&$(i’). Hence 

.cJ (i) = limr, .&, is an Aut(i)-DGAk and there is the induced Aut(i)-map p(i) : 

.d (i) +.d(i). The algebra .&’ (i) is augmented, hence we may take the Aut(i)-KS- 

minimal model 

2(i) 
29 

) d(i) 

*/// 

p(i) 

2(i) 

of the map p(i). 

We say that an object i’l’ in ll-DGAk is KS-minimal if, U(i) = .7(i) for any object 

iEOb(O). 

Proposition 2.2. [f’u cojinite small EI-category 0 .wti.$es the condition (*), then uny 

minimal object K in O-DGAk is cojhrunt. 

Proof. Consider a commutative diagram 

k -9 

& ;;I 1 6’ 

in I-DGAp, where 4 is the constant O-algebra determined by the field k and p is a trivial 

fibration. For any object i E Oh(U) of height 0, there is a map p(i): .&‘(i) + i/(i) such 



that p(i) o p(i) = x(i). Now suppose that for all i’ E Ob( 0) of height smaller than height 

of i there are maps /j(i’) : N(i’) 4 .d(i’) such that p(i’)op(i’)= a(?). Hence, we get 

a map B(i) :,N(i)= liml<.//, + ‘V(i). Then in the commutative diagram 
i 

there is a filler /j(i) since the map . N(i) - N(i) is a cofibration in the category Aut( i)- 

DGAk. 0 

Let .d be in I-DGAk. and let I) : 4 + .d be a weak equivalence, where t!/ is 

KS-minimal. Then N is called the KS-nzininzul modef of ~2. Proposition 2.4 (cf. 

[ 1, S]) implies that this definition is meaningful. 

d 
c( ,s 

II 

,’ 
,’ 

,’ 

4 
.,, , I ’ 
,’ 

,’ 
f 

,’ 

,I’ 

g*‘, B 
19, 

Proof. Using Theorem 1.3, we may factor ,f’ as % q’ ‘6’ 2 9 with q’ a trivial 

cofibration and p a trivial fibration. Every object in II-DGAI, is fibrant, hence by [IO] 

the map q’ : % + ) Y’ has a homotopy inverse q” : ‘6’ + %. But the map q : .d 4 33 is a 

cofibration, so there is a map /i’ : .ti - ‘Y such that /j E /I” and the diagram 

d 
q’o CI +w ,* 

,’ 
,’ 

Y’,,, 
,’ 

4 ,’ P 
,I’ 

,’ 
,’ 

g” B’ 
bL.2 



strictly commutes, where the map *I’. #I 4 %’ is determined by Theorem 1.3. Then i ” 
;‘ = q” 0 jl ’ is the required map. 0 

Proof. ( I ) We proceed inductively with respect to the height of i E Ob( 0 ). If i E Ob( 0 ) 

has height 0, then ./i(i) and -N’(i) are Aut(i)-minimal and by [7, Proposition 4.31 

there is an Aut( i)-isomorphism O(i) : I( ‘) I 4. /i’(i) such that p’(i) o O(i) = p(i) in the 

category Aut( i)-DGAA . 

Suppose that for all i’ E Ob( 0) of height smaller than that of i, there exists O(i’) : 

ii/( i’) - ii’( i’ ) such 

diagrams commute 

lJ(f” ) 
/i( i”) A 

that p’(i’)o (I(i’)= p(i’) in the category Aut(i’)-DGAL and the 

N’( i” ) 

_ ii’ 

for i” <il. Then we get the induced isomorphism d(i) :. N(i) +~ N’(i). But the map a(i) : 

/;‘(i) - N(i) is a cofibration in the category Aut(i)-DGAA and p(i) : 

N(i) + .d(i) is a weak equivalence, hence by Lemma 2.3 there is an Aut(i)-map 

O’(i) : N(i) 4 i’(i) such that the diagram 

_&T(i) 5 

if(i) 

&d(i) 

P(i) 

\, 
O’(i) ==f(i> 

./ P(i) 

d’(i) 



commutes up to homotopy. In particular, O’(i) 0 z(i) E x’(i) o H(i). But the map cc(i) is 

a cofibration, hence there is a map I)(i) such that O’(i) CY f3( i) and 19(i) o x(i) = z’(i) o f?( i). 

The maps a(i) and a’(i) are Aut(i)-KS-minimal extensions and g(i) : 1 a(i) + .,8’(i) is 

an isomorphism, hence by [7, Proposition 4.61 the map f)(i) is an isomor- 

phism. 

