

ELSEVIER Journal of Pure and Applied Algebra 133 (19%) 271-287

JOURNAL OF PURE AND APPLIED ALGEBRA

Equivariant rational homotopy theory as a closed model category

M. Golasiński *

Faculty of Mathematics and Informatics, Nicholas Corpernicus University, Chopina 12/18, 87-100 Totuh, Poland

Communicated by J.D. Stasheff; received 26 February 1996; received in revised form 4 March 1997

Abstract

In this note we present a variant of the algebraization of equivariant rational homotopy theory. For a finite group G, let $\mathcal{C}(G)$ be the category of its canonical orbits. We prove that the category $\mathcal{C}(G)$ -DGA₁₀ of $\mathcal{C}(G)$ -differential graded algebras over the rationals is a closed model category. Then, by means of the equivariant KS -minimal models constructed in this paper, we show that the homotopy category of $\mathcal{C}(G)$ -DGA_{ψ} is equivalent to the rational homotopy category of $\mathcal{C}(G)$ simplicial sets provided G is a Hamiltonian group. @ 1998 Elsevier **Science B.V.** All rights reserved.

AMS Classification: Primary 55P62; 55P91; secondary 18G30; 55U35

0. Introduction

Let *k* be a field of characteristic 0 and DGA_k (resp. SS) the category of homologically connected (i.e., $H^0(A) = k$ for *A* in DGA_k) commutative differential graded k -algebras (resp. the category of connected simplicial sets). It has been proved $[1, 10]$ that these categories form closed model categories in the sense of Quillen $[10]$: $weak$ equivalences are homology isomorphisms (resp. weak homotopy equivalences); fibrations are surjections (resp. Kan fibrations) and cofibrations are maps having the leftlifting property with respect to all maps which are both fibrations and weak equivalences. An algebra A (resp. a simplicial set X) is *cofibrant* (resp. *fibrant*) if the canonical map $k \rightarrow A$ (resp. $X \rightarrow \ast$) is a cofibration (resp. a fibration).

^{*} E-mail: marek(a)mat.uni.torun.pl.

^{0022-4049/98/\$} - see front matter \overline{C} 1998 Elsevier Science B.V. All rights reserved. **I'll: SOO22.4049(97)00127-X**

The most important cofibrant algebras are the *minimal* ones introduced by Sullivan [11]. They are sufficient for most homotopy theoretic purposes because every connected algebra *A* can be "approximated up to weak equivalence" by a unique-upto-isomorphism minimal algebra M_A , i.e., there is a weak equivalence $\rho_A : M_A \to A$. Moreover, in [l] a pair of adjoint functors are constructed

$$
DGA_{\mathbb{Q}} \xrightarrow[\qquad]{F_*} \mathbb{SS}
$$

which determine the basic Sullivan-de Rham equivalence, where $\mathbb Q$ is the field of rationals. An equivariant version of the Sullivan minimal model theory was given in $[12, 13]$ for nilpotent G-spaces of finite type with a basepoint, where G is a finite group. Later Fine was able to remove the basepoint hypothesis in his Chicago Ph.D. thesis in 1992. Our aim is to present a variant of the equivariant Sullivande Rham equivalence based on the Bousfield and Gugenheim categorical approach [11.

We now give an outline of the paper. In Section 1 (Theorem 1.3) we show how, by means of [3], a closed model structure on a category $\mathbb C$ can be extended to the functor category \mathbb{I} -C (called the category of \mathbb{I} -objects), where \mathbb{I} is an *El*-category i.e., each of its endomorphism is an isomorphism. In particular, on the category \mathbb{I} -DGA_{Ω} a closed model structure is induced from such a structure on *DGAQ (see [I])* and on the category I-SS from such a one (see [10]) on the category dual to SS. Then, we consider a pair of functors

$$
\text{ho}\,\mathbb{I}\text{-}DGA_{\mathbb{Q}}\xrightarrow{\overbrace{\mathscr{K}_{\kappa}}}\text{ho}\,\mathbb{I}\text{-}\mathbb{SS}
$$

between the associated homotopy categories. We point out that for any small category $\mathbb I$ the category $\mathbb{I}\text{-SS}$ has also been endowed in [2] with a closed model category structure but inherited from such a one on SS and not on the dual.

In Section 2, assuming some properties of \mathbb{I} , we prove that $\mathscr{C}(X)$, for X in 1-SS could be chosen as an appropriate KS-minimal model. An idea for its construction for a special case has been given in [8] and is based on the notion of a Koszul-Sullivan extension presented in [7]. Then some geometric applications are presented. In particular, let G be a finite group and $\ell(G)$ the associated EI-category of canonical orbits. Its objects are orbits G/H for all subgroups $H \subseteq G$ and morphisms are G-maps between them. Then. as a result of Theorem 1.3, we may state

Theorem. *The categories* $\mathcal{C}(G)$ -SS and $\mathcal{C}(G)$ -DGA_Q are closed model categories.

For any G-connected simplicial set X (i.e., such that all fixed point simplicial subsets X^H are connected for subgroups $H \subseteq G$), we can consider differential graded Q-algebras of polynomial forms $A^*(X^H)$ for all subgroups $H \subseteq G$. Therefore, we obtain a functor

$$
\mathscr{A}^* : G\text{-SS} \to \ell(\mathbb{G})\text{-}\mathbb{DGA}_{\mathbb{Q}},
$$

where G - $\mathcal{S}\mathcal{S}$ is the category of G -connected simplicial sets. On the other hand, from [4] one could deduce the existence of an equivalence of homotopy categories

ho G-SS
$$
\xrightarrow{\approx}
$$
 ho $\mathcal{C}(G)$ -SS.

Now let DGA_{\odot}^0 (resp. \mathbb{S}^0) be the category of homologically connected augmented differential graded $\mathbb Q$ -algebras (resp. the category of pointed simplicial sets) and let G be a finite Hamiltonian group (i.e., each subgroup of G is normal). We show that for a nilpotent X in G-SS⁰, the equivariant KS-minimal model of $\mathscr{A}^*(X)$ has the strong homotopy type of its injective model considered in [12, 13] and we prove the following equivariant version of the Sullivan-de Rham equivalence.

