The Bishop-Phelps-Bollobás property and lush spaces ${ }^{*}$

Yun Sung Choi, Sun Kwang Kim*
Department of Mathematics, POSTECH, Pohang (790-784), Republic of Korea

ARTICLE INFO

Article history:

Received 28 June 2011
Available online 6 February 2012
Submitted by Richard M. Aron

Keywords:

Alternative Daugavet property AHSP
Bishop-Phelps-Bollobás property Lush
Numerical index

Abstract

We prove that for every lush space X, the couple $\left(\ell_{1}, X\right)$ has the Bishop-Phelps-Bollobás property for operators, that is, every lush space has the AHSP (standing for the approximate hyperplane series property). While every lush space has the alternative Daugavet property, there exists a space with the alternative Daugavet property that does not have the AHSP. We also show that there is a Banach space with both the AHSP and the alternative Daugavet property which is not lush.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

In this paper we show an interesting result that the geometric property "lushness" of a Banach space is closely related with the Bishop-Phelps-Bollobás property (BPBP for short) for operators, though they appeared to be apparently unrelated each other.

The concept of lushness was introduced to characterize an infinite dimensional Banach space with numerical index 1 [7]. The fact that a Banach space X has numerical index 1 means that the norm of any bounded operator on X is the same as its numerical radius. The lushness has been known to be the weakest among quite a few isometric properties in the literature which are sufficient conditions for a Banach space to have numerical index 1 .

On the other hand, some attention has been recently paid to the question if a given couple of Banach spaces satisfies the BPBP for operators, a strong form of denseness of the set of norm-attaining operators [1-3,9].

The Bishop-Phelps theorem [4] shows that the set of norm-attaining functionals on a Banach space X is dense in its dual space X^{*}. This theorem has been extended to bounded linear operators between Banach spaces, and also to non-linear mappings like multilinear mappings, polynomials and holomorphic mappings.

Afterwards Bollobás [5] sharpened the Bishop-Phelps theorem. More precisely, he obtained that for an arbitrary $\epsilon>0$, if $x \in B_{X}$ and $x^{*} \in S_{X^{*}}$ satisfy $\left|1-x^{*}(x)\right|<\frac{\epsilon^{2}}{4}$, then there are $y \in S_{X}$ and $y^{*} \in S_{X^{*}}$ such that $y^{*}(y)=1,\|y-x\|<\epsilon$ and $\left\|y^{*}-x^{*}\right\|<\epsilon$, which is now called the Bishop-Phelps-Bollobás theorem. Very recently Acosta et al. [1] extended this theorem to bounded linear operators between Banach spaces.

The $B P B P$ for operators is a much stronger property than the denseness of norm-attaining operators. It has been known that the set of norm-attaining operators from ℓ_{1} to any Banach space X is dense, but the pair (ℓ_{1}, X) has the BPBP for operators only when X satisfies the so-called "approximate hyperplane series property" (AHSP for short).

[^0]Our main result is to show that every lush space has the AHSP. Very recently it was shown that every almost-CL-space has the $A H S P$ [8], which is also a lush space. In general, every lush space has numerical index 1, and every Banach space with numerical index 1 has the so-called "alternative Daugavet property" (ADP for short) [16]. There exists a Banach space with the $A D P$, but not the $A H S P$. However, we don't know if every Banach space with numerical index 1 has the AHSP. We also show that there is a Banach space with both the $A H S P$ and $A D P$, which is not lush.

2. Results

We begin by recalling some relevant definitions and reviewing several recent results. Given Banach spaces X, Y over \mathbb{K} ($=\mathbb{R}$ or \mathbb{C}), by B_{X} we denote the closed unit ball, by S_{X} the unit sphere of X and by $\mathcal{L}(X, Y)$ the Banach space of all bounded linear operators from X into Y.

Definition 1. (See [1, Definition 1.1].) We say that the couple (X, Y) satisfies the $B P B P$, if given $\epsilon>0$ there exist $\beta(\epsilon)>0$ and $\eta(\epsilon)>0$ with $\lim _{\epsilon \rightarrow 0^{+}} \beta(\epsilon)=0$ such that for $T \in S_{\mathcal{L}(X, Y)}$, if $x_{0} \in S_{X}$ is such that $\left\|T x_{0}\right\|>1-\eta(\epsilon)$, then there exist a point $u_{0} \in S_{X}$ and an operator $S \in S_{\mathcal{L}(X, Y)}$ that satisfy the following conditions:

$$
\left\|S u_{0}\right\|=1, \quad\left\|x_{0}-u_{0}\right\|<\beta(\epsilon) \quad \text { and } \quad\|T-S\|<\epsilon
$$

Acosta et al. introduced the AHSP, with which they characterized the Banach space Y such that the couple (ℓ_{1}, Y) has the $B P B P$.

