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1. Introduction

Riemann–Hilbert (RH for short) problems appear in connection with a variety of problems in physics and engineering,
as well as pure and applied mathematics [1–3]. Their study is closely related to an appropriate factorization (depending on
the setting of the RH problem) of certain scalar or matrix valued functions.

We begin by briefly reviewing some types of factorization and their relations with RH problems and Toeplitz operators.
Let Cμ(Ṙ) denote the Banach algebra of functions that are continuous and satisfy a Hölder condition with exponent

μ ∈ ]0,1[ on Ṙ [4] and let C±
μ(Ṙ) := Cμ(Ṙ) ∩ H±∞ where H±∞ := H∞(C±) are the Hardy spaces of functions which are

analytic and bounded in the half-planes C
± , respectively, identified in the usual way with subspaces of L∞(R).

Denoting by G A the group of invertible elements in an algebra A, it is well known that any f ∈ G Cμ(Ṙ) can be
represented as a product

f = f−rk f+ (1.1)

where f ±1− ∈ C−
μ(Ṙ), f ±1+ ∈ C+

μ(Ṙ), r(ξ) = ξ−i
ξ+i , ξ ∈ R, and k ∈ Z is the index of the complex function f relative to the origin,

k = ind f . The representation (1.1) is called a Wiener–Hopf (or WH) factorization of f ; if ind f = 0, which is equivalent to
having log f ∈ Cμ(Ṙ) [5], we can write

f = f− f+ (1.2)

and the WH factorization is said to be canonical. The concept of WH factorization is a particular case of the concept of
generalized factorization [4–6] but it is sufficient and appropriate in the setting of this paper. It allows us to solve RH
problems of the form

f ϕ+ = ϕ− + ψ, (1.3)
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where ψ is a given function and the unknowns ϕ± belong to certain spaces of functions analytic in C
± , respectively. The

representation (1.1) is also important in the study of Toeplitz operators

T f : H+
p → H+

p , T f ϕ+ = P+( f ϕ+)

where, for p ∈ ]1,+∞[, we denote by H+
p the Hardy space H p(C+) [7] and by P+ we denote the projection of L p(R) onto

H+
p parallel to H−

p := H p(C−), identifying H±
p with subspaces of L p(R) [4–6,8,9].

Many problems in engineering, physics and mathematics also lead to RH problems with matrix coefficients [2,3], for
which a factorization analogous to (1.1) can be defined and used in a similar way but, contrary to the scalar case, methods
to obtain its factors are known only for particular cases, even in what can be considered the simplest non-scalar case, that
of 2 × 2 matrix functions.

However it was recently shown in [10] that, for every 2 × 2 matrix function G with entries in Cμ(Ṙ) and possessing an
inverse in (Cμ(Ṙ))2×2, there are symmetric matrix functions Q 1 ∈ G(C−

μ(Ṙ) + R)2×2, Q 2 ∈ G(C+
μ(Ṙ) + R)2×2 (where by R

we denote the space of rational functions with poles off Ṙ) such that

G T Q 1G = det G.Q 2. (1.4)

It was shown moreover that Q 1 and Q 2 can be chosen such that det Q j = ℘ ( j = 1,2), where ℘ is a monic polynomial
admitting only simple zeros. Denoting by C(Q 1, Q 2) the class of all matrix functions G satisfying (1.4) for a given pair
(Q 1, Q 2), it is then possible to associate with each class C(Q 1, Q 2) a Riemann surface Σ defined by an algebraic curve
of the form τ 2 = ℘(ξ). This, in its turn, allows us to reduce the factorization problem for a large class of 2 × 2 matrix
functions to a scalar RH problem in Σ , thus providing a general framework that goes significantly beyond the partial results
that could previously be found in the literature (for general references on RH problems in Riemann surfaces, including their
relations with the factorization of particular types of matrix functions see, for instance, [11–13] and, more recently, [14] and
references therein).

As a tool that can be considered as naturally suggested by the use of (1.1) to solve scalar RH problems relative to Ṙ (or,
equivalently, relative to the unit circle, as it is often the case), the concept of (holomorphic) Σ-factorization of a function f
defined on a contour Γ which is the pullback of Ṙ (or the unit circle) in Σ , is also introduced in [10]. This factorization
takes the form

f = f−r f+ (1.5)

where f± as well as their inverses belong to certain spaces of analytic functions in Σ± , respectively, denoting by Σ± the
pullback of C

± on Σ and r is a rational function in Σ without poles on Γ . If r = 1 in (1.5), we say that it is a special
Σ-factorization.

It is shown in [10] that a representation (1.5) exists for all f satisfying a Hölder condition with exponent μ ∈ ]0,1[ on Γ

( f ∈ Cμ(Γ )) and such that we have log f ∈ Cμ(Γ ). In contrast with the analogous situation in Cμ(Ṙ), in this case f does not
possess a special Σ-factorization (which can be considered as the natural analogue of (1.2) in Σ ), unless some additional
and rather restrictive condition is satisfied. Assuming that log f ∈ Cμ(Γ ) (no conditions for existence of a holomorphic Σ-
factorization having been established in [10] otherwise), a method is proposed to obtain (1.5). Its application in the case
of surfaces with genus greater than 1, however, presents great difficulties. Even in the case of genus 1, some questions
naturally arise (and demand further study) regarding the formulas defining the factors f± and the form of the rational
middle factor r in (1.5). Namely, the latter is given as a power of order N ∈ N of a rational function defined in terms of
Riemann theta functions and depending also on N , where N is large enough (see Theorems 3.4 and 3.10 in [10]). Since
f± also depend on N and we can replace N by any Ñ > N , it is clear that a factorization obtained by using the method
proposed in [10] is highly non-unique, unless it is a special Σ-factorization, and its determination can present, in practice,
serious difficulties.

Defining an appropriate form for the rational factor r in (1.5) is particularly important. Firstly, since a holomorphic Σ-
factorization of f is applied to solve RH problems of the form (1.3) in Σ , in a way which is similar to that used when
applying a WH factorization to solve RH problems in C (cf. [10]), r should be of a simple form and in particular N should
be well defined and have the smallest possible value. Secondly, this form should by itself provide some information on the
RH problem with coefficient f (such as the dimension of the space of solutions to the homogeneous RH problem), or on
the Toeplitz operator T G , if G is a 2 × 2 matrix symbol whose factorization problem can be reduced to a scalar RH problem
in Σ as described in [10].

In the present paper, on the one hand we address the questions that were mentioned above. By defining certain func-
tions, either meromorphic in Σ± or rational in Σ , which are (non-trivially) constructed in order to exhibit appropriate
properties, we obtain simpler and more precise formulas for the factors in a holomorphic Σ-factorization of a function
possessing a logarithm in Cμ(Γ ); furthermore, we extend the result of existence of a holomorphic Σ-factorization to every
f ∈ G Cμ(Γ ), and give explicit formulas for its factors.

On the other hand, the very results thus obtained motivate us to look for an alternative concept of factorization of
functions in Σ . Indeed, it turns out that the formulas for the factors in a holomorphic Σ-factorization can become rather
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cumbersome, especially when having in mind their application to the study of the solvability of RH problems in Σ and of
some properties of Toeplitz operators with 2 × 2 matrix symbols.

Thus, we define here a new concept of meromorphic Σ-factorization, which has a form similar to (1.5), allowing however
the outer factors f± to have some known poles. This new type of factorization, for which explicit formulas are obtained,
is shown to exist also for every f ∈ G Cμ(Γ ). Comparing it with holomorphic Σ-factorization, we see that, although both
factorizations are generalizations of WH factorization (in C) and coincide for some functions, neither of them reduces to
the other, and meromorphic Σ-factorization provides a simpler and more useful tool to study several RH and factorization
problems, as is illustrated in the last section.

