The appearance of jailed side branches post-procedure, at 6, 12, 24 and 36 months following implantation of bioresorbable vascular devices – Insights from the ABSORB Cohort B trial using three-dimensional optical coherence tomography

Yoshinobu Onuma¹, Hector M. Garcia-Garcia², Jacques Koolen³, Takashi Muramatsu⁴, Shinpei Nakatani⁵, John A. Ormiston⁶, Patrick W. Serruys⁷, Pedro Martin Lorenzo¹, Medina Alfonso¹, SuáRez De Lezo Javier², Jose Novoa Medina¹, Tom Hartl⁸, Stephan Windecker⁴, Tedio Thielen¹, Robert Van Geuns⁵, Robert J. Whitbourn⁶, Stephen Windecker², Takashi Muramatsu⁴, Shimpei Nakatani⁵, John A. Ormiston⁶, Patrick W. Serruys⁷, Pedro Martin Lorenzo¹, Medina Alfonso¹, SuáRez De Lezo Javier², Jose Novoa Medina¹, tomography

Changes In Bioabsorbable Scaffold Geometry After Kissing Balloon Intervention

Yoshinobu Onuma¹, Hector M. Garcia-Garcia², Jacques Koolen³, Takashi Muramatsu⁴, Shinpei Nakatani⁵, John A. Ormiston⁶, Patrick W. Serruys⁷, Pedro Martin Lorenzo¹, Medina Alfonso¹, SuáRez De Lezo Javier², Jose Novoa Medina¹, tomography

One-year Clinical Outcomes of Diabetic Patients Treated With Everolimus-Eluting Bioabsorbable Vascular Scaffolds: A Pooled Analysis From the ABSORB Cohort B and the ABSORB EXTEND Trials

Takashi Muramatsu⁴, Yoshinobu Onuma⁵, Robert J. Van Geuns⁶, Bernard Chevalier¹, Tejas M. Patel¹, Ashok Seth¹, Roberto Diletti, Hector M. Garcia-Garcia², Cécile Dorange, Susan Veldhof, Wai-Fung Cheong⁷, Robert J. Whitbourn⁸, Antonio L. Bartorelli⁹, Alexandre Abizaidⁱ⁰, Patrick W. Serruys¹¹, Thoraxcenter, Erasmus Medical Center, Rotterdam, Netherlands, ¹²Thoraxcenter, Rotterdam, Rotterdam, ¹³Hospital Universitario de Gran Canaria Dr. Negrín, Las Palmas de Gran Canaria, Spain, ¹⁴Hospital Universitario de Gran Canaria Dr. Negrín, Las Palmas de Gran Canaria, Spain, ¹⁵Hospital Universitario Reina Sofia, University of Cordoba, Cordoba, Spain

Background: Everolimus-eluting ABSORB Bioresorbable vascular scaffolds consisted of poly-lactide are programmed to bioresorb approximately in three years. It is still unknown how the struts implanted in front of a side branch behave during bioresorption. The purpose of this study was to assess the fate of bioresorbable struts jailing side branch ostia at 6, 24 months (cohort B1) or at 12 and 36 months after implantation of the BVS (cohort B2), with three-dimensional (3-D) optical coherence tomography (OCT) reconstruction.

Methods: The ABSORB Cohort B trial is a multicentre single-arm trial to assess the safety and performance of the BVS. Fourier domain-OCT pullbacks were obtained at a pullback speed of 20 mm/s and 3-D rendering are computed. The area and the number of strut-free compartments at side branch ostium delineated by the BVS struts were evaluated. The endo- and abluminal coverages of the struts present at the ostium of sidebranch were quantified at 6, 12, 24 and 36 month follow-up.

Results: Serial 3D-OCT images were available in total 26 side branches (13 in cohort B1 and 13 in cohort B2). In the Cohort B1, the number of compartment and average ostium area free from jailing struts did not change from baselines to 6 months, but significantly reduced from 6 months to 2 years. In the Cohort B2, there was similarly a reduction of the number of compartments and the ostium area from baseline to one year. However, from one year to 3 years, there was late enlargement of the sidebranch ostium area (1Y: 0.47±0.64mm², 2Y: 0.68±0.38mm²) without changing the number of compartment. The thickness of the strut coverage was greater at the abluminal surface compared to endoluminal strut side at followup.

Conclusions: The ostial area jailing by bioresorbable scaffold decreased up to 2 years due to growing tissue between the struts, but late ostium area enlargement was observed at 3 years.