Definition 2. (See [1, Remark 3.2].) A Banach space X is said to have the AHSP if for every $\epsilon>0$ there exist $\gamma(\epsilon)>0$ and $\rho(\epsilon)>0$ with $\lim _{\epsilon \rightarrow 0^{+}} \gamma(\epsilon)=0$ such that for every sequence $\left(x_{k}\right)_{k=1}^{\infty} \subset B_{X}$ and for every convex series $\sum_{k=1}^{\infty} \alpha_{k}$ satisfying

$$
\left\|\sum_{k=1}^{\infty} \alpha_{k} x_{k}\right\|>1-\rho(\epsilon)
$$

there exist a subset $A \subset \mathbb{N}$, a subset $\left\{z_{k}: k \in A\right\} \subset S_{X}$ and $x^{*} \in S_{X^{*}}$ such that
(i) $\sum_{k \in A} \alpha_{k}>1-\gamma(\epsilon)$,
(ii) $\left\|z_{k}-x_{k}\right\|<\epsilon$ for all $k \in A$, and
(iii) $x^{*}\left(z_{k}\right)=1$ for all $k \in A$.

The following Banach spaces were shown to have the AHSP: (a) a finite dimensional normed space, (b) a real or complex space $L_{1}(\mu)$ for a σ-finite measure μ, (c) a real or complex space $C(K)$ for a compact Hausdorff space K, and (d) a uniformly convex space.

On the other hand, the concept of lushness was introduced in [7] as a geometric property of a Banach space which insures that the space has numerical index 1 . Before the lush spaces were studied, the basic examples of Banach spaces with numerical index 1 had been known to be almost-CL-spaces [13,14]. Clearly every almost-CL-space is lush.

Definition 3. A Banach space X is said to be lush if for every $x, y \in S_{X}$ and for every $\epsilon>0$ there is a slice

$$
S=S\left(B_{X}, x^{*}, \epsilon\right)=\left\{x \in B_{X}: \operatorname{Re} x^{*}(x)>1-\epsilon\right\}, \quad x^{*} \in S_{X^{*}}
$$

such that $x \in S$ and $\operatorname{dist}(y, \operatorname{aconv}(S))<\epsilon$.

The following Banach spaces were shown to be lush in [6]: (a) the preduals of any $L_{1}(\mu)$, (b) any Banach space which nicely embeds into $C_{b}(\Omega)$, where Ω is a completely regular Hausdorff topological space, hence the disc algebra and $H^{\infty}(D)$ (see [19]), (c) C-rich subspaces of $C(K)$. It was also shown in [6] that every separable Banach space containing an isomorphic copy of c_{0} can be equivalently renormed to be lush.

We are now ready to prove our main result. We first state the following propositions and lemma.

Proposition 4. (See [11, Corollary 4.5], [12, Proposition 2.1].) For a separable lush space X, there exists a norming set $C \subset S_{X^{*}}$ such that $B_{X}=\overline{\operatorname{conv}}\left(\mathbb{T} F\left(x^{*}\right)\right)$ for all $x^{*} \in C$, where $F\left(x^{*}\right)=\left\{x \in B_{X}: x^{*}(x)=1\right\}$ is the face generated by x^{*} and \mathbb{T} is the set of modulus-one scalars.

Proposition 5. (See [6, Theorem 4.2].) A Banach space X is lush if and only if for every separable subspace Y of X there exists a separable lush subspace Z of X containing Y.

Lemma 6. (See [1, Lemma 3.3].) Let $\left\{c_{n}\right\}$ be a sequence of complex numbers with $\left|c_{n}\right| \leqslant 1$ for every n, and let $\eta>0$ be such that for a convex series $\sum_{n=1}^{\infty} \alpha_{n}, \operatorname{Re} \sum_{n=1}^{\infty} \alpha_{n} c_{n}>1-\eta$. Then for every $0<r<1$, the set $A=\left\{i \in \mathbf{N}\right.$: $\left.\operatorname{Re} c_{i}>r\right\}$ satisfies the estimate