We assume here that Γ is the pullback of Ṙ in Σ having in mind applications to problems which are originally formu-
lated in Ṙ. All the results can however be translated to the case where, instead of Ṙ, the unit circle is the natural domain
to be considered. We assume moreover that Σ is given in a standard form which avoids computational difficulties [15] and
allows us to use convenient analogues of the Cauchy kernel [13,16]. The main results concerning holomorphic and mero-
morphic Σ-factorization are stated in Sections 4 and 5. In Section 6 we illustrate their application to the study of vectorial
RH problems, WH factorization and some properties of Toeplitz operators with 2 × 2 symbols. Sections 2 and 3 are of an
auxiliary nature.

The paper is organized as follows.
In Section 2 we settle the notation and recall several preliminary results that will be needed later.
In Section 3 we define and study the properties of functions of a certain form, meromorphic in Σ+ or in Σ− or rational,

which play a crucial role in the results that follow. All these functions are represented in the form f1 +τ f2 where f1, f2 can
be identified with functions in Cμ(Ṙ). In particular, rational functions are represented in the form r1 + τ r2 with r1, r2 ∈ R.
This turns out to be crucial in simplifying the results and in obtaining truly explicit factorizations in the last section.

In Section 4 we show that every f ∈ G Cμ(Γ ) admits a holomorphic Σ-factorization (1.5) and we present explicit formu-
las for its factors, their form being particularly simple in the case of existence of a special Σ-factorization.

By introducing a new concept of meromorphic Σ-factorization in Section 5, we show that it is possible to simplify the
rational middle factor and reduce the number of zeros and poles that we have to deal with, when applying a factorization
of f to solve RH problems in Σ with coefficient f . This concept of meromorphic Σ-factorization actually sheds some new
light on Σ-factorization. A correspondence between each function f ∈ G Cμ(Ṙ) and a certain point in Σ is shown to exist
which defines the meromorphic Σ-factorization of f . In particular this clarifies the relation between the existence of a
special Σ-factorization and the existence of an M-special Σ-factorization (see (5.3)).

In Section 6 we apply the results of the preceding sections to characterize the kernels and establish invertibility con-
ditions for Toeplitz operators with symbols in a class of 2 × 2 Daniele–Khrapkov matrices and to obtain the explicit
factorization of their symbols, both in the canonical and in the non-canonical cases. Two examples are given, one of which
is motivated by the problem of existence of global solutions to a Lax equation for some integrable systems [17,18].

2. Preliminary results

2.1. Notations

We start by establishing some notation regarding Riemann surfaces (for a general reference see, for instance, [12,19]).
Let Σ be the Riemann surface of genus 1 obtained by the compactification of the elliptic algebraic curve Σ0 = {(ξ, τ ) ∈

C
2: τ 2 = ℘(ξ)} where we assume the polynomial equation defining Σ0 to be, up to a simple change of variables, in

Legendre’s normal form

τ 2 = (
1 + ξ2)(k2

0 + ξ2), k0 > 1 (2.1)

[15], by adding two points “at infinity”. In a neighborhood of these, ξ−1 is taken as the local parameter. We take the
meromorphic function (ξ, τ ) �→ τ as the local parameter in a neighborhood of the branch points; at all other points, ξ is
the local parameter.

It is convenient to view Σ as a two-sheeted covering of C∞ = C ∪ {∞} with branch cuts [−ik0,−i] and [i, ik0] (using
the notation [a,b], [a,b[ and so on for line segments, including or excluding the endpoints, oriented from a to b when the
orientation is relevant) via the meromorphic function

Π : Σ → C∞, (ξ, τ ) �→ ξ.

We say that ξ is the projection of (ξ, τ ) in C∞ or, equivalently, that (ξ, τ ) is a preimage of ξ in Σ . Denoting by ρ the branch
of

√
℘ (where ℘(ξ) is defined by the right-hand side of (2.1)) for which Reρ � 0, the points (ξ,ρ(ξ)) (resp. (ξ,−ρ(ξ)))

are in the upper (resp. lower) sheet Σ1 (resp. Σ2) and we denote by ξ1 , ξ2 the preimages of ξ in Σ1 and Σ2 respectively.
By Σ± we denote the inverse images under Π of C

± , respectively, and by Γ the pullback of the compactified real
line Ṙ. Note that Π−1(Ṙ) consists of two disjoint closed paths (whose orientation is induced by that of the real line) Γ1
and Γ2 in Σ1 and Σ2 respectively, dividing Σ into the two disjoint regions Σ+ and Σ− .

Denoting by ∗ the hyperelliptic involution defined in Σ by (ξ, τ ) �→ (ξ,−τ ), we will also use the following notations:
D∗ = ∗(D) for D ⊂ Σ , f∗ for the composition of a complex valued function f , defined in a ∗-invariant subset D (= D∗)
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of Σ , with ∗ : f∗ = f ◦ ∗. Any function in a ∗-invariant subset of Σ can be decomposed uniquely in the form f = f E + τ f O
where f E = 1

2 ( f + f∗), f O = 1
2τ ( f − f∗).

If F is a complex valued function defined in Π(D), where D ⊂ Σ , then we define FΠ = F ◦Π : D ⊂ Σ → C. FΠ is mero-
morphic (resp. analytic) if F is meromorphic (resp. analytic) in the corresponding domains. If D = D∗ , then (FΠ)∗ = FΠ ;
conversely, if f∗ = f then there is a unique function F in Π(D) such that f = FΠ . Thus, we identify each ∗-invariant
function f in D ⊂ Σ with F (in Π(D) ⊂ C) such that f = FΠ and we use the same notation for both.

With this convention, if f belongs to the space of Hölder continuous functions with exponent μ ∈ ]0,1[ on Γ , denoted
by Cμ(Γ ), then f E , f O and λ2+ f O , with

λ+(ξ) = ξ + i, (2.2)

belong to Cμ(Ṙ).
We denote by C±

μ(Γ ) (resp. M(Σ±)) the subspace of Cμ(Γ ) whose elements admit an analytic (resp. meromorphic)
extension to Σ± and by R(Σ) the field of rational functions in Σ without poles on Γ .

We will also need the Abel–Jacobi map

A J : Σ → C/L, A J (P ) = k0

i

P∫
01

dξ

τ
mod L,

where L is the lattice L = Z.4K + Z.2iK ′ , K and K ′ being the complete elliptic integrals [15,20]

K =
1∫

0

dξ√
(1 − ξ2)(1 − ξ2

k2
0
)

, K ′ =
k0∫

1

dξ√
(ξ2 − 1)(1 − ξ2

k2
0
)

.

Denoting by P the rectangle P = {s + it: s ∈ [−2K ,2K ], t ∈ [−K ′, K ′]} with four sides s1 = [−2K + iK ′,2K + iK ′],
γ2 = [2K − iK ′,2K + iK ′], s′

1 = [−2K − iK ′,2K − iK ′], γ ′
2 = [−2K − iK ′,−2K + iK ′], by the standard identified polygon

representation [19,20] the torus C/L is obtained from P by identifying the sides s1 with s′
1 and γ2 with γ ′

2. In this rep-
resentation all four vertices of P correspond to one point of C/L and the (oriented) sides s1 and γ2 correspond to closed
paths: ΠL(s1) = ΠL(s′

1) and ΠL(γ2) = ΠL(γ
′

2), respectively, where ΠL : C → C/L is the canonical map.