Theorem 2.7. *If G is a Hamiltonian group, then there exists a pair of adjoint functors*

ho G - $\mathbb{S} \mathbb{S}^0$ \longrightarrow ho $\ell'(G)$ - $DGA_{\mathbb{S}}^0$

which restrict to inverse equivalences

 $f\mathbb{Q}N$ -ho G - \mathbb{S}^0 $\stackrel{\approx}{\overbrace{\longleftarrow}}$ $f\mathbb{Q}$ -ho $\ell^{\prime}(G)$ -D GA^0_{Ω} ,

where $f\mathbb{Q}N$ -ho G -SS⁰ is the full subcategory of ho G -SS⁰ induced by those G-connected pointed simplicial sets which are nilpotent and of finite type and $f\mathbb{Q}$ -ho $\ell(G)$ -DGA $^0_{\Omega}$ is the full subcategory of ho $\ell(G)$ -DGA $^0_{\Omega}$ induced by those augmented $\ell(G)$ -algebras which are equivalent to equivariant KS-minimal $\ell(G)$ -algebras and with finitely many multiplicative generators.

In a forthcoming paper, we plan to extend this result to G-disconnected unpointed simplicial sets.

1. Systems of algebras

Various categories considered in algebraic topology have the property that endomorphisms are isomorphisms. Therefore, let $\mathbb I$ be a small *EI-category* which by definition, is a small category in which each endomorphism is an isomorphism and denote by $Ob(1)$ the set of its objects. Following [9] we define a partial order, crucial for the sequel, on the set Is(\mathbb{I}) of isomorphism classes \overline{i} of objects $i \in Ob(\mathbb{I})$ by

 $\overline{i} < \overline{j}$ if $\mathbb{I}(i, j) \neq \emptyset$.

This induces a partial ordering on the set Is(1), since the El-property ensures that $\bar{i} \leq \bar{j}$ and $\overline{j} \leq \overline{i}$ implies $\overline{i} = \overline{j}$. We write that $\overline{i} < \overline{j}$ if $\overline{i} \leq \overline{j}$ and $\overline{i} \neq \overline{j}$.

Throughout, θ is a *cofinite El*-category i.e., each isomorphism class \bar{i} has only finitely many predecessors. For any $i \in Ob(\mathbb{I})$ we define its *height* as the number of its predecessors. Observe that any group G can be treated as an EI -category with a single object.

Fix a complete and cocomplete category $\mathbb C$ with a closed model structure. Our aim is to define, by means of [3], such a structure on the category \mathbb{I} - \mathbb{C} of all covariant functors from $\mathbb I$ to $\mathbb C$, called $\mathbb I$ -*objects* of $\mathbb C$ or *systems of objects* indexed by $\mathbb I$. For this purpose, we distinguish in this category the following three classes of maps. A map $f : \mathcal{A} \to \mathcal{B}$ of l-objects is called a *weak equivalence* (resp. *fibration*) if for all $i \in Ob(\mathbb{I})$ the maps $f(i)$: $\mathscr{A}(i) \rightarrow \mathscr{B}(i)$ are weak equivalences (resp. fibrations) in the category \mathbb{C} . A map $f : \mathcal{A} \to \mathcal{B}$ is a *cofibration* if it has the left-lifting property with respect to all maps which are both fibrations and weak equivalences i.e., trivial fibrations. In particular, for a group G the category $G-C$ of $G\text{-}objects$ inherits a closed model structure from C.

Let Aut(i) be the automorphism group of $i \in Ob(\mathbb{I})$ and \mathscr{A} an l-object. Then on $\mathscr{A}(i)$ there is the natural Aut(i)-action and, for a map $f : \mathscr{A} \to \mathscr{B}$ of I-objects, the maps $f(i): \mathcal{A}(i) \rightarrow \mathcal{B}(i)$ preserve the Aut(i)-action. Therefore, for a fixed $i \in Ob(\mathbb{I})$, we have the *restriction* functor

 $Res_i : \mathbb{I} \textrm{-} \mathbb{C} \rightarrow Aut(i) \textrm{-} \mathbb{C}$

such that $Res_i(\mathscr{A}) = \mathscr{A}(i)$ for an $\mathbb{I}\text{-object } \mathscr{A}$ and its right adjoint $F_i : Aut(i)\text{-}\mathbb{C} \to \mathbb{I}\text{-}\mathbb{C}$ is called the *coextension* functor which is defined as follows. For $i' \in Ob(\mathbb{I})$, let $\mathbb{I}^{i'}$ be the category with objects being maps $\phi : i' \rightarrow i$ and maps from $\phi : i' \rightarrow i$ to $\psi : i' \rightarrow i$ are determined by maps $\rho : i \rightarrow i$ such that $\rho \phi = \psi$. Then any Aut(i)-object C determines an $\mathbb{I}_i^{i'}$ -object $\mathcal{F}_i^{i'}(C)$ such that $\mathcal{F}_i^{i'}(C)(\phi : i' \to i) = C$ and we put $F_i(C)(i') =$ $\lim_{n' \to \infty} \mathcal{F}_i^{i'}(C)$. Of course, any map $\phi : i'' \to i'$ in the category 0 determines a map $F_i(C)(\phi): F_i(C)(i'') \to F_i(C)(i')$ and this construction is functorial with respect to Aut(*i*)-objects C as well. Note that an isomorphism $i' \stackrel{\approx}{\rightarrow} i$ determines an isomorphism $C \stackrel{\approx}{\rightarrow} F_i(C)(i').$

For a fixed $i \in Ob(\mathbb{I})$, let \mathbb{I}_i be the category which objects are pairs (i', ϕ) , where ϕ : i' \rightarrow i is a non-isomorphism and maps from (i'_1, ϕ_1) to (i'_2, ϕ_2) are determined by maps $\psi : i'_1 \to i'_2$ such that $\phi_2 \psi = \phi_1$. Then any l-object \mathcal{A} determines an l_i-object \mathcal{A}_i such that $\mathcal{A}_i(i', \phi) = \mathcal{A}(i')$ and a map $\lim_{i \to \infty} \mathcal{A}_i \to \mathcal{A}(i)$ in the category \mathbb{C} . Note that $\lim_{\mathbb{R}^d} \mathcal{A}_i$ is isomorphic to the initial object in the category $\mathbb C$ for *i* of height 0. We now state the following description of cofibrations in the category I-C.

