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ABSTRACT When enzyme molecules
are distributed within a negatively
charged matrix, the kinetics of the con-
version of a negatively charged sub-
strate into a product depends on the
organization of fixed charges and
bound enzyme molecules. Organiza-
tion is taken to mean the existence of
macroscopic heterogeneity in the dis-
tribution of fixed charge density, or of
bound enzyme density, or of both. The
degree of organization is quantitatively
expressed by the monovariate mo-
ments of charge and enzyme distribu-
tions as well as by the bivariate
moments of these two distributions.
The overall reaction rate of the
bound enzyme system may be ex-

pressed in terms of the monovariate
moments of the charge density and of
the bivariate moments of charge and
enzyme densities. The monovariate
moments of enzyme density do not
affect the reaction rate.

With respect to the situation where
the fixed charges and enzyme mole-
cules are randomly distributed in the
matrix, the molecular organization, as
expressed by these two types of
moments, generates an increase or
decrease of the overall reaction rate as
well as a cooperativity of the kinetic
response of the system. Thus both the
alteration of the rate and the modula-
tion of cooperativity are the conse-
quence of a spatial organization of

charges with respect to the enzyme
molecules.

The rate equations have been
derived for different types of organiza-
tion of fixed charges and enzyme mole-
cules, namely, clustered charges and
homogeneously distributed enzyme
molecules, clustered enzyme mole-
cules and homogeneously distributed
charges, clusters of charges and clus-
ters of enzymes that partly overlap, and
clusters of enzymes and clusters of
charges that are exactly superim-
posed. Computer simulations of these
equations show how spatial molecular
organization may modulate the overall
reaction rate.

INTRODUCTION

When enzyme molecules are embedded in a polyelectro-
lyte matrix the apparent kinetic properties of the bound
enzyme are changed with respect to what these properties
would be if the enzyme were free in solution. Diffusional
resistances of the substrate and of the product may be a
cause of this change of kinetic properties. Another cause
of kinetic alterations is the existence of electrostatic
interaction effects between the fixed charges of the
matrix and the mobile charges of the solute. If the
substrate is an ion, electrostatic repulsion between the
fixed charges of the matrix and the mobile charges of the
substrate mimics positive cooperativity, whereas electro-
static attraction mimics negative cooperativity. These
effects are observed even with monomeric one-sited
enzymes and are modulated by ionic strength (Engasser

and Horvath, 1975; Ricard et al.; 1981; Ricard, 1987).

Another type of alteration of the kinetic behavior of the
bound enzyme is a shift of the pH-profile of the enzyme
toward high or low pH values (Engasser and Horvath,
1974a--d).

These effects have been observed experimentally with
enzymes cross-linked to polyanionic or polycationic res-

ins, but also occur with enzymes bound to cell mem-
branes. cell walls, or polynucleotides (Douzou and Mau-
rel, 1977a and b; Maurel and Douzou, 1976). These
electrostatic effects are thus likely to control the behavior
of the enzymes in the living cell.

Physical theories developed so far allow one to explain
roughly these effects but implicitly postulate that the
enzyme molecules and the charges are homogeneously
distributed within the matrix. This can be so only as a first
approximation. There is experimental evidence, for
instance, that this is not the case for acid phosphatase
molecules buried in the plant cell walls (Ricard et al.;
1981; Crasnier et al.; 1985).

It is therefore important to develop a theory that allows
one to understand how clustering and organization of
fixed charges and enzyme molecules in a matrix may
affect the overall reaction rate. More precisely one may
wonder whether the overall enzyme reaction rate is
unchanged when the same number of fixed charges and
enzyme molecules are either randomly distributed within
a unit volume of matrix, or clustered in that volume.

The aim of this paper is to offer the bases of such a
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theory. As biological membranes are polyanions and most
of the charged substrates are anions, this theory will be
restricted to electrostatic repulsion effects.