Let σ = A−1
J ◦ ΠL : C → Σ . We remark that, defining P̃ = P \(s′

1 ∪ γ ′
2), σ|P̃ is a bijective map. We will use the following

notation:

γ1 = [
iK ′,−iK ′] (

γ1 = −γ2 − 2K , and σ(γ j) = Γ j for j = 1,2
)
,

Ω+ = P ∩ {
z ∈ C: Re(z) ∈ ]0,2K [} (

σ
(
Ω+) = Σ+)

,

Ω− = P ∩ {
z ∈ C: Re(z) ∈ ]−2K ,0[} (

σ
(
Ω−) = Σ−)

.

Let moreover A denote the closed path on Σ ,

A = σ
([−2K ,2K ]) (2.3)

whose projection on C∞ is the line segment [−i, i]. We have
∫

A(dξ/τ ) = 4iK/k0,
∫
Γ1

(dξ/τ ) = 2K ′/k0.

2.2. Singular integral operators

We introduce now some integrals of Cauchy type and present their fundamental properties. They are defined making use
of analogues of the Cauchy kernel, of the same type as those constructed in [10,13,16], taking here into account that ∞1 ,
∞2 belong to Γ .

Definition 2.1. For f ∈ Cμ(Γ ), let

P±
Γ f (ξ, τ ) = ± 1

4π i

[
(ξ + i)

∫
Γ

f (ξ0, τ0)

ξ0 + i

dξ0

ξ0 − ξ
+ τ

ξ + i

∫
Γ

(ξ0 + i) f (ξ0, τ0)

τ0

dξ0

ξ0 − ξ

]

where the integrals are understood in the sense of Cauchy’s principal value.

Denoting by P̃±
R

the projections defined in Cμ(Ṙ) by P̃±
R

f = λ+ P±
R

(λ−1+ f ) where λ+ is defined in (2.2) and P±
R

are the
projections associated with the singular integral operator with Cauchy kernel SR [4], i.e., P±

R
= (1/2)(I ± SR), it is easy to

see that

P± f = P̃± f E + τλ−2+ P̃±(
λ2+ f O

)
. (2.4)
Γ R R
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From (2.4) and the properties of SR and P̃±
R

, it is clear that P±
Γ are bounded operators in Cμ(Γ ) and the following

holds [10]:

Proposition 2.2.

(i) P±
Γ are complementary projections in Cμ(Γ ).

(ii) Im P+
Γ = C+

μ(Γ ).

(iii) Im P−
Γ = C−

μ(Γ ) ⊕ span{τλ−1+ }.

(iv) P−
Γ f ∈ C−

μ(Γ ) if and only if∫
Γ

f (ξ0, τ0)

τ0
dξ0 = 0; (2.5)

otherwise, P−
Γ f is meromorphic in Σ− , with a simple pole at the branch point −i.

(v) Every function f ∈ Cμ(Γ ) admits a decomposition

f = P+
Γ f + P−

Γ f = P+
Γ f + f− − K

k0π
α f τλ−1+

where f− ∈ C−
μ(Γ ) and

α f = k0

4K i

∫
Γ

f (ξ0, τ0)

τ0
dξ0. (2.6)

In what follows we will need two other integrals of Cauchy type using the Behnke–Stein analogue of the Cauchy ker-
nel [16]:

Definition 2.3. For f ∈ Cμ(Γ ), let

P̃±
Γ f (ξ, τ ) = P±

Γ f (ξ, τ ) ∓ α f

2π i

τ

ξ + i

∫
A

ξ0 + i

2τ0

dξ0

ξ0 − ξ
(2.7)

where α f and A were defined in (2.6) and (2.3) respectively.

We have f = P̃+
Γ f + P̃−

Γ f where P̃±
Γ f has an analytic extension to Σ±\A, its jump across A being equal to α f [16]. It

is easy to see that P̃±
Γ f = P±

Γ f if and only if α f = 0, i.e., (2.5) holds and, in this case, P̃±
Γ f ∈ C±

μ(Γ ).

It is clear that if f ∈ Cμ(Γ ) is ∗-invariant, and can thus be identified with a function in Cμ(Ṙ), we have f O = 0 and
α f = 0, so that from (2.4) and (2.7),

P̃±
Γ f = P̃±

R
f if f ∈ Cμ(Ṙ). (2.8)

3. Meromorphic functions in Σ and Σ±

In this section we define and study the properties of some functions which are meromorphic in Σ or in Σ± and will be
used later.

For φ ∈ Cμ(Γ ), let φ j = φ|Γ j , j = 1,2. We define ind j φ = indφ j , j = 1,2, where indϕ denotes the index of a complex

function ϕ continuous in Ṙ with ϕ(ξ) �= 0 for all ξ ∈ Ṙ [4].

Theorem 3.1. Let S ∈ R(Σ) be defined, up to a multiplicative constant, by the principal divisor

D S(P ) =

⎧⎪⎨
⎪⎩

2 if P = σ(− K
5 ),

−1 if P = σ(K ) or P = σ(− 7K
5 ),

0 otherwise.

(3.1)

Then we have ind1 S = −1, ind2 S = 0.

Proof. Following the proof of Abel’s theorem in [19], we have

2π i
∑
p∈P

D S
(
σ(p)

) p∫
dz = 4K .B

(
dS

S

)
− 2iK ′.A

(
dS

S

)

0
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where B(dS/S) and A(dS/S) denote the Γ2-period and the S1-period of dS/S (where S1 = σ(s1)), respectively. From (3.1)
we see that

2π i

(
−2K

5
− K + 7K

5

)
= 0 = 4K .B

(
dS

S

)
− 2iK ′.A

(
dS

S

)
and since the Γ2-period and the S1-period of dS/S are integral multiples of 2π i, we conclude that

B

(
dS

S

)
= A

(
dS

S

)
= 0. (3.2)

On the other hand, by the residue theorem,

1

2π i

∫
Γ

dS

S
= 1

2π i

(∫
Γ1

dS

S
+

∫
Γ2

dS

S

)
= −1

and from (3.2) it follows that

1

2π i

∫
Γ1

dS

S
= −1,

1

2π i

∫
Γ2

dS

S
= 0. �

In the following sections we will also need some functions which are not rational, but merely meromorphic in an open
set containing Σ+ ∪ Γ or Σ− ∪ Γ . Let ρ+ = √

(ξ + i)(ξ + ik0) denote the branch of the square-root which is analytic in the
complex plane cut along [−i,−ik0] and takes the value i

√
k0 for ξ = 0. Analogously, let ρ− = √

(ξ − i)(ξ − ik0) denote the
branch which is analytic in the complex plane cut along [i, ik0] and takes the value −i

√
k0 for ξ = 0. We have ρ = ρ−ρ+ .

Let moreover α+,α− be the functions defined by

α+(ξ, τ ) = C + τ

(ξ − i)ρ+
, α−(ξ, τ ) = C + τ

(ξ + i)ρ−
(3.3)

where

C =
√

1 + k0

2
> 0. (3.4)

We remark, for future reference, that

C2 − 1 = −(
C2 − k0

) = k0 − 1

2
(3.5)

and, for α± defined by (3.3),

α+(α+)∗ = k0 − 1

2

λ+
λ−

, α−(α−)∗ = k0 − 1

2

λ−
λ+

, (3.6)

where

λ±(ξ) = ξ ± i. (3.7)

These functions have moreover the following properties.