Proposition 1.1. Let 1 be a cofinite small El-category. A map $f : \mathcal{A} \rightarrow \mathcal{B}$ in I-C is *u* (*trivial*) cofibration if and only if for each $i \in Ob(\mathbb{I})$ the induced Aut(i)-map $h(i)$ in the pushout diagram

is a (trivial) cofibration in the category $Aut(i)$ - \mathbb{C} .

Proof. First, let f be a (trivial) cofibration in \mathbb{I} -C and for a fixed $i \in Ob(\mathbb{I})$ consider a commutative diagram

in the category Aut(i)-C, where p is a (trivial) fibration. Define the objects \mathscr{D}, \mathscr{E} in 0-C as follows:

$$
\mathcal{D}(i') = \begin{cases} F_i(D)(i') & \text{for } i' \leq \overline{i}, \\ * & \text{otherwise,} \end{cases} \qquad \mathcal{E}(i') = \begin{cases} F_i(D)(i') & \text{for } i' < \overline{i}, \\ F_i(E)(i') & \text{for } i' = \overline{i}, \\ * & \text{otherwise.} \end{cases}
$$

where $*$ is the terminal object in $\mathbb C$ and maps are induced either by projections or p or being trivial. Then we obtain the commutative diagram in the category \mathbb{I} - \mathbb{C}

$$
(\star \star) \quad f \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \
$$

where $\bar{p}(i')$ is either the identity or induced by p. Thus, the map \bar{p} is a (trivial) fibration. The maps $x(i')$ are induced from the composite maps

$$
\mathscr{A}(i') \to F_i(\mathscr{A}(i))(i') \to F_i(\mathscr{C}(i))(i') \xrightarrow{F_i(\delta)(i')} \mathscr{D}(i')
$$

for $\overline{i'} \leq \overline{i}$, the maps $\beta(i')$ from

$$
\mathscr{B}(i') \to F_i(\lim_{i} \mathscr{B}_i)(i') \xrightarrow{F_i(\gamma)(i')} F_i(\mathscr{C}(i))(i') \xrightarrow{F_i(\delta)(i')} \mathscr{E}(i')
$$

for $i' < i$ and $\mathscr{B}(i) \to E \stackrel{\sim}{\to} \mathscr{E}(i')$ for $i' = i$. So, there exists a filler g in $(\star \star)$ and we have the commutative diagrams

$$
\mathscr{A}(i') \xrightarrow{\alpha(i')}\n\mathscr{D}(i')\n\downarrow\n\mathscr{D}(i')\n\downarrow\n\mathscr{D}(i')\n\downarrow\n\mathscr{D}(i')\n\downarrow\n\mathscr{D}(i')\n\downarrow\n\mathscr{D}(i')\n\downarrow\n\mathscr{D}(i')
$$

for $\overline{i'} < \overline{i}$ and

To show that $g(i)$ is a filler in (\star), it is sufficient to prove that $g(i)h(i) = \delta$.

Now let all *h(i)* be (trivial) cotibrations and consider a solid-arrow commutative diagram in the category $\mathbb{I}\text{-}\mathbb{C}$

in which the map p is a (trivial) fibration. We construct components $g(i)$ of a filler g inductively with respect to the height of *i*. If $i \in Ob(\mathbb{I})$ has height 0, then $\mathcal{C}(i) = \mathcal{A}(i)$, $f(i) = h(i)$ and there exists a filler $g(i)$:

276

Suppose that for all $i' \in Ob(\mathbb{I})$ of height smaller than that of i there exist $g(i') : \mathcal{B}(i')$ $\rightarrow \mathscr{D}(i')$ such that diagrams

commute for $\overline{i''} \leq \overline{i'}.$

At first we define a map δ : $\mathscr{C}(i) \rightarrow \mathscr{D}(i)$ assuming commutativity of the diagrams

and we get the solid-arrow diagram

which is commutative because $p(i) \circ \delta \circ (\mathcal{A}(i) \to \mathcal{C}(i)) = p(i) \circ \alpha(i) = \beta(i) \circ f(i) =$ $\beta(i) \circ h(i) \circ (\mathcal{A}(i) \to \mathcal{C}(i))$ and $p(i) \circ \delta \circ \gamma \circ (\mathcal{B}(i') \to \lim_{\mathbb{I}_i} \mathcal{B}_i) = p(i) \circ \mathcal{D}(i' \to i) \circ g(i') =$ $\mathscr{E}(i' \rightarrow i) \circ \rho(i') \circ q(i') = \mathscr{E}(i' \rightarrow i) \circ \beta(i') = \beta(i) \circ \mathscr{B}(i' \rightarrow i) - \beta(i) \circ h(i) \circ \gamma \circ (\mathscr{B}(i') \rightarrow$ $\lim_{\ell_i} \mathscr{B}_i$). Thus, there exists a filler $g(i)$ and we have $g(i) \circ f(i) = g(i) \circ h(i) \circ (A(i))$ $\overrightarrow{\rightarrow}(i) = \delta \circ (\mathcal{A}(i) \rightarrow \mathcal{C}(i)) = \alpha(i), \qquad p(i) \circ g(i) = \beta(i) \qquad \text{and} \qquad g(i) \circ \mathcal{B}(i' \rightarrow i) =$ $g(i) \circ h(i) \circ \gamma \circ (\mathcal{B}(i') \to \lim_{\theta_i} \mathcal{B}_i) = \mathcal{L}(i' \to i) \circ g(i')$ for $i' \leq i$. So, the inductive step is done. \square

Corollary 1.2. Let \mathbb{I} be a cofinite small EI-category and $f: \mathcal{A} \to \mathcal{B}$ a cofibration in I-C. Then for each $i \in Ob(\mathbb{I})$ the map $f(i): \mathcal{A}(i) \to \mathcal{B}(i)$ is a cofibration in the category Aut(i)-C.