THEORY

1. Expression of the basic rate
equation

Owing to the electrostatic repulsion of a mobile substrate
anion by a polyanionic matrix, an electrostatic partition
coefficient IT may be defined as

- (%)1/2 — exp (FAY/RT). (1)

In this expression S, and §; are the bulk and the local
substrate concentrations, vy, and +v; the corresponding
activity coefficients, z is the valence of the substrate, F the
Faraday constant, AV the difference of electrostatic
potential between the inside and the outside of the matrix
and R and T have their usual significance. For a dilute
solution of a monovalent substrate anion, this expression
reduces to

m- % = exp (FAY/RT). )

This electrostatic partition coefficient may be expressed
in terms of bulk concentrations of mobile anions and of
the fixed charge density, A. For the ideal case of the
anionic substrate, S, and one cation, the electroneutrality
equation assumes the form (Engasser and Horvath, 1975;
Ricard et al., 1981)

A
n’-;n—1=0, 3)

and the expression of II is then equal to

A 4S}
I= [l +4/1+ X ] 4)

28,

For low ionic concentrations, one may write approxi-
mately,

457 _ 280
A? A’

1+ )

and the expression of the electrostatic partition coeffi-
cient is then

A’ 4+ §?
AS,

m- (6)

If the local charge density is much larger than the bulk

substrate concentration, this expression reduces to

| g 5 (7
Expressions 4, 6, and 7 show that the electrostatic parti-
tion coefficient declines as the bulk substrate concentra-
tion is increased.

It is important to define clearly at this stage what is
meant by organization. The term of organization is taken
to mean the lack of pure randomness in the spatial
distribution of charges and enzyme molecules. Clustering
of charges and clustering of enzyme molecules thus
represents some form of spatial organization. Moreover
organization may also involve the existence of a spatial
correlation between the charge density and the enzyme
density distributions. To express quantitatively how these
different types of organization alter the overall rate
equation of the bound enzyme system, one has to develop
first the mathematical treatment of a simple and versatile
model which postulates that the clusters of charges and
the clusters of enzyme molecules are superimposed.

As we shall see later, the behavior of a bound enzyme
system that comprises a large number of small clusters is
indistinguishable from that of another system defined by
a small number of large clusters, provided the charge and
enzyme densities as well as the total volume of clusters be
the same in the two cases. Therefore the concept of cluster
may be applied to a spatial structure of a unit volume,
whatever this structure is isolated in the matrix, or
collected with other structures of similar density.

If there exists in the matrix N clusters of fixed negative
charge density and enzyme molecules, the overall rate of
conversion of a monovalent substrate assumes the form

VS0
v—ZZK{;;S ®)

In this expression f;; is the frequency of clusters that have
an electrostatic partition coefficient, IT;, and a maximum
reaction velocity (proportional to enzyme density), V}; f;
is thus a measure of the true frequency of spatial struc-
tures and altogether a measure of their volume. X is the
K., of the reaction. If, as assumed above, the matrix is a
polyanion and the substrate a monovalent anion, Eq. 8
assumes the form

VA
fi S;
K+A
I T ®
i i 2
K+Ai+S°

4; is then the fixed charge density of cluster i. If the
charge density of the clusters is much higher than the
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bulk substrate concentration, one must have
i=1,...,n). (10)

and Eq. 10 takes an even more simple form, namely,

A>»K

AR
U_ZZK£,+S2 an

One may define a new variable, ¢4, which has the dimen-
sion of a concentration, as

6o = SY/K, (12)

and Eq. 11 becomes

14

”_ZZA.+0.,' (13)
Under this form it becomes obvious that any departure
from Michaelis-Menten behavior, or cooperativity, with
respect to the new variable g,, cannot be due to electro-
static repulsion effects but to a spatial heterogeneity, or
organization, of the fixed charges and of enzyme mole-
cules in the matrix. One may show after some lengthy
algebra that the second derivative, with respect of 1/a,, of
the reciprocal rate, 1/v, is always negative. This means
that the cooperativity with respect to ¢, can only be
negative. As a matter of fact Eq. 13 is formally equivalent
to that which describes the activity of a mixture of
different enzymes acting on the same substrate (A; would
then correspond to the K, of the enzymes and g, to the
substrate concentration). Under these conditions it has
been demonstrated (Dixon and Webb, 1979) that the
apparent cooperativity can only be negative.

Eq. 13, however, is too complex to be of any practical
value. It should be reexpressed under a different form to
take specific account of the degree of spatial order of the
fixed charges and enzyme molecules.

2. Statistical formulation of
spatial order of fixed charges and
enzyme molecules in the matrix

One may express the charge density in the clusters, A;,
relative to its mean (A), as

A=(AY+8, (i=1,...,n). (14)

Similarly the maximum reaction velocity in the clusters,
proportional to the enzyme density, may be expressed
with respect to the corresponding mean, namely,

(j=1,...,n). (15)

In expressions 14 and 15, §; and ¢; are the deviations about
the corresponding means (A) and (V).