Theorem 3.2. For α± defined as above, we have:

(i) α+ ∈ M(Σ+) with a single (simple) pole at the branch point i and no zeros in Σ+ , and

ind1 α+ = 0, ind2 α+ = −1; (3.8)

(ii) α− ∈ M(Σ−) with a single (simple) pole at the branch point −i and no zeros in Σ− , and

ind1 α− = 0, ind2 α− = 1. (3.9)

Proof. (i) It is clear that α+ is holomorphic in an open set containing Σ+ ∪ Γ , except for the branch point i, where it has
a simple pole. It has no zeros in Σ+ ∪ Γ since from (3.6) α+(ξ, τ )α+(ξ,−τ ) = (ξ + i)(ξ − i)−1(k0 − 1)/2.

On the other hand, identifying α+|Γ j , j = 1,2, with functions in Cμ(Ṙ), we have α+|Γ1 = C + ρ−(ξ − i)−1, α+|Γ2 =
C − ρ−(ξ − i)−1.

The function α+|Γ1 is invertible in C−
μ(Ṙ), so that ind1 α+ = 0, while α+|Γ2 = (ξ + i)(ξ − i)−1α̃, with α̃ ∈ G C−

μ(Ṙ), so
that ind2 α+ = −1.

(ii) can be proved analogously. �
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Corollary 3.3. With the same assumptions as in Theorem 3.2, we have

ind1(α+)∗ = −1, ind2(α+)∗ = 0, (3.10)

ind1(α−)∗ = 1, ind2(α−)∗ = 0, (3.11)

and

α−1+ (α+)∗ ∈ G
(
C+

μ(Γ )
)
, ind1

(
α−1+ (α+)∗

) = −1 = − ind2
(
α−1+ (α+)∗

)
, (3.12)

α−1− (α−)∗ ∈ G
(
C−

μ(Γ )
)
, ind1

(
α−1− (α−)∗

) = 1 = − ind2
(
α−1− (α−)∗

)
. (3.13)

In the following theorems, we choose branches of logα± on Γ such that (logα±)|Γ1 and (logα±)|Γ2\{∞2} are continuous.

Theorem 3.4. With the same assumptions as in Theorem 3.2, we have

k0

2π

∫
Γ

logα±
τ

dξ = −K − iK ′ mod L, (3.14)

k0

2π

∫
Γ

log(α±)∗
τ

dξ = K − iK ′ mod L, (3.15)

k0

2π

∫
Γ

log(α−1+ (α+)∗)
τ

dξ = 2K mod L. (3.16)

Proof. Let D be an open set in P containing int(Ω+ ∪ γ1 \ {±iK ′}) and let D̃ be the simply connected domain obtained
from D by removing the points in the line segment l = [K + iK ′, K ]. Let moreover a1 = [−iK ′,2K − iK ′], b1 = [K + iK ′, iK ′],
b2 = b1 + K .

We can define F holomorphic in D̃ and continuous in (Ω+ ∪ ∂Ω+) \ l such that

F |γ1 = logα+ ◦ σ|γ1 , (3.17)

F |γ2 = logα+ ◦ σ|γ2 mod 2π iZ (3.18)

and, since ind1 α+ = 0, ind2 α+ = −1,

F (z) = F
(
z − 2iK ′), for z ∈ b1, (3.19)

F (z) = F
(
z − 2iK ′) − 2π i, for z ∈ b2. (3.20)

We have then

0 =
∫
γ1

F (z)dz +
∫
a1

F (z)dz +
∫
γ2

F (z)dz + +
∫
b2

F (z)dz + 2π i

K+iK ′∫
K

dz +
∫
b1

F (z)dz

so that, taking (3.18), (3.19) and (3.20) into account, we obtain the equality (3.14) for α+ . The other equalities can be
deduced analogously. �

Finally, we define and study some properties of a rational function rν ,

rν(ξ, τ ) = ν + τ

(ξ + i)(ξ − ik0)
, (3.21)

with ν ∈ C defined, for each value of β ∈ P1 \ {0} where

P1 = {
s + it: s ∈ ]−K , K [, t ∈ ]−iK ′, iK ′]} (3.22)

by

ν = −τ0

(z0 + i)(z0 − ik0)
(3.23)

where

(z0, τ0) = σ(−K + β). (3.24)

We remark that z0 in (3.24) is such that z0 ∈ C
− and therefore k0z−1 ∈ C

+ .
0
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Theorem 3.5. The rational function rν defined above for each β ∈ P1 \ {0} has two simple poles at the branch points −i, ik0, two
simple zeros (z0, τ0), (k0z−1

0 ,k0z−2
0 τ0), no other zeros or poles, and is such that

ind1 rν = ind2 rν = 0, (3.25)
k0

2π

∫
Γ

log rν
τ

dξ = β mod L. (3.26)

Proof. The first part of the theorem can be easily checked; (3.25) can be verified using the same reasoning as in the proof
of Theorem 3.1, since Drν = div(rν) is given by

Drν (P ) =
{

1 if P = σ(−K + β) or P = σ(K + iK ′ − β),

−1 if P = σ(−K ) or P = σ(K + iK ′);
finally (3.26) can be obtained using the same reasoning as in the proof of Theorem 3.4 taking (3.25) into account and
considering an appropriate polygon representation for the torus C \ L, such that branch points do not lie on the boundary
of the rectangle. �

We remark, for future convenience, that for r0(ξ, τ ) = τ/[(ξ + i)(ξ − ik0)] we have z0 = −ik0, k0z−1
0 = i and β = iK ′ .

An important property of the rational functions rν can be easily verified:

[
rν(rν)∗

]
(ξ, τ ) = (

ν2 − 1
) (ξ − z0)(ξ − k0

z0
)

(ξ + i)(ξ − ik0)
= ν2 − (ξ − i)(ξ + ik0)

(ξ + i)(ξ − ik0)
. (3.27)

4. Holomorphic Σ-factorization

A (holomorphic) Σ-factorization of f ∈ Cμ(Γ ) relative to Γ is a representation of f in the form

f = f−r f+ (4.1)

where f± ∈ G C±
μ(Γ ) and r ∈ R(Σ). If r in (4.1) is a non-zero constant, which then can be assumed without loss of generality

to be equal to 1, then (4.1) is called a special Σ-factorization [10].
It is easy to see that for f to admit a holomorphic Σ-factorization it is necessary that f ∈ G Cμ(Γ ) and that, in two

special Σ-factorizations of the same function f , the corresponding factors must be constant multiples of each other, i.e., if
f = f− f+ and f = f̃− f̃+ are special Σ-factorizations, then f̃± = cf± , with c ∈ C\{0}.

We will assume in what follows that f ∈ G Cμ(Γ ) and omit mentioning the contour Γ when referring to a represen-
tation (4.1). Moreover we start by assuming, in the results that follow, that ind1 f = ind2 f = 0, in which case we have
log f ∈ Cμ(Γ ) and it is known that f always admits a holomorphic Σ-factorization [10].

Theorem 4.1. Let f ∈ G Cμ(Γ ) be such that

ind1 f = ind2 f = 0. (4.2)

Then

(i) f has a holomorphic Σ-factorization (4.1);
(ii) f admits a special Σ-factorization iff

k0

2π

∫
Γ

log f

τ
dξ = 4nK + 2imK ′, with m,n ∈ Z; (4.3)

(iii) if (4.3) holds, then a special Σ-factorization for f is f = f− f+ with

f± = exp
(

P̃±
Γ (Log f )

)
, (4.4)

where

Log f := log f − 2imπ. (4.5)

Proof. (i) and (ii) were proved in [10] and are stated here for the sake of self-containedness. As to (iii), taking (4.2) into
account, we can assume that log f , as well as Log f , are in Cμ(Γ ). The jump of P̃±

Γ (Log f ) across A (see the paragraph
before the last in Section 2) is
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αLog f = k0

4K i

∫
Γ

Log f

τ
dξ = −2inπ,

therefore exp P̃±
Γ (Log f ) ∈ G C±

μ(Γ ). On the other hand, Log f = P̃+
Γ (Log f ) + P̃−

Γ (Log f ) so that the factorization f = f− f+
follows, with f± defined by (4.4) and f± ∈ G C±

μ(Γ ). �
We remark that (4.4) provides a much simpler expression than that given in [10] for a special Σ-factorization of f

satisfying the assumptions of Theorem 4.1; not withstanding the differences in their expressions, the factors f± can only
differ by a non-zero constant multiplicative factor.