Proof. For $i \in Ob(\mathbb{I})$, consider the commutative diagram

Then we see that the map $\lim_{i \to i} f_i$ is a cofibration in $\mathbb C$ and $f'(i)$ is also. By Proposition 1.1 the map $h(i)$ is a cofibration and, consequently, the composite map $h(i) f'(i) = f(i)$ is a cofibration. \square

The above results and a dualization of the procedure presented in [3, Section 31 yield

Theorem 1.3. If \mathbb{I} is a cofinite small EI-category, then the category \mathbb{I} - \mathbb{C} , together with the above structure, is a closed model category.

Now let *k* be a field and DGA_k (resp. SS) the category of homologically connected commutative differential graded k-algebras (resp. the category of connected simplicial sets). On the category $\mathbb{I}\text{-}DGA_k$ of all $\mathbb{I}\text{-}algebras$, a closed model structure is determined from such a structure on DGA_k (considered in [1]) and, on the category I-SS, from such a structure (considered in [10]) on the dual category to SS. For $k = \mathbb{Q}$, the pair of adjoint functors

$$
DGA_{\mathbb{Q}} \xrightarrow[4^*]{F_*} \mathbb{SS}
$$

considered in [l] induces such a pair between functor categories

$$
\mathbb{I}\text{-}DGA_{\mathbb{Q}}\xleftarrow{\mathscr{F}_{\ast}}\mathbb{I}\text{-}\mathbb{SS}.
$$

For $\mathscr A$ in *I-DGA_k* and *A* in *DGA_k* define an *I*-algebra $A \otimes \mathscr A \in I$ -*DGA_k* by $(A \otimes \mathscr A)(i)$ = $A \otimes \mathcal{A}(i)$ for $i \in Ob(\mathbb{I})$. Then we get a functor

$$
F: \mathbb{I}\text{-}DGA_k \times \mathbb{I}\text{-}DGA_k \to \mathbb{SS}
$$

such that $F(\mathscr{A}, \mathscr{B})_n = \mathbb{I}$ -DG $A_k(\mathscr{A}, A^*(\Delta[n]) \otimes \mathscr{B})$ for $n \geq 0$, where $A^*(\Delta[n])$ is the de Rham k -algebra on the *n*-simplex $\Delta[n]$ ([1]).

278

Proposition 1.4. Let \mathbb{I} be a cofinite small El-category.

(1) If $p : \mathcal{S} \to \mathcal{B}$ is a (trivial) fibration and \mathcal{C} cofibrant in I-DGA_k then the induced *map* p_* : $F(\mathscr{C}, \mathscr{E}) \to F(\mathscr{C}, \mathscr{B})$ *is a (trivial) fibration in the category SS.*

(2) If $i: \mathscr{C} \to \mathscr{D}$ *is a (trivial) cofibration in the category* $\mathbb{I}\text{-}DGA_k$ *then the induced map* $\mathcal{F}_*(i): \mathcal{F}_*(\mathcal{D}) \to \mathcal{F}_*(\mathcal{C})$ *is a (trivial) fibration in the category I-SS.*

Proof. (1) We must show that the map $p_* : F(\mathscr{C}, \mathscr{E}) \to F(\mathscr{C}, \mathscr{B})$ has the right lifting property with respect to the canonical maps $u : A^m[n] \to A[n]$ (resp. $u : \underline{A}[n] \to \underline{A}[n]$) for $n > 0$ and $0 \le m \le n$, where $A^m[n]$ (resp. $A[n]$) is the mth "boundary cone" (resp. "boundary") of the *n*-simplex $\Delta[n]$. But this means that the cofibration $k \to \mathscr{C}$ should have the left lifting property for the map

$$
(A^*u\otimes \mathrm{id},\mathrm{id}\otimes p):A^*(\varDelta[n])\otimes \mathscr{E}\to A^*(\varDelta[n])\otimes \mathscr{E}\times_{A^*(\overline{\varDelta[n]})\otimes \mathscr{B}}A^*(\varDelta[n])\otimes \mathscr{B}
$$

in the category $I-DGA_k$. By [1] this map is a (trivial) fibration and this completes the proof of (1) .

(2) follows from Proposition 1.1 and its dual in the category I-SS. \Box

Observe that $A^*(\Delta[1])$ is the free DGA_k on two generators t and dt of degree 0 and 1, respectively, with $d(t) = dt$. We say that two maps $f, g : \mathcal{A} \rightarrow \mathcal{B}$ are *homotopic* (denoted by $f \simeq q$) if there is a map $H : \mathcal{A} \to \mathcal{B} \otimes A^*(\Lambda[1])$ such that $p_0 \circ H = f$ and $p_1 \circ H = g$, where p_0 is the projection $\mathcal{B} \otimes A^*(A[1]) \rightarrow \mathcal{B}$ with $t=0$, $dt=0$ and p_1 the projection with $t = 1$, $dt = 0$. We define the notion of homotopy between two maps $f, g: \mathcal{X} \rightarrow \mathcal{Y}$ of l-simplicial sets similarly.

For any closed model category \mathbb{C} , a homotopy category ho \mathbb{C} is constructed in [10] by adjoining formal inverses of weak equivalences in $\mathbb C$. This category is equivalent to the more simple homotopy category, ho $\mathbb{C} = \pi \mathbb{C}_{cf}$, whose objects are the "fibrantcofibrant" objects of $\mathbb C$ and maps are "homotopy classes" of maps in $\mathbb C$. We will use the homotopy category hol-SS (resp. hol- DGA_k), whose objects are fibrant l-simplicial sets (resp. cofibrant l-algebras) and maps are given by holl-SS(\mathcal{X}, \mathcal{Y}) = [$\mathcal{X}, \mathcal{Y}'$] (resp. *hol-DGA_k(.* $\mathscr{A}, \mathscr{B})$ *= [.* \mathscr{A}, \mathscr{B} *]), where* $[\mathscr{X}, \mathscr{Y}]$ *(resp.* $[\mathscr{A}, \mathscr{B}]$ *) denotes the set of homotopy* classes of maps from $\mathcal X$ to $\mathcal Y$ (resp. from $\mathcal A$ to $\mathcal B$). Then we may state the following:

Corollary 1.5. Let 0 be a cofinite small EI-category. If $f : \mathcal{A} \rightarrow \mathcal{B}$ is a weak equiva*lence and 6 is cofibrant in I-DGA_k then the induced map* f_* : $F(\mathscr{C}, \mathscr{A}) \to F(\mathscr{C}, \mathscr{B})$ *is u* weak equivalence in the category SS. In particular, the induced map of homotopy *classes* $[6, \mathcal{A}] \rightarrow [6, \mathcal{B}]$ *is a bijection.*

Proof. By Theorem 1.3, we can factor *f* as $\mathcal{A} \xrightarrow{q} \mathcal{A}' \xrightarrow{p} \mathcal{B}$ with *q* a cofibration and *p* a fibration and both are weak equivalences. But any object in $I-DGA_k$ is fibrant, hence there is a map $q' : \mathcal{A}' \to \mathcal{A}$ such that $q' \circ q = id_{\mathcal{A}}$. Thus, q' is a trivial fibration and by Proposition 1.4 the induced maps $q'_{*}: F(\mathscr{C}, \mathscr{A}') \to F(\mathscr{C}, \mathscr{A})$ and $p^* : F(\mathscr{C}, \mathscr{A}') \to F(\mathscr{C}, \mathscr{B})$ are trivial fibrations. Therefore, the induced maps q^* and $f_* = p_* \circ q_*$ are weak equivalences. \square

It follows from Proposition 1.4 that the functor \mathcal{F}_* : I-DGA_Q \rightarrow I-SS carries cofibrant objects to fibrant and one may easily show that this functor preserves the homotopy relation, hence we get the induced functor \mathcal{F}_* : *hol-DGA*_Q \rightarrow *hol-SS* in an obvious way. Although the functor \mathcal{A}^* : I-SS \rightarrow I-DGA₀ may not carry fibrant to cofibrant objects, the induced adjoint functor \mathscr{C} : $ho\$ -SS \rightarrow *ho*l-DGA_Q may be constructed as well. For each I-simplicial set X, choose a weak equivalence $\mathscr{C}_{\mathcal{X}} \to \mathscr{A}^*(\mathscr{X})$ with $\mathscr{C}_{\mathcal{X}}$ cofibrant, and for each $f : \mathcal{X} \to \mathcal{Y}$ choose (by Corollary 1.5) a map $\mathcal{C}_f : \mathcal{C}_{\mathcal{Y}} \to \mathcal{C}_{\mathcal{X}}$ such that the diagram

$$
\begin{array}{ccc}\n\mathscr{C}_{\mathscr{Y}} & \xrightarrow{\mathscr{C}_{\mathscr{E}}} & \mathscr{C}_{\mathscr{X}} \\
\downarrow & & \downarrow \\
\mathscr{A}^*(\mathscr{Y}) & \xrightarrow{\mathscr{A}(f)} & \mathscr{A}^*(\mathscr{X})\n\end{array}
$$

commutes up to homotopy. We define the functor \mathscr{C} by $\mathscr{C}(\mathscr{X}) = \mathscr{C}_{\mathscr{X}}$ and $\mathscr{C}(f) = [\mathscr{C}_f]$.

Remark 1.6. If DGA^0 (resp. \mathbb{S}^0) is the category of homologically connected augmented commutative differential graded Q-algebras (resp. the category of connected pointed simplicial sets), then by [I] there exists also a pair of adjoint functors

$$
DGA^0_{\mathbb{Q}} \xrightarrow[d^*]{F^0_*} \mathbb{SS}^0
$$

which induces a pair between functor categories

$$
\mathbb{I}\text{-}DGA^0_{\mathbb{Q}}\xleftarrow{\mathscr{F}^0_*} \mathbb{I}\text{-}\mathbb{SS}^0
$$

with the above properties.

2. Applications to rational homotopy theory

For a map $\gamma: B \to E$ in DGA_k , where *B* is augmented, Halperin [7] considers its "minimal factorization". Namely, he defines a *minimal KS-extension* as a special sequence of augmented DGA_k 's

 $F: B \longrightarrow C \longrightarrow A$.

In [7] the following result is proved.

Theorem 2.1. For any map $\gamma: B \to E$ of connected DGA_k 's, where B is augmented, there is a unique (up to isomorphism) minimal KS-extension

 $F: B \longrightarrow C \longrightarrow A$

and a homology isomorphism $\rho: C \to E$ such that $\rho \circ i = \gamma$.

The extension E together with the map $\rho : C \to E$ is called a *KS-minimal model* for γ . In particular, a minimal algebra M_A together with a homology isomorphism $\rho_A : M_A \to A$ is isomorphic to the *minimal model* for *A.*

Now let G be a finite group and G - DGA_k the category of differential graded algebras with an action of G. Then a notion of a minimal KS-extension may be considered in G-*DGAx* as well and in *[6]* it has been shown that an equivariant version of Theorem 2.1 yields a *G-KS*-minimal model of a map $\gamma : B \to E$ in *G-DGA_k*.

For further convenience, we will suppose that a cofinite small EI -category $\mathbb I$ has the additional property:

(*) for any its map ϕ : *i'* \rightarrow *i*, there is an epimorphism $\hat{\phi}$: Aut(*i'*) \rightarrow Aut(*i*) with $\phi \circ \gamma$ $\phi(\gamma) \circ \phi$ for all $\gamma \in Aut(i').$