$$
\sum_{i \in A} \alpha_{i} \geqslant 1-\frac{\eta}{1-r}
$$

Theorem 7. Every lush space X has the AHSP. In particular, $\left(\ell_{1}, X\right)$ has the BPBP for every lush space X.
Proof. Let $\epsilon>0$ be given. Choose $0<\delta<\epsilon$ so that $\sqrt{2 \delta}+2 \delta+\frac{\delta^{2}}{2}<\epsilon$.
Given a sequence $\left(x_{i}\right)_{i=1}^{\infty} \subset B_{X}$ and a convex series $\sum_{i=1}^{\infty} \alpha_{i}$, assume that

$$
\left\|\sum_{i=1}^{\infty} \alpha_{i} x_{i}\right\|>1-\frac{\delta^{3}}{2}
$$

By Proposition 5, the sequence $\left(x_{i}\right)$ lies in a separable lush subspace of X, call it Z. It follows from Proposition 4 that there exists a norming set $C \subset S_{Z^{*}}$ such that $B_{Z}=\overline{\operatorname{conv}}\left(\mathbb{T} F\left(z^{*}\right)\right)$ for all $z^{*} \in C$.

Choose $z^{*} \in C$ such that

$$
\operatorname{Re} z^{*}\left(\sum_{i=1}^{\infty} \alpha_{i} x_{i}\right)>1-\frac{\delta^{3}}{2}
$$

Let

$$
A=\left\{i \in \mathbf{N}: \operatorname{Re} z^{*}\left(x_{i}\right)>1-\frac{\delta^{2}}{2}\right\}
$$

It follows from Lemma 6 that

$$
\sum_{i \in A} \alpha_{i}>1-\delta
$$

Since $B_{Z}=\overline{\operatorname{conv}}\left(\mathbb{T} F\left(z^{*}\right)\right)$ for every $i \in A$, we can find $y_{i}=\sum_{k=1}^{m_{i}} \lambda_{k}^{i} \theta_{k}^{i} u_{k}^{i}$ such that $\left\|x_{i}-y_{i}\right\|<\frac{\delta^{2}}{2}, \sum_{k=1}^{m_{i}} \lambda_{k}^{i}=1, u_{k}^{i} \in F\left(z^{*}\right)$, $0 \leqslant \lambda_{k}^{i} \leqslant 1$ and $\theta_{k}^{i} \in \mathbb{T}$ for every $k=1, \ldots, m_{i}$.

We can get

$$
\sum_{k=1}^{m_{i}} \lambda_{k}^{i} \operatorname{Re} \theta_{k}^{i}>1-\delta^{2}
$$

for every $i \in A$, because $\operatorname{Re} z^{*}\left(y_{i}\right)>1-\delta^{2}$ for every $i \in A$.
For every $i \in A$ let

$$
B_{i}=\left\{k \in\left\{1,2, \ldots, m_{i}\right\}: \operatorname{Re} \theta_{k}^{i}>1-\delta\right\},
$$

$\mu_{B_{i}}=\sum_{k \in B_{i}} \lambda_{k}^{i}$, and $B_{i}^{c}=\left\{1, \ldots, m_{i}\right\} \backslash B_{i}$. Apply Lemma 6 again and we get $\mu_{B_{i}}>1-\delta$, and $\left|\theta_{k}^{i}-1\right|<\sqrt{2 \delta}$ for all $k \in B_{i}$.
Define $z_{i}=\sum_{k \in B_{i}} \frac{\lambda_{k}^{i}}{\mu_{B_{i}}} u_{k}^{i}$ for every $i \in A$. Let $x^{*} \in S_{X^{*}}$ be any Hahn-Banach extension of z^{*}. For every $i \in A$ we have $x^{*}\left(z_{i}\right)=1$ and

$$
\begin{aligned}
\left\|x_{i}-z_{i}\right\| & <\left\|y_{i}-z_{i}\right\|+\frac{\delta^{2}}{2}=\left\|\sum_{k=1}^{m_{i}} \lambda_{k}^{i} \theta_{k}^{i} u_{k}^{i}-\sum_{k \in B_{i}} \frac{\lambda_{k}^{i}}{\mu_{B_{i}}} u_{k}^{i}\right\|+\frac{\delta^{2}}{2} \\
& \leqslant\left\|\sum_{k \in B_{i}} \lambda_{k}^{i}\left(\theta_{k}^{i}-1\right) u_{k}^{i}\right\|+\left\|\sum_{k \in B_{i}} \lambda_{k}^{i}\left(\frac{1}{\mu_{B_{i}}}-1\right) u_{k}^{i}\right\|+\left\|\sum_{k \in B_{i}^{c}} \lambda_{k}^{i} \theta_{k}^{i} u_{k}^{i}\right\|+\frac{\delta^{2}}{2} \\
& <\sum_{k \in B_{i}} \lambda_{k}^{i} \sqrt{2 \delta}+\sum_{k \in B_{i}} \lambda_{k}^{i}\left(\frac{1}{\mu_{B_{i}}}-1\right)+\left(1-\mu_{B_{i}}\right)+\frac{\delta^{2}}{2} \\
& <\mu_{B_{i}} \sqrt{2 \delta}+2\left(1-\mu_{B_{i}}\right)+\frac{\delta^{2}}{2}<\sqrt{2 \delta}+2 \delta+\frac{\delta^{2}}{2}<\epsilon
\end{aligned}
$$