The previous result also suggests that the value of

k0

2π

∫
Γ

log f

τ
dξ =: β f (4.6)

gives some relevant information on the structure of the holomorphic Σ-factorization of f , by stating in (ii) that a special Σ-
factorization of f exists if and only if β f = 0 mod L. The following theorem shows that indeed the rational middle factor r
in (4.1) can be expressed as a power of exponent N � 3 of a rational function rν of the form (3.21), where both ν and N
are determined by β f . In particular, it is possible to establish conditions for r to be a (non-constant) rational function of the
simplest form (with two simple zeros and two simple poles), in the case where a special Σ-factorization does not exist.

Theorem 4.2. Let f ∈ G Cμ(Γ ) be such that ind j f = 0, for j = 1,2, and let β f be defined by (4.6) for some branch of the logarithm
such that log f ∈ Cμ(Γ ). Then a holomorphic Σ-factorization for f is given by

f = f−rk
ν f+ (4.7)

where, for β̃ f ∈ P̃ such that β f = β̃ f mod L,

(i) k = 0 if β̃ f = 0; k = 1 if β̃ f ∈ P1\{0} (see (3.22)); k = 2 if β̃ f ∈ P̃ \P1, Re β̃ f < 2K ; k = 3 if Re β̃ f = 2K ;
(ii) for k �= 0, rν is given by (3.21)–(3.24) with β = β̃ f /k; for k = 0, rν = 1 by convention;

(iii) f± = exp P̃±
Γ (Log(r−k

ν f )).

Proof. From Theorem 4.1, if β f = 0 mod L then f admits a special Σ-factorization, with f± given by the equality in (iii)

with r−k
ν = 1. In all other cases, f̃ = r−k

ν f is such that ind j f̃ = 0 for j = 1,2 and we see from Theorem 3.5 that it admits a
special Σ-factorization with f̃± = f± given in (iii). �

In particular we have the following, which will be used later.

Corollary 4.3. With the same assumptions as in Theorem 4.2, f admits a holomorphic Σ-factorization f = f−τ/[(ξ + i)(ξ − ik0)] f+
if and only β f = iK ′ mod L.

Using the results of Section 3 we can now extend the previous results to any f ∈ G Cμ(Γ ). In what follows we use the
notation n j = ind j f , j = 1,2, and we define indΓ f = ind1 f + ind2 f for any f ∈ G Cμ(Γ ).

Theorem 4.4. Every f̃ ∈ G Cμ(Γ ) admits a holomorphic Σ-factorization.

Proof. Let λ±(ξ) = ξ ± i be as in (3.7) and let

f = f̃

(
λ−
λ+

)−k̃

Sl(α−1+ (α+)∗
)m

(see Theorem 3.1 for S and (3.3) for α+), where

k̃ = n1 + n2

2
, l = 0, m = n1 − n2

2
, if indΓ f is even, (4.8)

k̃ = n1 + n2 − 1

2
, l = 1, m = n1 − n2 − 1

2
, if indΓ f is odd. (4.9)

From Theorem 3.1 and Corollary 3.3, it follows that ind j f = 0, so that f admits a holomorphic Σ-factorization (4.7).
Therefore f̃ also admits a holomorphic Σ-factorization f̃ = f̃−r f̃+ with

f̃− = f−, r = rk
ν

(
λ−

)k̃

S−l, f̃+ = f+
(
α−1+ (α+)∗

)−m
. �
λ+
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We remark that the proof of the last theorem provides formulas for the factors in a holomorphic Σ-factorization of any
f̃ ∈ G Cμ(Γ ). Moreover, since for any ∗-invariant f ∈ G Cμ(Γ ) (which can be identified with a function in G Cμ(Ṙ)) we have

k̃ = ind f , l = 0, m = 0, taking Theorem 4.1 and (2.8) into account we conclude that the holomorphic Σ-factorization of f
obtained here coincides with its WH-factorization.

Theorem 4.5. Let f̃ ∈ G Cμ(Γ ), with indΓ f̃ = 0. Then f̃ admits a special Σ-factorization if and only if

β f̃ = 2nK mod L (4.10)

where n = ind1 f̃ = − ind2 f̃ . In this case, f̃ = f̃− f̃+ with f̃− = f− , f̃+ = f+(α−1+ (α+)∗)−n where f± are the factors of a special

Σ-factorization of f = f̃ (α−1+ (α+)∗)n, given by (4.4).

Proof. From Corollary 3.3, we have α−1+ (α+)∗ ∈ G C+
μ(Γ ), so that f̃ admits a special Σ-factorization if and only if f does. On

the other hand, from Corollary 3.3, we have ind1 f = ind2 f = 0 and, from Theorem 4.1, f admits a special Σ-factorization
if and only if β f = 0 mod L. The result now follows from (3.16). �
Remark 4.6. A generalization of Corollary 4.3 can also be obtained following the same reasoning and with the same as-
sumptions as in Theorem 4.5: f̃ admits a factorization of the form f̃ = f̃−τ/[(ξ + i)(ξ − ik0)] f̃+ (which will be important
in the next section) if and only if β f̃ = 2nK + iK ′ mod L.

The usefulness of holomorphic Σ-factorization in solving Riemann–Hilbert problems (relative to Γ ) in Σ has been
illustrated in examples presented in [10,17]. In particular it has been used to study and solve some boundary value problems
which appear in connection with finite-dimensional integrable systems. The examples presented there, however, make it
clear that the difficulty in solving RH-problems, such as those mentioned above, considerably increases with the complexity
of the rational function r in (4.1). This is particularly true if the RH problem on Σ is studied as a step to obtain the explicit
factorization of matrix functions, as will be done in Section 6.

In this context, the simplest case corresponds naturally to the existence of a special Σ-factorization for f . Otherwise,
the simplest case involves two simple zeros and two simple poles in r, the other cases involving two zeros and two poles
of order N > 1 [10].

An alternative approach to Σ-factorization consists in looking for a factorization of a form similar to (4.1), but allowing
the outer factors f± to have some known zeros or poles, which leads to a different type of factorization involving, in many
cases, a smaller number of zeros and poles in Σ± than in the case of holomorphic outer factors and rational middle factor.
This alternative approach is presented in the next section.

5. Meromorphic Σ-factorization

We introduce and study here a factorization of a function f ∈ Cμ(Γ ) of the form

f = m−
f rm+

f (5.1)

where (m+
f )±1 ∈ M(Σ+), (m−

f )±1 ∈ M(Σ−) and r ∈ R(Σ).
It is clear that a necessary condition for existence of a representation (5.1) is that f ∈ G Cμ(Γ ). Since, for the same

f ∈ G Cμ(Γ ) admitting such a representation, (infinitely) many others of the same type are possible, it is important to
characterize more precisely the factors on the right-hand side of (5.1). We take r as a power (or a product of powers) of
rational functions of the simplest possible type in the torus and we allow the outer factors m±

f to be non-holomorphic in
the corresponding half-torus but, in a certain sense, of the simplest non-holomorphic kind, admitting (at most) one simple
pole and no zeros in Σ± , respectively.