(2) If i E Oh(O) has height 0, then .X(i) and N’(i) are Aut(i)-minimal and by [7, 

Proposition 4.31 the map e(i) is an Aut(i)-isomorphism and O(i) c” e(i) in the category 

Aut(i)-DGA,. 

Suppose that, for all i’ E Ob( 0) of height smaller than that of i, the maps i&i’) 

are Aut(i’)-isomorphisms and there exists an Aut(i’)-homotopy U(i’) z &i’). Then the 

diagram 

satisfies the hypothesis of Theorem 10.4 in [7], hence U(i) CY e(i) in the category Aut(i)- 

DGAp and the map 8(i) is an isomorphism. q 

We now show the existence of a KS-minimal model. 

Proof. For any .d in O-DGAk, we construct its KS-minimal model .z’& as follows: 

(1) if i E Oh(O) has height 0, then for N&i) take the Aut(i)-minimal model of 

,&(i). Let p(i) : lip/(i) + d(i) be a fixed Aut(i)-weak equivalence; 

(2) suppose that for all i’ E Ob( U) of height smaller than height of 

Aut(i’)-weak equivalences p(i’) : /(<I(?) + .r/(i’) such that for ii, i; <F 

all diagrams 

i there are 

with T=c~ 
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commute. To get _&‘~(i) and an Aut(i)-weak equivalence p(i) : c NC/(i) + d(i), con- 

sider the induced Am(i)-map F(i) : N?,(i) + d(i) and its Aut(i)-KS-minimal 

model 

Now let G be a finite Hamiltonian group (i.e., each subgroup of G is normal). Then 

the category &(G) of canonical orbits is a cofinite EI-category satisfying the condition 

(*). We say that a G-simplicial set X is G-connrcted if all fixed point simplicial 

subsets X* are connected, for subgroups H C G. Write G-% (resp. G-ss’) for the 

category of all G-connected (resp. pointed) simplicial sets. Then from [4] it follows 

that there is an equivalence of homotopy categories 

?z 
ho G&S j= ho C’(G)-%. 

On the other hand, the de Rham functor A* (resp. A,*) of polynomial forms determines 

a functor 

.d* : G-SS + 6(G)-DGAQ (resp. ~2: : G&6’ + c(G)-DGA~), 

such that d*(X)(G/H)=A*(XN) (resp. ~d,,(X)(G/H)=A,*(XH)) for X in G-% 

(resp. in G-ss’) and H C G, where Q is the field of rationals. Choosing a weak 

equivalence 1 122~ + d*(X) in the category c”(G)-DGAk with I &‘x a KS-minimal model 

of &*(X), we consider a pair of adjoint functors 

ho G-Ss ; ho C’(G)-DGAQ (resp. ho G-9s0 /I ho C(G)-DGA;) 

constructed in Section 1. 

By [ 12, 131, for any X in G-ss” there is a minimal model J?“, injective as an e’(G)- 

module, and a weak equivalence , &‘i -+ d*(X) such that, for nilpotent G-connected 

pointed simplicial sets X, Y of finite type, there is a bijection 

LX YIG = [J/;,.//$]: 

where [X, Y]o is the set of pointed G-homotopy classes of G-maps from X to Y. 

From Proposition 2.4 one gets that the KS-minimal models of h’i and Z/*(X) are 

isomorphic. Hence, there is a weak equivalence p : ~ lx --t .&/i. By [ 12, Proposition 5.51 

there is a map p’ : ~ &” +. ~7” such that /) op’ E id.,/;. Thus, the map p’ is a weak 



equivalence and by Corollary 1.5 and Proposition 2.2 there is a map p” : Al& + ~//i 

such that p’ o p” E id ,,, . Therefore. we have 

[X YIG x [. NY,. 4x]. 

procidd Y is rutionul. 

Finally, we can extend the Sullivan-de Rham equivalence to the equivariant case. 

hoc-sSO c ho C’(G)-DGAO, 

Remark 2.8. (1) In [5] it was shown that any system of C(G)-differential graded 

algebras can be mapped into an in.jective Q (G)-system of such algebras via a homology 

isomorphism. 

(2) The above result also holds for nilpotent G-connected unpointed simplicial sets 

X (of finite type) with X’; f 01. 

(3) A construction of the equivariant KS-minimal model of any nilpotent 

G-disconnected simplicial set and a formulation of an appropriate version of the equiv- 

ariant Sullivan-de Rham equivalence require more subtle methods and will be published 

elsewhere. 
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