It follows from the proof of Theorem 7 that given $\epsilon>0$ we can find the same $\eta(\epsilon)$ and $\gamma(\epsilon)$ in the definition of the AHSP for all lush spaces. It was shown in [1, Theorem 4.1] that X has the AHSP if and only if the couple (ℓ_{1}, X) has the
$B P B P$. It follows from its proof that given $\epsilon>0$ we can find the same $\eta(\epsilon)$ and $\beta(\epsilon)$ in the definition of the BPBP of the couple (ℓ_{1}, X) for all lush spaces X.

The converse of Theorem 7 is not true. Indeed, every finite dimensional Banach space has the AHSP [1, Proposition 3.5], but there is no Hilbert lush space with dimension $n>1$.

Let us now replace ℓ_{1} with a more general space L_{1}-space.

Theorem 8. (See [9, Theorem 2.2].) Suppose that X has the Radon-Nikodým property and (Ω, Σ, μ) is a σ-finite measure space, where Σ is an infinite σ-algebra. Then the couple $\left(L_{1}(\mu), X\right)$ has the BPBP if and only if X has the AHSP.

Corollary 9. Suppose that X is a lush space having the Radon-Nikodým property, and that (Ω, Σ, μ) is a σ-finite measure space, where Σ is an infinite σ-algebra. Then the couple $\left(L_{1}(\mu), X\right)$ has the BPBP.

Schachermayer [18] showed that the norm-attaining operators in $\mathcal{L}\left(L_{1}[0,1], C[0,1]\right)$ are not dense. From this we can see that the lushness is not a sufficient condition on X for the couple $\left(L_{1}(\mu), X\right)$ to have the BPBP.

The notion of the numerical index of a Banach space was first introduced by G. Lumer in 1968 (see [10]), and it is the greatest constant of equivalence between the numerical radius and the usual norm in the Banach algebra $\mathcal{L}(X)$ of all bounded linear operators on X.

We denote the set

$$
\Pi(X)=\left\{\left(x, x^{*}\right): x \in S_{X}, x^{*} \in S_{X^{*}}, \text { and } x^{*}(x)=1\right\} .
$$

For $T \in \mathcal{L}(X)$, the numerical range of T is the set of scalars

$$
V(T)=\left\{x^{*}(T(x)):\left(x, x^{*}\right) \in \Pi(X)\right\}
$$

and the numerical radius of T is $v(f)=\sup \left\{\left|x^{*}(f(x))\right|:\left(x, x^{*}\right) \in \Pi(X)\right\}$. We define

$$
n(X)=\inf \{v(T): T \in \mathcal{L}(X ; X),\|T\|=1\}
$$

and call it the numerical index of X.
A Banach space X is said to have the $A D P$ if the norm identity

$$
\max _{|\omega|=1}\|I d+\omega T\|=1+\|T\|
$$

holds for every rank-one operator $T \in L(X)$. Since every Banach space with numerical index 1 has the $A D P$, every lush space has the $A D P$. Moreover, for the Banach space with the Radon-Nikodým property the lushness and the $A D P$ are equivalent (see [6, Remark 2.2] and [15, Remark 6]). We are now interested in the question that every Banach space with the ADP has the $A H S P$. Indeed, there is a Banach space with the $A D P$, but not the $A H S P$. However, we don't know if every Banach space with numerical index 1 has the AHSP.

Proposition 10. (See [16, Theorem 3.4].) Let X be a Banach space, K a compact Hausdorff space and μ a positive measure. Then
(a) $C(K, X)$ has the ADP if and only if K is perfect or X has the ADP.
(b) $L_{1}(\mu, X)$ has the ADP if and only if μ is atomless or X has the ADP.