Definition 5.1. We define a meromorphic Σ-factorization relative to Γ of f ∈ Cμ(Γ ) to be a representation of the form

f = f M− αl−
(

λ−
λ+

)k̃

rk
ν f M+ (5.2)

where k, k̃ ∈ Z, f M− ∈ α−C−
μ(Γ ), ( f M− )−1 ∈ C−

μ(Γ ), f M+ ∈ α+C+
μ(Γ ), ( f M+ )−1 ∈ C+

μ(Γ ), rν is a rational function defined, for a
given ν ∈ C, by (3.21) and l ∈ {0,1}, l = indΓ f (mod 2).

We remark that m−
f = f M− αl− , r = (λ−/λ+)k̃rk

ν , m+
f = f M+ when comparing with (5.1).

If l = k = k̃ = 0 and f M± ∈ G Cμ(Γ ), (5.2) reduces to a special Σ-factorization (see [10] and Section 4 in this paper); if
f M± = F±α± , we have
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f = (F+α+)(α− F−) (5.3)

with F± ∈ G C±
μ(Γ ) and we say that (5.3) is an M-special Σ-factorization.

It is easy to see that the factors f M± in this case can differ only by a non-zero constant factor, analogously to what
happened in the case of existence of a special Σ-factorization.

As in the previous section, we start by studying the case where log f ∈ Cμ(Γ ). In what follows, let β f be defined by (4.6)
and let β̃ f ∈ P̃ be such that β f = β̃ f mod L.

Theorem 5.2. Let f ∈ G Cμ(Γ ), with ind j f = 0 for j = 1,2. Then f admits a meromorphic Σ-factorization (5.2) where l = k̃ = 0,

f = f M− rk
ν f M+ (5.4)

where

(i) if β̃ f ∈ P1 ∪ ∂P1 , then k and rk
ν are defined as in Theorem 4.2, while f M± coincide with f± = exp P̃±

Γ (Log r−k
ν f ), respectively;

(ii) if β̃ f ∈ P̃ \(P1 ∪ ∂P1), then rk
ν coincides with the rational middle factor in the holomorphic Σ-factorization F = F−rk

ν F+ defined

for F = f α−1− α−1+ in Theorem 4.2, and we have f M± = F±α± .

Proof. (i) is straightforward; (ii) is a consequence of Theorems 3.2 and 3.4, which imply that if βF = β̃F mod L and β̃F ∈ P̃ ,
then actually β̃F ∈ P1, and the result follows from Theorem 4.2. �

Consequently, taking also Theorem 4.1(ii) into account, we have:

Corollary 5.3. With the same assumptions as in Theorem 5.2, f admits an M-special Σ-factorization if and only if β̃ f = 2K . In this
case, f = (F−α−)(α+ F+),

F± = exp P̃±
Γ (Log F ), F = f α−1− α−1+ . (5.5)

Corollary 5.4. With the same assumptions as in Theorem 5.2, if either β̃ f ∈ {s + it: s ∈ ]K ,2K ], t ∈ ]−iK ′, iK ′]}\{2K } or β̃ f ∈
{s + it: s ∈ ]−2K ,−K [, t ∈ ]−iK ′, iK ′]}, then f admits a meromorphic Σ-factorization

f = (F−α−)rν(α+ F+), (5.6)

with F± ∈ G C±
μ(Γ ) and rν of the form (3.21), where F = f α−1− α−1+ r−1

ν .

We remark that, in the cases considered in the two previous corollaries, f also admits a holomorphic Σ-factorization
that can be obtained according to Theorem 4.2. In particular for the case where β f = 2K mod L, a zero and a pole of order 3
have to be considered in the rational middle factor, as regards either Σ+ or Σ− . In contrast with this, in the meromorphic
Σ-factorization (5.5), only one simple pole is involved whether we consider the factors which are meromorphic in Σ+ or
in Σ− , and no rational middle factor appears.

As a consequence of Theorem 3.2 and Corollary 3.3, the case where ind j f �= 0 for some j = 1,2 can be reduced, as in
the previous section, to that where ind1 f = ind2 f = 0, using the meromorphic factors α±1+ and (α+)∗ . In what follows we

define, for f̃ ∈ G Cμ(Γ ),

f = f̃

(
λ−
λ+

)−k̃

α−l−
(
α−1+ (α+)∗

)m
(5.7)

with k̃, l as in (4.8) and (4.9) and m = (n1 − n2)/2 if indΓ f is even, m = (n1 − n2 + 1)/2 if indΓ f is odd.
It follows from Theorem 3.2 and Corollary 3.3 that ind j f = 0 for j = 1,2, so that f admits a meromorphic Σ-

factorization of the form (5.2), according to Theorem 5.2. With f M± and rk
ν defined as in Theorem 5.2 and k̃, l, m defined as

in the previous paragraph, it is easy to see that the following holds.

Theorem 5.5. Every f̃ ∈ G Cμ(Γ ) admits a meromorphic Σ-factorization

f̃ = f̃ M− αl−
(

λ−
λ+

)k̃

rk
ν f̃ M+

with f̃ M− = f M− , f̃ M+ = f M+ (α−1+ (α+)∗)−m.
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Theorem 5.6. Let f̃ ∈ G Cμ(Γ ), indΓ f̃ = 0. Then f̃ admits an M-special Σ-factorization if and only if β f̃ = 2(n + 1)K mod L where

n = ind1 f̃ = − ind2 f̃ .

We conclude this section with the following remarks which allow a better understanding of these results and may
deserve further investigation in the future.

It is clear that to each f̃ ∈ G Cμ(Γ ) we can associate by (5.7) a unique f ∈ G Cμ(Γ ) such that ind j f = 0, j = 1,2 and

reduce the study of the Σ-factorization of f̃ to that of f . On the other hand, to each such f we can associate a unique
β̃ f ∈ P̃ such that β f = β̃ f mod L and, thus, a unique point P f in Σ , P f = σ(β̃ f ) = σ(β f ).

Now, according to the results of Sections 4 and 5, we conclude that P f determines the form of the Σ-factorization
of f . For instance, considering meromorphic Σ-factorizations of the form (5.4), if P f1 ∈ Σ1 and P f2 ∈ Σ2 have the same
projection in C, then the factorizations of f1 and f2 differ by a factor α−α+ . In particular we see from Theorem 4.1 and
Corollary 5.3 that, for f such that ind j f = 0, j = 1,2, the existence of a special Σ-factorization (which is also a particular
case of a meromorphic Σ-factorization) corresponds to having P f = 01 , while the existence of an M-special Σ-factorization
corresponds to P f = 02 .

It is also clear that the concept of meromorphic Σ-factorization presented in Definition 5.1 generalizes that of WH
factorization (as it happened with holomorphic Σ-factorization, obtained according to Theorem 4.2) and, as it happens with
WH factorization, the powers of the rational middle factor in (5.2) are uniquely defined by f .

Finally, we remark that, although every f̃ ∈ G Cμ(Γ ) admits both a holomorphic and meromorphic Σ-factorization, nei-
ther of them reduces to the other, since the former does not in general take the form (5.2) and the latter does not in
general take the form (4.1) – and may introduce a considerable simplification in the study of RH problems, as can be seen
for instance from the remark following Corollary 5.4.

6. Σ-factorization and Riemann–Hilbert problems

In this section we apply the results of the previous sections to the study of some vectorial RH problems that can be
equivalently formulated as scalar RH problems relative to a contour on a Riemann surface.