Then for a given $\mathcal A$ in $\mathbb I$ -DGA_k and a map $\phi : i' \to i$ there is an action of Aut(i') on $\mathcal{A}(i)$ and $\mathcal{A}(\phi): \mathcal{A}(i') \to \mathcal{A}(i)$ is an Aut(i')-map. Denote by $I_{\phi}(i')(x')$ the ideal in $\mathscr{A}(i')$ generated by elements $a-ga$ for $a \in \mathscr{A}(i')$ and $g \in \text{ker }\phi$. Then $\mathscr{A}_{\phi}(i') = \mathscr{A}(i')/I_{\phi}$ $(i')(\mathcal{A})$ is an Aut(i)-DGA_k and the induced map $\mathcal{A}_{\phi}(i') \rightarrow \mathcal{A}(i)$ preserves the Aut(i)action. Moreover, we get a functor $\overline{\mathscr{A}_i} : \mathbb{I}_i \to DGA_k$ such that $\overline{\mathscr{A}_i}(i', \phi) = \mathscr{A}_{\phi}(i')$. Hence $\overline{\mathcal{A}}(i) = \lim_{k \to \infty} \overline{\mathcal{A}}_i$ is an Aut(i)-DGA_k and there is the induced Aut(i)-map $\overline{\rho}(i)$: $\overrightarrow{\mathcal{A}}(i) \rightarrow \overrightarrow{\mathcal{A}}(i)$. The algebra $\overrightarrow{\mathcal{A}}(i)$ is augmented, hence we may take the Aut(i)-KSminimal model

of the map $\overline{\rho}(i)$.

We say that an object M in *l*-DGA_k is KS-minimal if $M(i) = \widetilde{M}(i)$ for any object $i \in Ob(1)$.

Proposition 2.2. If a cofinite small EI-category \mathbb{I} satisfies the condition $(*),$ then any *minimal object* M *in* $I\text{-}DGA_k$ *is cofibrant.*

Proof. Consider a commutative diagram

in *I-DGA_k*, where \underline{k} is the constant *I-algebra* determined by the field *k* and *p* is a trivial fibration. For any object $i \in Ob(\mathbb{I})$ of height 0, there is a map $\beta(i) : \mathcal{M}(i) \to \mathcal{D}(i)$ such that $p(i) \circ \beta(i) = x(i)$. Now suppose that for all $i' \in Ob(\mathbb{I})$ of height smaller than height of *i* there are maps $\beta(i') : \mathcal{U}(i') \to \mathcal{A}(i')$ such that $p(i') \circ \beta(i') = \alpha(i')$. Hence, we get a map $\beta(i)$: $\mathcal{M}(i) = \lim_{i \to \infty} \mathcal{M}_i \to \mathcal{D}(i)$. Then in the commutative diagram

there is a filler $\beta(i)$ since the map $\overline{\mathcal{N}}(i) \rightarrow \mathcal{N}(i)$ is a cofibration in the category Aut(*i*)- DGA_k . \square

Let $\mathscr A$ be in *I-DGA_k* and let $\rho: \mathscr A \to \mathscr A$ be a weak equivalence, where $\mathscr M$ is KS-minimal. Then *M* is called the *KS-minimal model* of $\mathcal A$. Proposition 2.4 (cf. $[1, 8]$) implies that this definition is meaningful.

Lemma 2.3. If a cofinite small EI-category $\mathbb I$ satisfies the condition $(*)$, then for a commutative up to homotopy diagram in l -DGA_k

where q is a cofibration and f a weak equivalence, there exists an arrow γ making this diagram commutative up to homotopy.

Proof. Using Theorem 1.3, we may factor f as $\mathscr{C} \xrightarrow{q'} \mathscr{C}' \xrightarrow{p} \mathscr{D}$ with q' a trivial cofibration and p a trivial fibration. Every object in $I-DGA_k$ is fibrant, hence by [10] the map $q': \mathscr{C} \to \mathscr{C}'$ has a homotopy inverse $q''': \mathscr{C}' \to \mathscr{C}$. But the map $q: \mathscr{A} \to \mathscr{B}$ is a cofibration, so there is a map $\beta': \mathcal{B} \to \mathcal{D}$ such that $\beta \simeq \beta'$ and the diagram

strictly commutes, where the map $\gamma': \mathscr{B} \to \mathscr{C}'$ is determined by Theorem 1.3. Then $\gamma = q'' \circ \gamma'$ is the required map. \square

Proposition 2.4. Let \mathbb{I} be a cofinite small EI-category satisfying the condition $(*)$, let \mathcal{M} and \mathcal{M}' be KS-minimal -algebras and $\rho : \mathcal{M} \to \mathcal{A}$, $\rho' : \mathcal{M}' \to \mathcal{A}$ weak equivalences. Then:

(1) there is an isomorphism θ : $\mathcal{U} \rightarrow \mathcal{M}'$ in $\mathbb{I}\text{-}DGA_k$ such that $\rho'(i) \circ \theta(i) \simeq \rho(i)$ in the category Aut(i)-DGA_k for all $i \in Ob(\mathbb{I});$

(2) if $\hat{\theta}$: $\mathcal{M} \rightarrow \mathcal{M}'$ is a map in I-DGA_k such that $\rho'(i) \circ \hat{\theta}(i) \simeq \rho(i)$ in the category Aut(i)-DGA_k then $\hat{\theta}$ is an isomorphism and $\hat{\theta}(i) \approx \theta(i)$ in the category Aut(i)-DGA_k, for all $i \in Ob(\mathbb{I})$.

Proof. (1) We proceed inductively with respect to the height of $i \in Ob(\mathbb{I})$. If $i \in Ob(\mathbb{I})$ has height 0, then $\mathcal{M}(i)$ and $\mathcal{M}'(i)$ are Aut(i)-minimal and by [7, Proposition 4.3] there is an Aut(*i*)-isomorphism $\theta(i)$: $\mathcal{U}(i) \rightarrow \mathcal{M}'(i)$ such that $\rho'(i) \circ \theta(i) \simeq \rho(i)$ in the category $Aut(i)-DGA_k$.