Theorem 11. If $C(K, X)$ has the AHSP, then X has the AHSP.
Proof. Given $\epsilon>0$, let $\rho(\epsilon)$ and $\gamma(\epsilon)$ be the positive numbers which appear in the definition of AHSP of $C(K, X)$. Given a sequence $\left(x_{k}\right)_{k=1}^{\infty} \subset B_{X}$ and a convex series $\sum_{k=1}^{\infty} \alpha_{k}$, assume that

$$
\left\|\sum_{k=1}^{\infty} \alpha_{k} x_{k}\right\|>1-\rho(\epsilon)
$$

For every $k \in \mathbf{N}$ define $f_{k} \in B_{C(K, X)}$ by $f_{k}(t)=x_{k}$ for all $t \in K$.
We can get

$$
\left\|\sum_{k=1}^{\infty} \alpha_{k} f_{k}\right\|>1-\rho(\epsilon)
$$

By the assumption there exist a subset $A \subset \mathbb{N}$ and a subset $\left\{g_{k}: k \in A\right\} \subset S_{C(K, X)}$ and $\phi \in S_{C(K, X)^{*}}$ such that (i) $\sum_{k \in A} \alpha_{k}>$ $1-\gamma(\epsilon)$, (ii) $\left\|g_{k}-f_{k}\right\|<\epsilon$ for all $k \in A$, and (iii) $\phi\left(g_{k}\right)=1$ for all $k \in A$.

From these it follows that $\left\|\sum_{k \in A} \alpha_{k} g_{k}\right\|=\sum_{k \in A} \alpha_{k}$. Choose $t_{0} \in K$ so that

$$
\left\|\sum_{k \in A} \alpha_{k} g_{k}\left(t_{0}\right)\right\|=\sum_{k \in A} \alpha_{k}
$$

Choose also $x^{*} \in S_{X}$ so that $x^{*}\left(\sum_{k \in A} \alpha_{k} g_{k}\left(t_{0}\right)\right)=\sum_{k \in A} \alpha_{k}$. Put $z_{k}=g_{k}\left(t_{0}\right)$ for every $k \in A$. Clearly $\left\|x_{k}-z_{k}\right\|<\epsilon$ and $x^{*}\left(z_{k}\right)=1$ for every $k \in A$, hence X has the AHSP.

Example 12. Let X be a strictly convex Banach space isomorphic to ℓ_{1}. Then X cannot have the AHSP by [1, Proposition 3.9], because it is not uniformly convex. It follows from Proposition 10 that $C([0,1], X)$ has the $A D P$, but it cannot have the AHSP by Theorem 11.

We finally wonder if every Banach space with both the ADP and the AHSP is lush. In fact, it is not true. We don't know if every Banach space with both numerical index 1 and the AHSP is lush.

Lemma 13. Let X be an uniformly convex Banach space. Given $0<\epsilon<1$, there exists $0<\eta(\epsilon)$ with $\lim _{\epsilon \rightarrow 0^{+}} \eta(\epsilon)=0$ such that if $\operatorname{Re} x^{*}(x)>1-\eta(\epsilon)$ for $x^{*} \in S_{X^{*}}$ and $x \in B_{X}$, then there exists $y \in S_{X}$ satisfying $x^{*}(y)=1$ and $\|y-x\|<\epsilon$.

Proof. Given $0<\epsilon<1$, let $\delta(\epsilon)$ be the modulus of convexity of X and put $\eta(\epsilon)=\min \left\{2 \delta\left(\frac{\epsilon}{2}\right), \frac{\epsilon}{2}\right\}$. Suppose that $\operatorname{Re} x^{*}(x)>$ $1-\eta(\epsilon)$ for $x^{*} \in S_{X^{*}}$ and $x \in B_{X}$. Clearly $\|x\| \geqslant 1-\eta(\epsilon) \geqslant 1-\frac{\epsilon}{2}$, hence $\left\|x-\frac{x}{\|x\|}\right\| \leqslant \frac{\epsilon}{2}$. Choose $x_{0} \in S_{X}$ so that $x^{*}\left(x_{0}\right)=1$. If $\left\|x_{0}-\frac{x}{\|x\|}\right\| \geqslant \frac{\epsilon}{2}$, then

$$
\delta\left(\frac{\epsilon}{2}\right) \leqslant 1-\left\|\frac{x_{0}+\frac{x}{\|x\|} \|}{2}\right\|
$$

hence

$$
\operatorname{Re} x^{*}\left(x_{0}+\frac{x}{\|x\|}\right) \leqslant\left\|x_{0}+\frac{x}{\|x\|}\right\| \leqslant 2-2 \delta\left(\frac{\epsilon}{2}\right)
$$