Let G ∈ G(Cμ(Ṙ))2×2 be a matrix function satisfying the relation (1.4) with Q 1 = Q 2 = Q ,

G T Q G = det G.Q , (6.1)

where Q is a symmetric rational matrix whose entries do not have poles on Ṙ and possesses an inverse in (Cμ(Ṙ))2×2 and
det G admits a bounded factorization

det G = γ−
(

λ−
λ+

)m

γ+ (6.2)

with γ± ∈ G C±
μ(Ṙ), m ∈ Z and λ± defined by (3.7). We denote by C(Q ) the class of matrix functions G ∈ G(Cμ(Ṙ))2×2

satisfying (6.1) [10,21].
We will consider RH problems of the form

Gϕ+ = ϕ− + η (6.3)

which consist in, given a matrix function G satisfying (6.1) and a vector function η, finding ϕ± in appropriate spaces of
analytic vector functions. We assume here that, in (6.3), G ∈ C(Q ), η ∈ (L p(R))2 with 1 < p < ∞ and ϕ± are sought in the
Hardy spaces (H±

p )2. In this case, (6.3) is equivalent to the equation T Gϕ+ = η+ where

T G : (H+
p

)2 → (
H+

p

)2
, T Gϕ+ = P+(Gϕ+),

is the Toeplitz operator in (H+
p )2 with symbol G and η+ = P+η. Since G ∈ G(Cμ(Ṙ))2×2, it admits a representation as a

product [4,5,9]

G = G−DG+ (6.4)

with

G± ∈ G
(
C±

μ

)2×2
, D = diag

(
(λ−/λ+)k1 , (λ−/λ+)k2

)
(6.5)

where k1,k2 ∈ Z are uniquely defined, up to their order, and are called the partial indices of G . We have moreover k1 +
k2 = m, and if we assume (for reasons that will be explained later in this section) that m ∈ {0,1}, we can write

k1 = −k for some k � 0, k2 = k + m. (6.6)

The factorization (6.4) enables us to study the solvability of RH problems of the form (6.3) as well as many properties of
the Toeplitz operator T G [4,5,9]. For example, it is known that T G is invertible if and only if k1 = k2 = 0 (the factorization
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G = G−G+ being then called canonical) and, in that case, (T G)−1 can be expressed in terms of the factors G±: (TG )−1 =
G−1+ P+G−1− I+ , where I+ denotes the identity operator in (H+

p )2.
The partial indices of G are not, in general, known a priori. They can however be determined by solving the homogeneous

(η = 0) RH problem

Gϕ+ = ϕ−, ϕ± ∈ (
H±

p

)2
(6.7)

which is equivalent to the problem of characterizing ker T G . In fact, assuming m ∈ {0,1}, the integer k in (6.6) is equal to
the dimension of the space of solutions to (6.7), and to the dimension of ker T G . It is not difficult to see on the other hand
that, due to (6.4), (6.5) and (6.6), (ϕ+,ϕ−) is a solution to (6.7) if and only if φ± = λ±ϕ± satisfy

Gφ+ = φ−, φ+ ∈ (
C+

μ(Ṙ)
)2

, φ− ∈ (
C−

μ0(Ṙ)
)2

(6.8)

where C−
μ0(Ṙ) = (λ+/λ−)C−

μ(Ṙ). We will thus study here the vectorial RH problem (6.8), assuming that Q and G take the
normal forms associated with C(Q ) [22],

Q =
[−q 0

0 1

]
, G =

[
α δ

qδ α

]
(6.9)

with α, δ ∈ Cμ(Ṙ) and

q = −det Q = ℘1

℘2
(6.10)

where ℘1(ξ) = (ξ + i)(ξ + ik0), ℘2(ξ) = (ξ − i)(ξ − ik0). The rational function q in (6.10) is related to the polynomial ℘

defined by the right-hand side of (2.1) by q = ℘℘−2
2 = ℘2

1℘−1 and we say that Σ , defined as in Section 2, is the Riemann
surface associated to C(Q ).

Let now TΣ : (Cμ(Ṙ))2 → Cμ(Γ ) be the linear transformation defined by TΣ(ϕ1,ϕ2)|Γ j = ϕ j , j = 1,2, for which it is
easy to see that the following holds [10].

Proposition 6.1.

(i) TΣ maps (ϕ1 + ρϕ2,ϕ1 − ρϕ2) into ϕ1 + τϕ2 .
(ii) TΣ is invertible with inverse T −1

Σ given by

T −1
Σ : Cμ(Γ ) → Cμ(Ṙ)2, T −1

Σ (φ) = (φ|Γ1 , φ|Γ2).

By diagonalizing G and taking φ± = (φ1±, φ2±) we can rewrite (6.8) in the equivalent form⎧⎪⎪⎨
⎪⎪⎩

g1

(
φ1+ + ρ

℘1
φ2+

)
= ρ

℘1

(
φ2− + ρ

℘2
φ1−

)
,

g2

(
φ1+ − ρ

℘1
φ2+

)
= − ρ

℘1

(
φ2− − ρ

℘2
φ1−

) (6.11)

where g1 and g2 are the eigenvalues g1 = α + ρδ℘−1
2 , g2 = α − ρδ℘−1

2 for ρ = √
℘ defined as in Section 2. It follows from

Proposition 6.1 in [10] (see also [23]) that (6.11) is equivalent to the scalar RH problem relative to Γ in Σ

gψ+ = τ

℘1
ψ− with ψ+ ∈ C+

μ(Γ ), ψ− ∈ C−
μ0(Γ ), (6.12)

where C−
μ0(Γ ) = (λ+/λ−)C−

μ(Γ ) and

g = TΣ(g1, g2) = α + τ

℘2
δ (6.13)

will be called the Σ-symbol of G .
Multiplying G by a rational factor (λ−/λ+)−m/2 if m is even, (λ−/λ+)−(m−1)/2 if m is odd, we obtain a matrix which

also satisfies (6.1) but whose determinant admits a bounded factorization of the form (6.2) with m = 0 or m = 1. Thus we
assume in the results that follow that m ∈ {0,1} in (6.2) and we will consider separately the cases where m = 0 and m = 1.

Theorem 6.2. Let G ∈ C(Q ) be such that m = 0 in (6.2) and let g be its Σ-symbol. Then the following propositions are equivalent:

(i) The RH problem (6.8) admits non-zero solutions.
(ii) The RH problem (6.12) admits non-zero solutions.
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(iii) The Σ-symbol of G admits a holomorphic Σ-factorization

g = g−r0 g+ with r0 = τ

(ξ + i)(ξ − ik0)
. (6.14)

(iv) βg = k0
2π

∫
Γ

log g
τ dξ = 2nK + iK ′ mod L, where n = ind1 g = − ind2 g.

Proof. (i) ⇔ (ii) since (φ+, φ−) is a solution to (6.8) if and only if ψ+ = φ1+ + (τ/℘1)φ2+ , ψ− = φ2− + (τ/℘2)φ1− satisfy
(6.12).

(ii) ⇒ (iii). If (ii) is true and (ψ+,ψ−) is a non-zero solution to (6.12), then we have

gψ+ = τ

(ξ − i)(ξ + ik0)
ψ̃− (6.15)

with ψ̃− = (ξ − i)/(ξ + i)ψ− ∈ C−
μ(Γ ), since ψ− ∈ C−

μ0(Γ ). Applying the involution ∗ to both sides of (6.15) and multiplying,
we obtain

gg∗ψ+(ψ+)∗ = − (ξ + i)(ξ − ik0)

(ξ − i)(ξ + ik0)
ψ̃−(ψ̃−)∗.