Suppose that for all $i' \in Ob(\mathbb{I})$ of height smaller than that of *i*, there exists $\theta(i')$: $i\ell'(i') \to i\ell'(i')$ such that $\rho'(i') \circ \theta(i') \simeq \rho(i')$ in the category Aut(i')-DGA_k and the diagrams commute

$$
\cdot \mathcal{U}(i'') \xrightarrow{\theta(i'')} \cdot \mathcal{U}'(i'')
$$
\n
$$
\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow
$$
\n
$$
\mathcal{U}(i') \xrightarrow{\theta(i')} \cdot \mathcal{U}'(i')
$$

for $\overline{i''} < \overline{i'}$. Then we get the induced isomorphism $\overline{\theta}(i)$: $\overline{\mathcal{M}}(i) \rightarrow \overline{\mathcal{M}}'(i)$. But the map $\alpha(i)$: $\overline{\mathcal{M}}(i) \rightarrow \mathcal{M}(i)$ is a cofibration in the category Aut(i)- DGA_k and $\rho(i)$: $M(i) \rightarrow M(i)$ is a weak equivalence, hence by Lemma 2.3 there is an Aut(i)-map $\theta'(i)$: $\mathcal{U}(i) \rightarrow \mathcal{U}'(i)$ such that the diagram

commutes up to homotopy. In particular, $\theta'(i) \circ \alpha(i) \simeq \alpha'(i) \circ \bar{\theta}(i)$. But the map $\alpha(i)$ is a cofibration, hence there is a map $\theta(i)$ such that $\theta'(i) \approx \theta(i)$ and $\theta(i) \circ \alpha(i) = \alpha'(i) \circ \bar{\theta}(i)$. The maps $\alpha(i)$ and $\alpha'(i)$ are Aut(i)-KS-minimal extensions and $\overline{\theta}(i)$: $\overline{\mathcal{M}}(i) \rightarrow \overline{\mathcal{M}}'(i)$ is an isomorphism, hence by [7, Proposition 4.6] the map $\theta(i)$ is an isomorphism.

(2) If $i \in Ob(\mathbb{I})$ has height 0, then $\mathcal{M}(i)$ and $\mathcal{M}'(i)$ are Aut(i)-minimal and by [7, Proposition 4.3] the map $\hat{\theta}(i)$ is an Aut(i)-isomorphism and $\theta(i) \simeq \hat{\theta}(i)$ in the category Aut(*i*)- DGA_k .

Suppose that, for all $i' \in Ob(\mathbb{I})$ of height smaller than that of i, the maps $\hat{\theta}(i')$ are Aut(i')-isomorphisms and there exists an Aut(i')-homotopy $\theta(i') \simeq \hat{\theta}(i')$. Then the diagram

$$
\overline{\mathcal{M}}(i) \xrightarrow{\mathcal{X}(i)} \mathcal{M}(i)
$$
\n
$$
\overline{\mathcal{V}}(i) \qquad \qquad \downarrow \mathcal{V}(i)
$$
\n
$$
\overline{\mathcal{M}}'(i) \xrightarrow{\mathcal{X}'(i)} \mathcal{M}'(i)
$$

284

satisfies the hypothesis of Theorem 10.4 in [7], hence $\theta(i) \simeq \hat{\theta}(i)$ in the category Aut(*i*)- DGA_k and the map $\hat{\theta}(i)$ is an isomorphism. \square

We now show the existence of a KS-minimal model.

Proposition 2.5. Let \mathbb{I} be a cofinite small E1-category satisfying $(*)$. Then for any $\mathscr A$ in I-DGA_k there exist a KS-minimal model $\mathscr M_{\mathscr A}$ and a weak equivalence $\rho:\mathscr M_{\mathscr A}$ $\rightarrow \mathscr{A}.$

Proof. For any $\mathscr A$ in *I-DGA_k*, we construct its KS-minimal model $\mathscr M_{\mathscr A}$ as follows:

(1) if $i \in Ob(\mathbb{I})$ has height 0, then for $\mathcal{M}_{\mathcal{A}}(i)$ take the Aut(i)-minimal model of $\mathcal{A}(i)$. Let $\rho(i)$: $\mathcal{M}_{\mathcal{A}}(i) \rightarrow \mathcal{A}(i)$ be a fixed Aut(i)-weak equivalence;

(2) suppose that for all $i' \in Ob(\mathbb{I})$ of height smaller than height of i there are Aut(i')-weak equivalences $\rho(i') : \mathcal{M}_{\mathscr{A}}(i') \to \mathscr{A}(i')$ such that for $i'_1, i'_2 < i'$ with $i'_1 < i'$ all diagrams

$$
\mathcal{M}_{\mathcal{A}}(i'_1) \xrightarrow{\rho(i'_1)} \mathcal{A}(i'_1)
$$
\n
$$
\downarrow \qquad \qquad \downarrow
$$
\n
$$
\mathcal{M}_{\mathcal{A}}(i'_2) \xrightarrow{\rho(i'_2)} \mathcal{A}(i'_2)
$$

commute. To get $\mathcal{M}_{\mathcal{A}}(i)$ and an Aut(i)-weak equivalence $\rho(i)$: $\mathcal{M}_{\mathcal{A}}(i) \rightarrow \mathcal{A}(i)$, consider the induced Aut(i)-map $\overline{\rho}(i)$: $\overline{\mathcal{M}_{\mathcal{A}}}(i) \rightarrow \mathcal{A}(i)$ and its Aut(i)-KS-minimal model

Now let G be a finite Hamiltonian group (i.e., each subgroup of G is normal). Then the category $\mathcal{O}(G)$ of canonical orbits is a cofinite EI-category satisfying the condition $(*)$. We say that a *G*-simplicial set X is *G-connected* if all fixed point simplicial subsets X^H are connected, for subgroups $H \subseteq G$. Write G-SS (resp. G-SS⁰) for the category of all G-connected (resp. pointed) simplicial sets. Then from [4] it follows that there is an equivalence of homotopy categories

$$
\text{ho } G\text{-SS} \xrightarrow{\approx} \text{ho } \mathcal{O}(G)\text{-SS}.
$$

On the other hand, the de Rham functor A^* (resp. A_0^*) of polynomial forms determines a functor

$$
\mathscr{A}^* : G\text{-SS} \longrightarrow \ell(G)\text{-}DGA_{\mathbb{Q}} \quad (\text{resp. } \mathscr{A}_0^* : G\text{-}SS^0 \longrightarrow \ell(G)\text{-}DGA_{\mathbb{Q}}^0),
$$

such that $\mathcal{A}^*(X)(G/H) = A^*(X^H)$ (resp. $\mathcal{A}_0^*(X)(G/H) = A_0^*(X^H)$) for X in G-SS (resp. in $G-S\mathbb{S}^0$) and $H\subseteq G$, where $\mathbb Q$ is the field of rationals. Choosing a weak equivalence $\mathcal{M}_X \to \mathcal{A}^*(X)$ in the category $\mathcal{C}(G)$ -DGA_k with \mathcal{M}_X a KS-minimal model of $\mathscr{A}^*(X)$, we consider a pair of adjoint functors

ho G-SS
$$
\longrightarrow
$$
 ho $\mathcal{C}(G)$ - $DGA_{\mathbb{Q}}$ (resp. ho G-SS⁰ \longrightarrow ho $\mathcal{C}(G)$ - $DGA_{\mathbb{Q}}^0$)

constructed in Section 1.