Vj"(V)‘f-éj

The degree of spatial order and organization of fixed
charges and enzyme molecules may be expressed by the
monovariate and bivariate moments of these two normal
distributions. The monovariate moments, centered on the
zero value, are either equal to zero or express the degree
of dispersion of charge and enzyme densities within the
matrix. This degree of dispersion of charge and enzyme
densities is a measure of the independent organization of
fixed charges and enzyme molecules in the matrix. These
monovariate moments do not take account of the degree
of organization of charges with respect to enzyme mole-
cules.

One has

2 Zj:ﬁjéi = L foi= N () = 0
2 ;ﬁ,@? -
22 S#-
e

2_f8 = Ny (3) = N var (3)
2_f8 -

Zfi‘j
]

Nuy(0) =0
=Np(e) =0. (16)

In these expressions u(8) and u(e) represent the monova-
riate moments of charge and enzyme density distribu-
tions.

The bivariate moments that associate the charge densi-
ty, or the dispersion of that variate with the enzyme
density, express how the charge density and its dispersion
are organized in space with respect to enzyme density.
The bivariate moments are defined as

2.2 _fide
2.2 fidle -
2.2 fible =

= Nﬂl,l(aa 6) = Ncov (69 6)
N”'Z,l(a’ 6)
N, (5, €). 17

If the §; and the ¢ are normally distributed, the moments
of odd degree are null. It is important to realize the
intuitive significance of these monovariate and bivariate
moments in term of spatial order and organization. The
term of organization is taken to mean the lack of pure
randomness, or the presence of macroscopic heterogene-
ity in the spatial distribution of charges and enzyme
molecules. Clustering of charges and clustering of
enzyme molecules thus represent some form of organiza-
tion. The monovariate moments quantitatively express
this form of organization. If the values of u(8), for
instance, are all equal to zero, the charges are either
homogeneously distributed in the matrix or, if they are
clustered, the local density is the same in the population of
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clusters. Moreover, organization may also involve a corre-
lation in the spatial distribution of charges and enzyme
molecules. This type of organization is quantitatively
expressed by the bivariate moments. Here again if
u(6, ¢) = 0 no spatial correlation exists between the distri-
bution of charges and that of enzyme molecules.

3. Spatial order and expression of
the enzyme rate equation
Let us consider the rate equation defined for a cluster i:

V) +¢)a,

v =f((4) +6i)=<A>+6i+a°' (18)
Defining the following dimensionless quantities,
* _ %
0, = (A
5.
w0
8; @
* =
N (19)

this equation may be cast into the following form (see
Appendix)

M A +¢)ad

i

1 + o¥
8 o2 5%
<4l = — - - - <. (20
{ T+of (tot) (tary ’ (20)

For the set of N clusters the overall rate equation is then
(see Appendix)

7

= lim
m—wl + 0¥

. (1 + i (_l)r I“’r(é*) + “r,l(a*se*)j . (21)

v
N(V)

(I +a3)

Eq. 21 shows that the cooperativity, with respect to o, of
the rate equation relies on the value of the monovariate
moments u,(6*) and of the bivariate moments g, (6*,*).
The monovariate moments p,(¢*) have no effect on the
cooperativity. What basically controls this cooperativity
is the distribution of charge density as well as its correla-
tion with that of enzyme density. Moreover under the
form of Eq. 21 it is evident that N(V) remains
unchanged if spatial structures of enzyme molecules in
the matrix are, by convention, split into clusters of unit
volume, for (V') decreases and N increases accordingly.

4. Spatial order and kinetic
cooperativity

Expression 21 clearly shows that the reaction rate cannot
follow, in all generality, Michaelis-Menten kinetics. One

may expect the reaction rate to display a cooperative
kinetics with respect to the dimensionless variable o*.
More importantly, one may predict this cooperative kinet-
ics not to be the consequence of electrostatic interaction
effects between the charges of the matrix and the charged
substrate. The cooperative behavior of Eq. 21 appears as a
consequence of charge and enzyme organization in the
matrix, for the expression of the reaction rate becomes
that of a rectangular hyperbola if the monovariate and
bivariate moments u,(6*) and ., (6%,¢*) are all equal to
zero. Thus, the kinetic cooperativity displayed by Eq. 21
is clearly the consequence of order and organization of
fixed charges and enzyme molecules.