Changes In Bioabsorbable Scaffold Geometry After Kissing Balloon Inflation In Bufurcated Coronary Lesions

Pedro Martin Lorenzo¹, Medina Alfonso¹, SuáRez De Lezo Javier¹, Jose Novoa Medina¹, Macueles Francisco¹, Manuel Pan¹, Ojea Soledad¹, Sauret De Lezo José², Hospital Universitario de Gran Camara Dr. Negrin, Las Palmas de Gran Camara, Spain, ²Hospital Universitario Reina Sofia, University of Cordoba, Cordoba, Spain

Background: In vitro and in vivo geometry of metallic single stent implantation in coronary bifurcated lesions after kissing balloon (KB) intervention, has been well studied. The same analysis of bioabsorbable vascular scaffolding (BVS) had not yet been reported. Our own in vitro observations with BVS showed integrity and no device fracture after KB inflation when a ≤2.5 mm balloon diameter was inflated through the struts.

Methods: In our series, 80 coronary bifurcated lesions were treated with provisional BVS strategy. In 21 out of 80 lesions, we performed final KB inflation after BVS implantation. The reason for side branch (SB) intervention was ostial angiographic stenosis (present before BVS implantation in 14 lesions, and appearing after it in 7). IVUS studies were performed in 3 conditions: before treatment, immediately after BVS and after KB inflation. Measurements were performed at the proximal scaffold segment, before SB origin, under SB origin and at the distal segment. This study analyzes the ultrasonographic (IVUS) findings after BVS implantation and after KB inflation. For KB technique, the balloon diameter inflated in the MV was always 0.5 mm minor than BVS diameter and the SB balloon diameter was 2 or 2.5 mm.

Results: BVS diameter was 3.10±0.39 mm and the mean inflation pressure was 15±1 atm. The MV balloon diameter was 2.8±0.3 mm (0.5 mm minor than BVS diameter in all cases). The SB balloon diameter was 2.3±0.2 mm and the inflation pressure of both balloons was 7-8 atm. Integrity of the device was always observed after KB. Good aposition of the proximal BVS and angiographic improvement of the SB origin was always obtained. Geometry of the BVS may be modified after KB technique, but nor distorted. The table summarizes the findings.

TCT-34
TUESDAY, OCTOBER 29, 2013, 1:00 PM–3:15 PM
JACC Vol 62/18/Suppl B | October 27–November 1, 2013 | TCT Abstracts/ORAL/Bioabsorbable Vascular Scaffolds

<table>
<thead>
<tr>
<th>Procedure</th>
<th>After BVS</th>
<th>After KB inflation</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proximal BVS area</td>
<td>7.48±1.73</td>
<td>7.95±1.19</td>
<td>0.03</td>
</tr>
<tr>
<td>At proximal stent</td>
<td>0.85±0.06</td>
<td>0.86±0.05</td>
<td>0.93</td>
</tr>
<tr>
<td>Before SB origin area</td>
<td>6.70±1.99</td>
<td>7.53±2.04</td>
<td><0.01</td>
</tr>
<tr>
<td>After SB origin</td>
<td>0.81±0.08</td>
<td>0.80±0.07</td>
<td>0.88</td>
</tr>
<tr>
<td>After SB origin area</td>
<td>6.03±1.76</td>
<td>5.89±1.67</td>
<td>0.77</td>
</tr>
<tr>
<td>At distal stent</td>
<td>0.85±0.06</td>
<td>0.82±0.07</td>
<td>0.04</td>
</tr>
<tr>
<td>Distal BVS area</td>
<td>6.99±2.03</td>
<td>7.01±1.72</td>
<td>0.98</td>
</tr>
<tr>
<td>At distal BVS</td>
<td>0.84±0.06</td>
<td>0.84±0.05</td>
<td>0.75</td>
</tr>
</tbody>
</table>
Background: Bioresorbable vascular scaffolds represent an exciting advance in percutaneous coronary intervention (PCI), providing an initial coronary scaffold which are eventually resorbed by the body. The DESolve® Nx Bioresorbable Coronary Scaffold System (BCSS) is a novel drug eluting bioresorbable scaffold that utilises a PLLA-based scaffold coated with a biodegradable polylactide-based polymer and the drug Novelimus, a macrocyclic lactone mTOR inhibitor which has demonstrated potent anti-proliferative properties in previous clinical trials using Elixis® metallic Novolimus-Eluting (NE) coronary stents. The DESolve NX study is a prospective, multicenter evaluation of the safety and efficacy of the DESolve Nx BCSS in patients with single de novo native coronary artery lesions through clinical endpoints and multiple imaging modalities.