An easy computation shows that

$$
\operatorname{Re} x^{*}(x) \leqslant \operatorname{Re} x^{*}\left(\frac{x}{\|x\|}\right) \leqslant 1-2 \delta\left(\frac{\epsilon}{2}\right) \leqslant 1-\eta(\epsilon)
$$

which is a contradiction. Therefore, $\left\|x_{0}-\frac{x}{\|x\|}\right\| \leqslant \frac{\epsilon}{2}$, and we obtain $\left\|x_{0}-x\right\| \leqslant \epsilon$.
Theorem 14. Let (Ω, Σ, μ) be a σ-finite measure space. For a uniformly convex Banach space $X, L_{1}(\mu, X)$ has the AHSP.
Proof. Given $\epsilon>0$, let $\eta(\epsilon)$ the same positive number as in Lemma 13. We set

$$
s(\epsilon)=\max \left(1-\eta(\epsilon), \frac{2}{\sqrt{4+\epsilon^{2}}}\right), \quad r(\epsilon)=\frac{4+\epsilon(s(\epsilon)-1)}{4}, \quad \text { and } \quad \rho(\epsilon)=\epsilon(1-r(\epsilon))
$$

Note that $0<s(\epsilon)<r(\epsilon)<1$, and $\rho(\epsilon)>0$.
It is enough only to check the conditions of $A H S P$ for a finite convex combination (instead of an infinite convex series) in order to prove that $L_{1}(\mu, X)$ has the $A H S P$. Given a finite sequence $\left(f_{k}\right)_{k=1}^{n} \subset S_{L_{1}(\mu, X)}$ and a finite convex series $\sum_{k=1}^{n} \alpha_{k}$, assume that

$$
\left\|\sum_{k=1}^{n} \alpha_{k} f_{k}\right\|>1-\rho(\epsilon)
$$

For each $1 \leqslant k \leqslant n$ there is a simple function $g_{k} \in S_{L_{1}(\mu, X)}$ such that $\left\|f_{k}-g_{k}\right\|<\epsilon$ and

$$
\left\|\sum_{k=1}^{n} \alpha_{k} g_{k}\right\|>1-\rho(\epsilon)
$$

We can find $\phi \in S_{L_{1}(\mu, X)^{*}}$ such that

$$
\operatorname{Re} \phi\left(\sum_{k=1}^{n} \alpha_{k} g_{k}\right)>1-\rho(\epsilon)
$$

Note that $L_{1}(\mu, X)^{*}=L_{\infty}\left(\mu, X^{*}\right)$. We may assume that

$$
g_{k}=\sum_{i=1}^{N} x_{i}^{k} \chi_{A_{i}}
$$

and

$$
\phi=\sum_{i=1}^{N} x_{i}^{*} \chi_{A_{i}},
$$

where $N \in \mathbf{N}, x_{i}^{k} \in X, x_{i}^{*} \in B_{X^{*}}, A_{i} \in \Sigma$ and $A_{i} \cap A_{j}=\emptyset$ if $i \neq j$. Then $\sum_{i=1}^{N}\left\|x_{i}^{k}\right\| \mu\left(A_{i}\right)=1$ for every $1 \leqslant k \leqslant n$. We may also assume all $x_{i}^{*} \in S_{X^{*}}$. Indeed, if $0<\left\|x_{i}^{*}\right\|<1$ for some $1 \leqslant i \leqslant N$, then we verify the value $\operatorname{Re} x_{i}^{*}\left(\sum_{k=1}^{n} \alpha_{k} x_{i}^{k}\right)$. If it is nonnegative, then we replace x_{i}^{*} by $\frac{x_{i}^{*}}{\left\|x_{i}^{*}\right\|}$. For the other cases, we can similarly replace x_{i}^{*} by an element in $S_{X^{*}}$.