It is thus important to analyze this cooperativity, which
may be called organizational cooperativity, to understand
its precise nature. This study may be performed by
analyzing the rate behavior of Eq. 21 when the Taylor
series converges rapidly enough as to generate a negligible
error when m = 2. The reaction rate then assumes the
form

v ¥ cov (6*, €*) o
NV) T+a*  (1+a*)
var (0*) o¥ I’-z,l(a*, €*) o¥ 22)
(1+a}) 1 + a2y

Reducing this expression to the same denominator yields

v
N{V)
6* + {2 — cov (6%, €*)} o¥?
+ {1 + var (8%) + uy (5%, €*) — cov (8%, €*)} o

B ( + a3 - @3
Clearly if
var (6*) =0
cov (8%, ¢*) =0
”’2,](5*s 6*) = Os (24)
Eq. 23 reduces to
*
v ol (25)

N(VY 1+a*"

There are two important questions that must be answered
about the way organization of charge and enzyme density
modulate the reaction rate. The first one is to know how
charge clustering and enzyme organization increase or
decrease the reaction rate, and the second one is to
determine how these parameters of molecular organiza-
tion generate a kinetic cooperativity.

The first question may be answered by comparing the
actual reaction rate (Eq. 23), to what the rate would be if
no organization of charges and enzyme molecules were
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occurring, namely to Eq. 25. The difference between
these two equations allows one to define a function, the
function of organizational rate modulation, = (¢F ), which
expresses how molecular clustering and organization
affect the reaction rate. One has

cov (3%, €*) o2 % — {var (8*) + uy, (8%, €*)
ooy — cov (8%, M)} o2
E(o¥) = e . (26)

Depending on the sign of the bivariate moments and the
value of ¢¥, this function may take positive or negative
values. Fig. 1 shows some types of variation of this
function.

The important conclusion of this analysis is that the
organization of charges and enzyme molecules may
enhance or decrease the reaction rate.

The extent of cooperativity of an enzyme system is
usually described by the so-called Hill function. In the
case of a rate equation of a 3:3 type (Eq. 23) is

v ¥ 4+ V0¥’ + ¥, 0
N(V) o¥ + Ve** + Vio*+ ¥’

@7
where the coefficients, ¥ and ¥ have the significance
given in Eq. 23, the Hill function may be expressed as

h(o3) =1 + Q(a3), (28)
where the function Q(¢¥ ) assumes the form

A;O’:J + Azo: 2 + AIU:
Neo** + Nio® 4+ Mo + No* + N

Q(a3) (29)

01 T

Z (03)
o
(
1
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FIGURE1 Modulation of enzyme catalysis through organization of
fixed charges and enzyme molecules. The £ (¢¥) function is plotted
versus the dimensionless variable ¢ for different values of cov (8%, €*)
and a fixed value of var (§*) = 0.6 and u,,(6%, €*) = 0. (Curve A)
cov (6*,*) = 0; (curve B) cov (6%, €*) = 0.3; (curve C) cov (8*, ¢*) =
0.6. The simulated results show that the clustering of fixed charges tends
to enhance the overall reaction rate (E[o¥] > 0) if no spatial organiza-
tion of charges with respect to enzyme molecules occurs. If such an
organization does exist, the overall reaction velocity is decreased.

The parameters A and X are defined in terms of the
coefficients ¥ and ¥’ of the rate Eq. 23. One has
N=¥ -V, - ¥, (V- ;)
A =2¥, - 2%, (¥, ~ ;)
AN=Y ¥ -V, (Y] - ¥), (30)
and
= -
5=V — ¥ + W, (1 - ¥,)
2=V, + ¥, (T - 1) + ¥ (T -1y
1=V ¥ + ¥ (1) — ¥)
A=Y Y 31

Because the coefficients ¥ and ¥’ of Eq. 41 depend on the
values of monovariate and bivariate moments of charge
and enzyme density distributions, it is obvious that the
function Q(o¥) also depends on these parameters that
express the degree of organization of charges and enzyme
molecules. Because the sign and the extent of cooperativ-
ity rely on this function, 2(¢¥ ) may be termed function of
ionic-charge-organization cooperativity. The explicit for-
mulation in terms of moments, of coefficients X and X\’ is
found to be

Ay = —Var (3*) + cov? (6%, ¢¥)
A, = —2 {Var (%) + cov (3%, €*) var (6*) + cov? (5%, e*)}
A = —Var (%) + {cov (8%, €*) — var (3*), (32)

and

Ay =1 + cov (6%, ¢*)

A} =4 — var (5*) + 2 cov (8%, €*) — cov? (8%, ¢*)

Ay = 6 — Var (8%) — 2 cov® (3%, €*) +2 cov (8%, *) var (8%)

A} = 4 + var (8%) — 2 cov (3%, €*) — {cov(o*, €*) — var (8%)),
A, =1 + var (6*) — cov (8%, €*) (33)

where
var (6*%) = var(8*) + u,, (5%, €*). (34)