Methods: 126 patients with single, de novo coronary artery lesions were enrolled in this prospective, multi-centre, single-arm study. Those patients receiving the study device are being analysed for multiple clinical endpoints including: Major Adverse Cardiac Events (MACE), a composite endpoint of cardiac death, target vessel MI, or device are being analysed for multiple clinical endpoints including: Major Adverse Cardiac Events (MACE), a composite endpoint of cardiac death, target vessel MI, or cardiac death or scaffold thrombosis. 36-month clinical data of the DESolve Nx BCSS will be presented. The primary study endpoint was freedom from ischemic-driven target lesion revascularization (CI-TLR); Clinically-indicated Cardiac Events (MACE), a composite endpoint of cardiac death, target vessel MI, or device are being analysed for multiple clinical endpoints including: Major Adverse Cardiac Events (MACE), a composite endpoint of cardiac death, target vessel MI, or cardiac death or scaffold thrombosis. 36-month clinical data of the DESolve Nx BCSS will be presented.

Results: At baseline, the patient population had a mean age 62 years, 32% were diabetic patients. The DESolve NX study is a prospective, multicenter evaluation of the safety and efficacy of the DESolve Nx BCSS in patients with single de novo native coronary artery lesions through clinical endpoints and multiple imaging modalities.

Conclusion: The DESolve Nx BCSS demonstrated safety and efficacy in treating de novo coronary artery lesions with low clinical event rate and evidence of low late lumen loss at 6 months. A first report of results through 12 months will be presented.

TCT-37
Prospective, Multi-Center Evaluation of the DESolve Nx Novolimus-Eluting Bioresorbable Coronary Scaffold: First Report of One Year Clinical and Imaging Outcomes
Alexandre Abizaid1, Joachim Schofer7, Michael Maeng6, Bernhard Wittenbrich7, Roberto Botelho5, John A. Ormiston6, Ricardo A. Costa7, Jose D. Costa Jr8, Daniel Chamié9, Juliana P. Castro10, Andrea Abizaid11, Tan John12, Vinzayu Bihat13, Lynn Morrison14, Sara Toyloy15, Stefan Verheyen16
1Instituto Dante Pazzanese de Cardiologia, Sao Paulo, Sao Paulo,8Instituto Dante Pazzanese de Cardiologia, Sao Paulo, Brazil,2Medicare center Städtische Kliniken Neuss, Lukaskrankenhaus GmbH, Neuss, Germany,3Klinik für Innere Medizin und Kardiologie, Bochum, Germany,4Cardiovascular Research Center, Siemens Healthineers, Erlangen, Germany,5Northeast Cardiology Associates, Vineland, NJ,6Klinik Innere Medizin für Kardiologie & Internistische Interventionsmedizin, Salzburg, Austria,7Associate Professor, University of Auckland Medical School, Auckland, New Zealand,8Instituto Dante Pazzanese de Cardiologia, São Paulo , São Paulo,9Institute of Biostatistics and Applied Mathematics, Universidade de Sao Paulo, Sao Paulo, Brazil,10Cardiovascular Research Center, Hamburg, Germany,11Aarhus University Hospital, Aarhus, Denmark,12Charité Campus Benjamin Franklin, Berlin, Germany,13Triangulo Heart Institute, Uberlândia, Brazil,14Associate Professor, University of Auckland Medical School, Auckland, New Zealand,15Instituto Dante Pazzanese, Sao Paulo, Sao Paulo,16Instituto Dante Pazzanese de Cardiologia, São Paulo, Brazil,17Medicare center Städtische Kliniken Neuss, Lukaskrankenhaus GmbH, Neuss, Germany,18Cardiovascular Research Center, Siemens Healthineers, Erlangen, Germany,19Seven Years Medical Technology, Sunnyvale, CA,1AAvery Cardiovascular Center, ZNA Middelheim, Antwerp, Belgium,20Antwerp Cardiovascular Center, ZNA Middelheim, Antwerp, Belgium,21Elixis Medical Corporation, Sunnyvale, CA,12elixir medical corporation, Sunnyvale, CA,13Antwerp Cardiovascular Center, ZNA Middelheim, Antwerp, Belgium,22Antwerp, Belgium

Background: In order to assess the intermediate term safety, clinical performance and the bioabsorption process of the Paclitaxel-Eluting Bioabsorbable Magnesium Scaffold (DREAMS) 5-year clinical data of cohort 1 and multi-modality imaging outcomes are reported.