Define

$$
A=\left\{k: 1 \leqslant k \leqslant n, \phi\left(g_{k}\right)>r(\epsilon)\right\} .
$$

By Lemma 6

$$
\sum_{k \in A} \alpha_{k}>1-\frac{\rho(\epsilon)}{1-r(\epsilon)}=1-\epsilon
$$

For every $k \in A$ define

$$
E_{k}=\left\{i: 1 \leqslant i \leqslant N, \operatorname{Re} x_{i}^{*}\left(x_{i}^{k}\right)>s(\epsilon)\left\|x_{i}^{k}\right\|\right\} .
$$

For every $k \in A$ we have

$$
\begin{aligned}
r(\epsilon) & <\operatorname{Re} \phi\left(g_{k}\right)=\sum_{i \in E_{k}} \operatorname{Re} x_{i}^{*}\left(x_{i}^{k}\right) \mu\left(A_{i}\right)+\sum_{i \in E_{k}^{c}} \operatorname{Re} x_{i}^{*}\left(x_{i}^{k}\right) \mu\left(A_{i}\right) \\
& \leqslant \sum_{i \in E_{k}} \operatorname{Re} x_{i}^{*}\left(x_{i}^{k}\right) \mu\left(A_{i}\right)+\sum_{i \in E_{k}^{c}} s(\epsilon)\left\|x_{i}^{k}\right\| \mu\left(A_{i}\right) \\
& =\sum_{i \in E_{k}} \operatorname{Re} x_{i}^{*}\left(x_{i}^{k}\right) \mu\left(A_{i}\right)+s(\epsilon)\left(1-\sum_{i \in E_{k}}\left\|\left(x_{i}^{k}\right)\right\| \mu\left(A_{i}\right)\right) \\
& \leqslant(1-s(\epsilon)) \sum_{i \in E_{k}} \operatorname{Re} x_{i}^{*}\left(x_{i}^{k}\right) \mu\left(A_{i}\right)+s(\epsilon)
\end{aligned}
$$

which implies that

$$
\sum_{i \in E_{k}} \operatorname{Re} x_{i}^{*}\left(x_{i}^{k}\right) \mu\left(A_{i}\right)>\frac{r(\epsilon)-s(\epsilon)}{1-s(\epsilon)}
$$

Hence,

$$
\sum_{i \in E_{k}^{c}}\left\|x_{i}^{k}\right\| \mu\left(A_{i}\right)=1-\sum_{i \in E_{k}}\left\|x_{i}^{k}\right\| \mu\left(A_{i}\right) \leqslant 1-\sum_{i \in E_{k}} \operatorname{Re} x_{i}^{*}\left(x_{i}^{k}\right) \mu\left(A_{i}\right)<1-\frac{r(\epsilon)-s(\epsilon)}{1-s(\epsilon)} .
$$

Since X is uniformly convex, it follows from Lemma 13 that for every $i \in E_{k}$ we can find $y_{i}^{k} \in X$ such that $x_{k}^{*}\left(y_{i}^{k}\right)=$ $\left\|y_{i}^{k}\right\|=\left\|x_{i}^{k}\right\|$ and $\left\|y_{i}^{k}-x_{i}^{k}\right\| \leqslant \epsilon\left\|x_{i}^{k}\right\|$. For every $k \in A$ let

$$
\beta_{k}=\sum_{i \in E_{k}}\left\|y_{i}^{k}\right\| \mu\left(A_{i}\right)>\frac{r(\epsilon)-s(\epsilon)}{1-s(\epsilon)}
$$

and define $\tilde{g}_{k} \in S_{L(\mu, X)}$ by

$$
\tilde{g}_{k}=\sum_{i \in E_{k}} \frac{y_{i}^{k} \chi_{A_{i}}}{\beta_{k}}
$$

For every $k \in A$ we have $\phi\left(\tilde{g}_{k}\right)=1$ and

$$
\begin{aligned}
\left\|\tilde{g}_{k}-g_{k}\right\| & \leqslant \sum_{i \in E_{k}}\left\|\frac{y_{i}^{k}}{\beta_{k}}-x_{i}^{k}\right\| \mu\left(A_{i}\right)+\sum_{i \in E_{k}^{c}}\left\|x_{i}^{k}\right\| \mu\left(A_{i}\right) \\
& \leqslant \sum_{i \in E_{k}}\left\|y_{i}^{k}-x_{i}^{k}\right\| \mu\left(A_{i}\right)+\sum_{i \in E_{k}}\left\|\frac{y_{i}^{k}}{\beta_{k}}-y_{i}^{k}\right\| \mu\left(A_{i}\right)+\sum_{i \in E_{k}^{c}}\left\|x_{i}^{k}\right\| \mu\left(A_{i}\right) \\
& \leqslant \sum_{k \in E_{n}} \epsilon\left\|x_{i}^{k}\right\| \mu\left(A_{i}\right)+2\left(1-\beta_{k}\right) \\
& \leqslant \epsilon+2\left(1-\frac{r(\epsilon)-s(\epsilon)}{1-s(\epsilon)}\right)=\frac{3}{2} \epsilon
\end{aligned}
$$