In fact u,, (6*,¢*) = O for normal distributions and if these
distributions are close to normality the value of the
bivariate moment is negligible relative to the variance of
&*. This is a consequence of the fact that the regression of
8*? v ¢ is parabolic in shape and symmetrical about the &
axis. Because both var(é*) and cov(é*,e*) are smaller
than unity, the nonlinear terms in the expressions 32 and
33 must be smaller than the linear ones. Therefore the
terms of the numerator of the Q(s*) function must all be
negative and those of the denominator of this function are
positive. This implies that the type of cooperativity that
may be expected from Eqgs. 28 and 29 is only negative.
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This conclusion is quite consistent with a more general
statement made previously (see Eq. 13). As o¥ is
increased, the cooperativity, as expressed by the Hill
function, decreases at first, then increases (Fig. 2).

This variation of the negative cooperativity as a func-
tion of ¢¥ depends on the value of the variance of charge
density. This phenomenon occurs even if the bivariate
moments are equal to zero, that is, when there is no
organization of charges with respect to enzyme molecules.
As the variance increases, the minimum of the Hill
function is shifted toward higher o¥ values. At the same
time, cooperativity becomes more and more negative.

If at constant variance, the covariance values are
increased and the minimum of the Hill function is shifted
toward low ¢¥ values. This is illustrated in Fig. 2. The
modulation of cooperativity by the variance and covar-
iance thus corresponds to adverse effects. The shift of the
minimum of the Hill function brought about by increas-
ing the values of the covariance results in an increase or a
decrease of negative cooperativity depending on whether
the values of ¢ are low or high.

5. Spatial localization of charges
and enzyme molecules as a source
of kinetic cooperativity

We have considered so far that the fixed charges and
enzyme molecules are clustered at the same specific
places. Therefore clusters of fixed charges and enzyme
molecules exist. This may indeed be viewed as a highly
organized system (Fig. 3 E). But it is obvious that other
types of organization may not involve such a high degree
of order (namely exact superimposition of charge and

h(oe)

0.9

0.8

log o,

FIGURE2 Modulation of enzyme cooperativity through organization of
fixed charges and enzyme molecules. The Hill function is plotted versus
log o# for different values of cov (5%, €*) and at a fixed value of var
(3*) = 0.6 and u,,(8%, €*) = 0. (Curve A) cov (8%, ¢*) = 0; (curve B)
cov (8%, €*) = 0.3; (curve C) cov (5*, €*) = 0.6. The simulated results
show that increasing the covariance value, results in a shift of the
minimum of the Hill function toward low value of ¢3.
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FIGURE3 Models of organization of fixed negative charges and
enzyme molecules. (4) The enzyme molecules and fixed negative
charges are randomly distributed in the matrix. (B) The enzyme
molecules are randomly distributed but the charges are clustered. (C)
The enzyme molecules are clustered and the charges are randomly
distributed. (D) There exists in the matrix clusters of charges and
clusters of enzyme molecules that partly overlap. (E) The clusters of
enzyme molecules and of fixed charges are superimposed.

enzyme clusters). From a mathematical viewpoint how-
ever they may be considered as special cases of the model
discussed above and schematized in Fig. 3 E.

In line with this model, there are five broad types of
organization of fixed charges and enzyme molecules.

The first one is shown in Fig. 3 4. The charges and
enzyme molecules are randomly distributed in the polyan-
ionic matrix. With respect to the reduced variable o, no
cooperativity occurs. There is therefore no organization of
charges and enzyme molecules. Then the rate curve is
sigmoidal with respect to substrate concentration, and the
corresponding rate equation assumes the form

VS;

Tkax S

(35)

The second type of distribution of charges and enzyme
molecules involves some form of organization. The
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charges are supposed to be clustered but the enzyme
molecules are randomly distributed in the matrix (Fig. 3
B). Therefore the enzyme molecules that are located
outside the charge clusters are involved in a reaction that
follows Michaelis-Menten kinetics and where the sub-
strate is not submitted to electrostatic repulsion effects.
The substrate of the enzyme molecules located within the
charge clusters are submitted to electrostatic repulsion
effects. The monovariate moments of the charge distribu-
tion cannot all be equal to zero, and this generates a
negatively cooperative response with respect to the
reduced variable ¢, of the enzyme molecules located in
the charge clusters. However, because the enzyme mole-
cules are randomly distributed in the matrix, the bivariate
moments u(6*,e*) are all equal to zero and there is no
organization of charges with respect to enzyme molecules.
The corresponding rate equation is rather complex. With
respect to the bulk substrate concentration, S,, it assumes
the form