Methods: Forty-six subjects were enrolled in the first-in-man BIOSOLVE-I study in two different cohorts with clinical follow-up at 1, 6, 12, 24 and 36 months; angiographic and IVUS follow-up for cohort 1 at 6-month and for cohort 2 at 12-month. This primary endpoint is Target Lesion Failure (TLF) at 6-month for cohort 1 and at 12-month for cohort 2. For some patients also 18-month and 24-month imaging data are available.

Results: TLF rate at 24-month was 6.8% including 2 TLRs and 1 peri-procedural MI occurring at the 12-month follow-up angiography; no events emerged from 12- to 24-month. No cardiac death or scaffold thrombosis was observed. 36-month clinical data of Cohort 1 will be available upon presentation. Vasoconstriction after acetylcholine at 6-month (Delta=–10.04%; p<0.0008 versus baseline) followed by vasodilatation after nitroglycerine (Delta=+8.69%; p<0.0001 versus baseline) demonstrates the uncaging aspect of the absorption process with no further change at the 12-month follow-up. Six-month virtual histology (VH) data showed a significant decrease in the dense calcium by 39.5% (p<0.0015) remaining stable from 6- to 12-month follow-up. This decrease is interpreted as a surrogate assessment for the bioabsorption process of the scaffold material. Preliminary echocardiography data using the decrease in intensity of the ultrasound signal to quantify the change in strut structure demonstrate a relatively large decrease of hyperechogenicity (28.5%) in the first 6-month, followed by lower decrease (18.4%) in the 6 months thereafter, with indications that the hyperechogenicity at 18-month returns to the values seen pre-implantation.

Conclusion: TCT-37 shows excellent safety and efficacy data with no death and no scaffold thrombosis up to 3 years in the BIOSOLVE-I trial. Multi-modality imaging documented the absorption process and the uncaging aspect of this device already at 6 months.

TCT-38
12-Month Angiographic and Clinical Results of the ReZolve® Sirolimus-Eluting Bioresorbable Coronary Scaffold: The RESTORE trial
Alexandre Abizaid1, Johannes Brachmann2, Jose D. Costa Jr3, Dariusz Dudek4, Norbert Frey1, Matthias Heigert1, Matthias Lutz4, Axel Schermund1, Jeffrey Anderson1
1Visiting Professor Columbia University, São Paulo, Brazil,2Klinikum Coburg, Coburg, Germany,3Instituto Dante Pazzanese de Cardiologia, São Paulo, Brazil,4University Hospital, Krakow, Poland,5University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany,6Klinik Innere Medizin für Kardiologie & Internistische Interventionsmedizin, Salzburg, Austria,7Universitätsklinikum Schleswig-Holstein, Kiel, Germany,8Cardioangiological Center Bethanien, Frankfurt, Germany,9Reva Medical, San Diego, CA

Background: ReZolve is a novel scaffold incorporating a unique slide & lock expansion technology and a proprietary bioresorbable stent material that is a polycarbonate co-polymer of tyrosine analogs. The aim of this study was to evaluate, for the first time, the safety and performance of the ReZolve sirolimus-eluting bioresorbable coronary scaffold in non-complex human coronary lesions.

Methods: The RESTORE trial is a prospective, multi-center and multi-national trial enrolling patients with single, de novo lesions in native coronary arteries with an average reference diameter between 2.9 mm to 3.3 mm and lesion length up to 12 mm. The primary study endpoint was freedom from ischemic-driven target lesion revascularization (TLR) at 6-months and 12-month in-scaffold late loss. Serial IVUS evaluation (post procedure and at 12 months) was also performed in a subgroup of patients. All imaging analyses were performed by independent core labs.

Results: A total of 26 patients were enrolled in this trial and the device was successfully implanted in 22 cases. Most patients were male (76%) and 36% of all patients had diabetes. Mean reference vessel diameter and lesion length were 2.72 mm and 11.1 mm, respectively. Acute recoil was minimal at 3.8% ± 6.7%. Through 6 months post-implant there were 2 focal in-scaffold TLRs. The 12-month TCA evaluation was completed for the first 8 patients and resulted in a late loss of 0.20 ± 0.19 mm. Of note, the mean stent diameter at implant in this initial group of patients was 2.94mm and remained constant over the 12-month follow-up period. The QCA and safety data for the remaining patients as well as full IVUS assessment will be available at the time of the meeting.

Conclusion: In this preliminary assessment, the ReZolve scaffold showed excellent acute performance with minimal acute recoil. Complete 12-month QCA and IVUS data is required to confirm the performance of this novel device.