hence $\left\|\tilde{g}_{k}-f_{k}\right\|<\frac{5}{2} \epsilon$.
Example 15. It follows from Proposition 10 and Theorem 14 that $L_{1}\left([0,1], \ell_{2}\right)$ has both the $A H S P$ and the $A D P$. But, [17, Theorem 8] shows that the numerical index of $L_{1}\left([0,1], \ell_{2}\right)$ is the same as that of ℓ_{2}, which is smaller than 1 . Hence, $L_{1}\left([0,1], \ell_{2}\right)$ is not a lush space.

Acknowledgment

The authors wish to express their thanks to the anonymous referee whose careful reading and suggestions have improved the final form of the paper.

References

[1] M.D. Acosta, R.M. Aron, D. García, M. Maestre, The Bishop-Phelps-Bollobás theorem for operators, J. Funct. Anal. 254 (2008) $2780-2799$.
[2] R.M. Aron, B. Cascales, O. Kozhushkina, The Bishop-Phelps-Bollobás theorem and Asplund operators, Proc. Amer. Math. Soc. 139 (2011) 3553-3560.
[3] R.M. Aron, Y.S. Choi, D. García, M. Maestre, The Bishop-Phelps-Bollobás theorem for $\mathcal{L}\left(L_{1}(\mu), L_{\infty}\right.$ [0, 1]), Adv. Math. 228 (2011) 617-628.
[4] E. Bishop, R.R. Phelps, A proof that every Banach space is subreflexive, Bull. Amer. Math. Soc. 67 (1961) 97-98.
[5] B. Bollobás, An extension to the theorem of Bishop and Phelps, Bull. Lond. Math. Soc. 2 (1970) 181-182.
[6] K. Boyko, V. Kadets, M. Martín, J. Merí, Properties of lush spaces and applications to Banach spaces with numerical index 1, Studia Math. 190 (2009) 117-133.
[7] K. Boyko, V. Kadets, M. Martín, D. Werner, Numerical index of Banach spaces and duality, Math. Proc. Cambridge Philos. Soc. 142 (2007) 93-102.
[8] L. Cheng, D. Dai, Y. Dong, A sharp operator version of the Bishop-Phelps theorem for operators from ℓ_{1} to CL-spaces, Proc. Amer. Math. Soc., in press.
[9] Y.S. Choi, S.K. Kim, The Bishop-Phelps-Bollobás theorem for operators from $L_{1}(\mu)$ to Banach spaces with the Radon-Nikodým property, J. Funct. Anal. 261 (2011) 1446-1456.
[10] J. Duncan, C. McGregor, J. Pryce, A. White, The numerical index of a normed space, J. Lond. Math. Soc. 2 (1970) 481-488.
[11] V. Kadets, M. Martín, J. Merí, R. Payá, Convexity and smoothness of Banach spaces with numerical index one, Illinois J. Math. 53 (2009) 163-182.
[12] H.J. Lee, M. Martín, Polynomial numerical indices of Banach spaces with 1-unconditional bases, preprint.
[13] Å. Lima, Intersection properties of balls in spaces of compact operators, Ann. Inst. Fourier (Grenoble) 28 (1978) 35-65.
[14] J. Lindenstrauss, Extension of compact operators, Mem. Amer. Math. Soc. 48 (1964), 112 pp.
[15] G. López, M. Martín, R. Payá, Real Banach spaces with numerical index 1, Bull. Lond. Math. Soc. 31 (1999) 207-212.
[16] M. Martín, T. Oikhberg, An alternative Daugavet property, J. Math. Anal. Appl. 294 (2004) 158-180.
[17] M. Martín, R. Payá, Numerical index of vector-valued function spaces, Studia Math. 142 (2000) 269-280.
[18] W. Schachermayer, Norm attaining operators on some classical Banach spaces, Pacific J. Math. 105 (1983) 427-438.
[19] D. Werner, The Daugavet equation for operators on function spaces, J. Funct. Anal. 143 (1997) 117-128.

[^0]: th This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (No. 2010-0008543), and also by Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (MEST) (No. 2010-0029638).

 * Corresponding author.

 E-mail addresses: mathchoi@postech.ac.kr (Y.S. Choi), lineksk@gmail.com (S.K. Kim).