~ WS,  N(V),S:/K(A)
'Tk+S, T 1+ SUK@A)
2 1, (3%)
. —y— 00 1 36
L+ L O sk ©9

where V, is proportional to the enzyme density randomly
distributed in the matrix and (V'), is proportional to the
enzyme density clustered in that matrix. An example of
the kinetic behavior obtained from this type of organiza-
tion is shown in Fig. 4. A particular case implying less
order, that is, more homogeneity in the distribution of

[+] 1
o 0.5 So 1

FIGURE4 Mixed positive and negative cooperativity generated by a
random distribution of enzymes and a clustering of charges (Fig. 3 B).
The two curves are simulated from Eqs 36 and 37 with the approxima-
tion that m = 2. The parameter values are the following: (curve A [Eq.
37D ¥, = 0.5; {¥), = 0.0005; K = 0.01; N = 1000; (A) = 100; var
(8*) = 0; cov (3%, €*) = O; u,,(8*, €*) = 0; (curve B [Eq. 36]) ¥, = 0.2;
{V):= 0.0008; K = 0.01; N = 1000; (A) = 100; var (3*) = 0.6;
cov (6%, €*) = 0; p,, (6%, €*) = 0.

fixed charges, occurs if the monovariate moments are all
equal to zero. This implies that the charge density in the
clusters is about the same. The corresponding rate equa-
tion then reduces to

o ViSe | N(K), SHK(A)
K+ S, 1+ S2/K(A)

&Y)

A simulation of the type of mixed positive-negative
cooperativity to be expected from Eq. 36 and 37 is also
shown in Fig. 4.

Another type of spatial organization occurs when the
enzyme molecules are clustered, whereas the fixed
charges are not (Fig. 3 C). Then the corresponding
reaction rate follows Michaelis-Menten kinetics with
respect to o¥ and follows sigmoidal kinetics relative to S,,.
This situation is thus indistinguishable from the first one
considered above (Fig. 3 A4).

A more elaborate type of organization occurs if both
charges and enzyme molecules are clustered and if some
of the clusters partly overlap (Fig. 3 D). Then some
enzyme molecules are not surrounded by fixed negative
charges and display a response with respect to the sub-
strate concentration that follows Michaelis-Menten
kinetics. But other enzyme molecules are surrounded by
fixed charges and display an apparent negative coopera-
tivity with respect to the dimensionless parameter oF.
Then the monovariate and bivariate moments may well
not be all equal to zero, and the resulting rate equation
assumes the form

~ WS, N(V),Si/K(A)
'TK+sS, T 1+ S/KA)
5 r”’l‘(at) + “‘r.l (5‘9 6‘)
. +,.Z.(—l) (L STKGAYY (38)

Some examples of the rate curves generated by this
equation are shown in Fig. 5, An additional simplification
occurs if the monovariate and bivariate moments are all
close to zero, that is, if the charge density is nearly the
same for all the clusters. Then the resulting rate equation
is again Eq. 37.

A higher degree of organization occurs if the charge
and enzyme clusters are exactly superimposed. Then the
rate equation displays a negative cooperativity with
respect to ¢, and one has

N{V)SZ/K(A)
1 + S2/K(A)

A1+ cay

ue (%) + 11 (8%, €*)
(1 + S3/K(D))

(39)

The situation is thus identical to the one described
previously. With respect to S,, the rate curve displays a
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FIGURES Mixed positive and negative cooperativity generated by a
partial overlap of enzyme and charge clusters (Fig. 3 D). The curves are
simulated from Eq. 38 with the approximation that m = 2. The
parameter values are the following: (curve 4) V, = 0.7, K = 0.01;
(V)2 = 0.0003; N = 1000; (A) = 100; var (3*) ~ 0.4; cov (5%, ¢*) =
0.3; 451 (8%, €*) = 0; (curve B) V, = 0.2; K = 0.001; ( V'), = 0.0008; N =
1000; (A) = 100; var (5*) = 0.5; cov (3*, €*) = 0.6; u,,(6*%, ¢*) = O;
(curve C) V, = 0.2; K = 0.01; (¥}, = 0.0008; N = 1000; (A) = 100;
var (§*) = 0.5; cov (6%, €*) = 0.6; ., ,(5*, €*) = 0.

sigmoidicity that is not present when enzyme molecules
are not submitted to electrostatic repulsion effects.
Results of Fig. 6 show how this type of organization of
charges and enzyme molecules affects the rate curve.