By [12, 13], for any X in G-SS⁰ there is a minimal model \mathcal{M}_X^i , injective as an $\mathcal{O}(G)$ module, and a weak equivalence $\mathcal{M}_X^i \to \mathcal{A}^*(X)$ such that, for nilpotent G-connected pointed simplicial sets X , Y of finite type, there is a bijection

$$
[X, Y]_G \approx [\mathcal{M}_Y^i, \mathcal{M}_X^i],
$$

where $[X, Y]_G$ is the set of pointed G-homotopy classes of G-maps from X to Y. From Proposition 2.4 one gets that the KS-minimal models of \mathcal{M}_X^i and $\mathcal{A}^*(X)$ are isomorphic. Hence, there is a weak equivalence $\rho : \mathcal{M}_X \to \mathcal{M}_X^i$. By [12, Proposition 5.5] there is a map ρ' : $\mathcal{M}_X^i \to \mathcal{M}_X$ such that $\rho \circ \rho' \simeq id_{\mathcal{M}_X^i}$. Thus, the map ρ' is a weak equivalence and by Corollary 1.5 and Proposition 2.2 there is a map ρ'' : $\mathcal{M}_X \rightarrow \mathcal{M}_X^i$ such that $\rho' \circ \rho'' \simeq id_{\mathcal{M}_Y}$. Therefore, we have

Proposition 2.6. Let G be a finite Hamiltonian group. If X and Y are nilpotent G-connected pointed simplicial sets of finite type, then there is a bijection

 $[X, Y]_G \approx [\mathcal{M}_Y, \mathcal{M}_X],$

procidd Y is rutionul.

Finally, we can extend the Sullivan-de Rham equivalence to the equivariant case.

Theorem 2.7. If G is a Hamiltonian group, then there exists a pair of adjoint functors

ho G-SS⁰ \longrightarrow ho $\ell^{\circ}(G)$ -DGA⁰

which restrict to inverse equivalences

 $f \mathbb{Q}N$ -ho G -SS⁰ $\xrightarrow{\approx} f \mathbb{Q}$ -ho $\ell^q(G)$ -D $GA_{\mathbb{Q}}^0$,

where $f \mathbb{Q} N$ -ho G -SS⁰ is the full subcategory of ho G -SS⁰ induced by those G-connected pointed simplicial sets which are nilpotent and of finite type and fQho $\mathcal{O}(G)$ -DGA $_{\Omega}^0$ is the full subcategory of ho $\mathcal{O}(G)$ -DGA $_{\Omega}^0$ induced by those $\mathcal{O}(G)$ augmented algebras which are equivalent to equivariant KS-minimal $\mathcal{C}(G)$ -algebras and with finitely many multiplicative generators.

Remark 2.8. (1) In [5] it was shown that any system of $\mathcal{C}(G)$ -differential graded algebras can be mapped into an injective $\ell(G)$ -system of such algebras via a homology isomorphism.

(2) The above result also holds for nilpotent G -connected unpointed simplicial sets X (of finite type) with $X^G \neq \emptyset$.

(3) A construction of the equivariant KS-minimal model of any nilpotent G-disconnected simplicial set and a formulation of an appropriate version of the equivariant Sullivan-de Rham equivalence require more subtle methods and will be published elsewhere.

Acknowledgements

The author is indebted to Professor Rudolf Fritsch for useful discussions. Thanks are also due to the referee for carefully reading the original manuscript and very important suggestions.

References

- [1] A.K. Bousfield, V.K.A.M. Guggenheim, On PL de Rham Theory and Rational Homotopy Type, Mem. **A.M.S. 179 (1976).**
- **[2] W.6. Dwyer. D.M. Kan, A classification theorem of diagrams of simplicial sets, Topology 23(2) (lYX4) 139-l 55.**
- [3] D.E. Edwards, H.M. Hastings, Čech and Steenrod Homotopy Theories with Applications to Geometric **Topology. Lecture Notes in Math.. vol. 542. Springer. Berlin. 1976.**
- **141 A.D. Elmendorf. Systems of fixed point set. Trans. Amer. Math. Sot. 277 (19X3) 275-2X4.**
- **[5] B.L. Fine. C;.V. Triantafillou. On the cquivariant formality of Kiihlcr manifolds with fimtc group action.** Canad. J. Math. 45 (1993) 1200-1210.
- [6] K. Grove, S. Halperin, M. Viguè-Poirrier, The rational homotopy theory of certain path-spaces with **applications to gcodehics. Acta Math. 140** (**1978) 277-303.**
- [7] S. Halperin, Lectures on Minimal Models, Mèm. Soc. Math. France (N.S.), vol. 9-10, 1983.
- **[X] T. Lambre. Modele minimal kquivariant et formalit& Trans. Amer. Math. Sot. 327(2) (1991**) **621-639.**
- [9] W. Lück, Transformation Groups and Algebraic K-theory, Lecture Notes in Math., vol. 1408, Springer, **Berlin. 19X9.**
- [10] D.G. Quillen, Homotopical Algebra, Lecture Notes in Math., vol. 43, Springer, Berlin, 1967.
- [11] D. Sullivan, Infinitesimal computations in topology, Publication de l'I.H.E.S. 47, 1977.
- **1121 C;.V. Triantafillou. Equivariant minimal models. Trans. Amer. Math. Sot. 274 (1982) 509-532.**
- [13] G.V. Triantafillou, An algebraic model for G-homotopy types. Astèrisque 113-114 (1984) 312-337.