DISCUSSION

The overall response of an enzyme buried in a polyanionic
matrix is different, depending on whether the charges and

FIGURE 6 Sigmoidicity of the rate curve generated by an exact super-
imposition of charge and enzyme clusters. The curves are simulated
from Eq. 39 with the approximation that m = 2 and the following
parameters values: (curve A) (V) = 0.001; K = 0.001; N = 1000;
(A) = 100; var (6*) = 0; cov (8%, €*) = 0; u,,(8%, €*) = 0. (curve B)
(V) = 0.001; XK = 0.001; N = 1000; {A) = 100; var (3*) = 0.6;
cov (0%, €*) = 0.2; p,, (0%, €*) = 0; (curve C) (V) = 0.001; K ~ 0.001;
N =1000; (A) = 100; var (6*) = 0.2; cov (6%, €*) = 0.6; u, (8%, €*) =
0.

the enzyme molecules are randomly distributed or clus-
tered in that matrix. The spatial organization of fixed
charges, as well as that of the enzyme molecules with
respect to the charges, may modulate the cooperativity of
the bound enzyme system. To appreciate quantitatively
how molecular order may generate some form of coopera-
tivity of the bound enzyme, one has to express the kinetic
cooperativity with respect to a dimensionless variable,
o¥ = S2/K(A). In the absence of organization of charges
and enzyme molecules, the kinetics of the bound enzyme
system should be Michaelian with respect to this dimen-
sionless variable. The cooperativity that may possibly be
observed with respect to this variable is indicative of an
organization of fixed charges and enzyme molecules with
respect to the charges. It is therefore important to distin-
guish the cooperativity with respect to this variable o*
from the overall cooperativity expressed with respect to
the bulk substrate concentration S,. As outlined above,
cooperativity with respect to ¢¥, which can only be
negative, is indicative of the spatial organization of the
charges and enzyme molecules and does not reflect sub-
strate repulsion effects. Cooperativity with respect to the
bulk substrate concentration, S,, results from the inter-
play between substrate repulsion effects and spatial orga-
nization of fixed charges and enzyme molecules. If this
spatial organization does not exist there is no cooperativ-
ity with respect to ¢¥ but a strict positive cooperativity
with respect to S, (Eq. 35). This effect is the consequence
of substrate repulsion effects (Engasser and Horvath,
1975; Ricard et al., 1981). For such a sigmoidal curve its
slope must be maximum for the substrate concentration
which yields half maximum velocity. If there is both
substrate repulsion and spatial organization, cooperativ-
ity with respect to ¢¥ is negative, but cooperativity with
respect to S, is more complex. The corresponding rate
curve looks sigmoidal but its slope is not maximum at the
substrate concentration which pertains to the half-maxi-
mum velocity. Organization of charges and the enzyme
molecules results in a distorsion of the sigmoidal curve
(Fig. 6). It is therefore possible to distinguish in the
overall cooperative response of a bound enzyme the
contribution of the spatial order of fixed charges and
enzyme molecules. More precisely, if the same number of
fixed charges and enzyme molecules are either randomly
distributed or clustered in the same volume of the matrix,
the overall response of the enzyme system will be different
in the two cases. Spatial organization of charges and
enzyme molecules may enhance or decrease the reaction
rate and, as stated above, may modulate the kinetic
cooperativity of the system.

The simple and versatile model presented in this paper
allows one to express quantitatively how the degree of
organization within clusters of charges and enzyme mole-
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cules may modulate the kinetic cooperativity. This degree
of modulation is called ionic-charge organizational coop-
erativity. The degree of spatial organization may be
quantitatively expressed by monovariate and bivariate
moments of charge and enzyme density distribution. If
there is no organization of enzyme molecules with respect
to charges, the bivariate moments are all equal to zero.
The cooperativity generated by the spatial organization of
fixed charges and enzyme molecules is, of necessity,
negative.

The larger the extent of the ionic-charge organizational
cooperativity and the greater is the number of moments
that are significantly different from zero. If the coopera-
tivity is not very large, an approximation to the second
order for instance is sufficient to describe quantitatively
this cooperativity. This is what has been shown in the
computer simulations presented in this paper. However if
the cooperativity is much larger, the approximation
should be of a higher order.

Five types of spatial organization of charges and
enzyme molecules may be distinguished and result in
different types of kinetic behavior. The first one is defined
by a random distribution of charges and enzyme mole-
cules in the matrix. Then no type of organizational
cooperativity is to be observed and the rate curve will be
sigmoidal with respect to the substrate. The second type
of organization is defined by a clustering of fixed charges
but not of enzyme molecules that are randomly distrib-
uted in the matrix. With respect to substrate concentra-
tion, the rate curve is complex and displays a mixed
positive and negative cooperativity. The corresponding
equation must exhibit a Michaelian contribution plus
another one which is modulated by the monovariate
moments of the charge distribution. The organizational
cooperativity is thus solely defined by the distribution of
charge density in the clusters. A third type of organiza-
tion involves the clustering of enzyme molecules, whereas
charges are randomly distributed. Then no organizational
cooperativity is to be expected. A fourth and fifth type of
organization are defined by the clustering of both charges
and enzyme molecules. Thus clusters may partly, or
exactly, overlap. This is then the highest type of organiza-
tion one may expect, for it may involve both the spatial
organization of charges and enzyme molecules with
respect to these charges. The corresponding reaction rate
is then rather complex and relies on both the monovariate
and the bivariate moments of charge and enzyme distri-
butions.

Probably the most general idea that may be drawn
from these studies is that kinetic cooperativity of polyelec-
trolyte-bound enzymes may be a systemic property and
that some sort of spatial order in the distribution of
charges with respect to enzyme molecules may modulate

the fine tuning of enzyme behavior, in situ, either in the
living cell or in man-made enzyme reactors.

APPENDIX

Derivation of the Eq. 21 of main
text

Let us consider the rate equation defined for a cluster i, one has

_ ((V) + ej) Oy

vi=f((A)+5a)—(A)+5i+%-

1)

This equation may be expanded in Taylor series with respect to the
variable §;. One obtains

v =f({8) + &)

Oo
e [W

/] o,
+ 86— |—=
96; ((A) + & + ”o)o

B2 s
2 382 \(A) + 6 + o,),
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m(mr)*' @)

Moreover one has
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Therefore the approximate expression of the rate v; of cluster i assumes
the form

U; = ((V) + fj)
. [+ 8 _ 6iUo 6i2°'o
@) +a, (B +0) (D) o)
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As it becomes clear below, there is an obvious advantage in expressing
this equation in dimensionless form, by writing

* %
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Eq. 4 may be reexpressed as

§ a,/{A)
v= (' * <V>)I1 + e ()
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If 5, and ¢ are normally distributed, &* and ¢* are normally distributed as
well and 6 and ¢ are of necessity smaller than unity. Therefore under
the form of Eq. 7' it becomes evident that the Taylor series is convergent.
The overall rate equation for the all set of clusters is obtained by
summing up the elementary rates for all the clusters, namely,

. ] ®)
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This expression may be rewritten as
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This expression may also be rewritten in terms of monovariate and
bivariate moments, centered on the zero value, of charge and enzyme
density distributions. One must have

22 fi=N
22 St = Nm(@*) -0
22 f& = Nm(e) =0

2_2_f# = Ny (6%) = Nvar(3*)
Z Zﬁi‘si“i‘ = Ny (3%, €*) = N cov(3*, €*)
>3 S30 = Nuyy (3%, €*). 10)

The bivariate moment p,,(%, ¢*) is equal to zero if &* and ¢ are

normally distributed. In these expressions it is important to stress that
var (6*) < 1
ocov (6%, ¢*) < 1

var (5%) > p,,(6%, *).

ar)

This may easily be shown in the following way. If §, is normally
distributed,

{A) > Jvar (5), (12)
and this implies that
VZ"A(;? <1 (13)
This expression is equivalent to the first of inequalities 11’, for one has
v?rA_(;;) = var (&) = var (6%). (14)
Similarly,
cov (0, €) | 15)
Yar (®) Yvar(e (
and
Jvar (3) < (A) 16
W@ < (V). (16)
Therefore inequality 15’ implies that
cov (0, ¢€) ,
@y <" (an

and this is equivalent to the second expression of the inequalities 11°,
for

cov (3,9 (6 : )=cov(5‘,e‘)- (18)

@@y "\ @y ()
Furthermore one has
%) = 4 TS o s
Since ¢ < 1 and
var @) - 53 3 . &)

The last expression of inequalities 11’ must of necessity be fulfilled. For
normal distributions this is even more obvious because u,,(6*, €*) = 0.

With the definition of monovariate and bivariate moments given in
expression 10/, Eq. 9 may be rewritten as

v= N( V)": _ N( V)l‘l,l (8%, *)o?
1+o2 a + a3y’
N(V) {u, (3*) + #,(0%, )} o2
¥ L+ - en
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This expression may be rewritten in more compact form as

*

Y lim —>2
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