Taking into account that gg∗ = g1 g2 = det G = γ−γ+ , we have thus

γ+
ξ + ik0

ξ + i
ψ+(ψ+)∗ = −γ −1−

ξ − ik0

ξ − i
ψ̃−(ψ̃−)∗ (6.16)

and, since the left- and the right-hand sides of (6.16) can be identified with functions in C+
μ(Ṙ) and C−

μ(Ṙ), respectively,

both sides must be equal to c ∈ C\{0}. Thus ψ+ and ψ̃− are bounded away from zero in Σ+ and Σ− , respectively, and
therefore their inverses are also in C+

μ(Γ ) and C−
μ(Γ ), respectively. From (6.15) we obtain then

g = ψ̃−
τ

(ξ − i)(ξ + ik0)
ψ−1+ =

(
ψ̃−

ξ − ik0

ξ − i

)
τ

(ξ + i)(ξ − ik0)

(
ξ + i

ξ + ik0
ψ−1+

)

and we can take g− = [(ξ − ik0)/(ξ − i)]ψ̃− , g+ = [(ξ + i)/(ξ + ik0)]ψ−1+ .
(iii) ⇒ (ii). It is enough to take ψ+ = [(ξ + i)/(ξ + ik0)]g−1+ , ψ− = [(ξ + i)/(ξ − ik0)]g− .
(iii) ⇔ (iv). Since m = 0, we must have ind1 g = ind g1 = n and ind2 g = ind g2 = −n for some n ∈ Z and the equivalence

follows as in Remark 4.6. �
Theorem 6.3. Let the assumptions of Theorem 6.2 hold and let the Σ-symbol g admit a factorization (6.14). Then the space of solutions
(ψ+,ψ−) of (6.12) is generated by ([(ξ + i)/(ξ + ik0)]g−1+ , [(ξ + i)/(ξ − ik0)]g−) and the space of solutions (φ+, φ−) to the RH
problem (6.8) is generated by (Φ+,Φ−) with

Φ+ =
(

ξ + i

ξ + ik0

(
g−1+

)
E , (ξ + i)2(g−1+

)
O

)
, Φ− =

((
ξ2 + 1

)
(g−)O,

ξ + i

ξ − ik0
(g−)E

)
. (6.17)

Proof. From (6.14) we have

gψ+ = τ

℘1
ψ− ⇔ g+ψ+ = g−1−

ξ − ik0

ξ + ik0
ψ−.

Both sides of the latter equality must be equal to a rational function with (at most) a double pole at the branch point −ik0
and a double zero at the branch point −i (due to ψ− ∈ C−

μ0(Γ )). Thus

g+ψ+ = g−1−
ξ − ik0

ξ + ik0
ψ− = c

ξ + i

ξ + ik0
, c ∈ C,

and therefore

ψ+ = c
ξ + i

ξ + ik0
g−1+ , ψ− = c

ξ + i

ξ − ik0
g−, c ∈ C, (6.18)

give all the solutions to (6.12).
The solutions to the RH problem (6.8) can be obtained from (6.18) using the equivalence with (6.12) [10] which implies

that φ± = (φ1±, φ2±) satisfy (6.8) if and only if
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(
φ1+ + ρ

℘1
φ2+, φ1+ − ρ

℘1
φ2+

)
= T −1

Σ ψ+ = c
ξ + i

ξ + ik0

((
g−1+

)
E + ρ

(
g−1+

)
O,

(
g−1+

)
E − ρ

(
g−1+

)
O

)
,

(
φ2− + ρ

℘2
φ1−, φ2− − ρ

℘2
φ1−

)
= T −1

Σ ψ− = c
ξ + i

ξ − ik0

(
(g−)E + ρ(g−)O, (g−)E − ρ(g−)O

)
.

Thus we obtain Φ+,Φ− given by (6.17). �
Remark 6.4. The RH problem (6.12) can also be studied, with the same assumptions as in Theorem 6.3, in a different setting,
looking for solutions ψ± in C±

μ(Γ ) (see [10]). It is easy to see, following the same reasoning as in the previous proof, that
in that case the space of solutions is isomorphic to the space L(−D) of meromorphic functions with poles bounded by the
divisor −D [19], where D = div[(ξ − ik0)/(ξ + ik0)]|Σ− , and thus its dimension is 2.

As an immediate consequence of Theorems 6.2 and 6.3, we conclude that ker T G = {0} unless condition (iv) in Theo-
rem 6.2 is satisfied, in which case dim ker T G = 1 and ker TG is generated by λ−1+ Φ+ with Φ+ defined by (6.17). Therefore
we can establish necessary and sufficient conditions for existence of a canonical factorization for G (and invertibility of T G ),
and determine the partial indices in the non-canonical case.

Corollary 6.5. With the same assumptions as in Theorem 6.2, G admits a canonical bounded factorization unless g admits a factoriza-
tion (6.14); in the latter case G admits a non-canonical bounded factorization with partial indices ±1.

Now we use Theorem 6.2 to study the same problems when m = 1 in (6.2).

Theorem 6.6. Let G ∈ C(Q ) be such that m = 1 in (6.2) and let g be its Σ-symbol. Then the RH problems (6.8) and (6.12) do not
admit non-zero solutions and G admits a non-canonical bounded factorization with partial indices 0 and 1.

Proof. Let ind1 g = ind g1 = n, ind2 g = ind g2 = −n + 1, with n ∈ Z. As in the proof of Theorem 6.3, we use the equivalence
between (6.8) and (6.12). Assume that ψ± �= 0 satisfy (6.12). Then, defining g̃ = (α−1+ (α+)∗)nα+ g , we see from Theorem 3.2
and Corollary 3.3 that ind j g̃ = 0 for j = 1,2 and Eq. (6.12) is equivalent to

g̃η+ = τ

℘1
ψ− (6.19)

where η+ = (α−1+ (α+)∗)−nα−1+ ψ+ ∈ C+
μ(Γ ) and η+ has a zero at the branch point i due to the factor α−1+ . Since η+,ψ− �= 0,

it follows from Theorem 6.2 that g̃ admits a factorization g̃ = g̃−τ/[(ξ + i)(ξ − ik0)]g̃+ so that, from (6.19), we have
[(ξ + ik0)/(ξ − ik0)]g̃+η+ = g̃−1− ψ− = q0 where q0 ∈ R(Σ) must have a double zero at the branch point −i (due to ψ− ∈
C−

μ0(Γ )), as well as a zero at the branch point i (due to the factor α−1+ in η+) and, at most, a double pole at the branch
point ik0. Thus q0 = 0, which implies that ψ± = 0, against our assumption. Therefore (6.12) has only the trivial solution
ψ± = 0. We conclude moreover that (6.8) admits also only the trivial solution φ± = 0 and therefore the partial indices
of G must be non-negative [4,5,9]. Since the total index of G is 1 = ind(det G) = m, it follows that the partial indices in a
bounded factorization of G are 0,1. �
Corollary 6.7. Let the assumptions of Theorem 6.6 hold; then the Toeplitz operator T G in (H+

p )2 is injective, for all p ∈ ]1,+∞[.

Explicit formulas for a WH factorization of G can also be obtained from a Σ-factorization of its Σ-symbol. This not
only illustrates the usefulness of the results in the previous sections, but moreover shows the importance of determining
Σ-factorizations with factors of a particular type, like rν , α± . Indeed, as we show next, these factors are Σ-symbols of
certain important elements of C(Q ).

Definition 6.8. Let I : C(Q ) → G Cμ(Γ ) be defined by I(G) = g where g is the Σ-symbol of G (cf. (6.13)).

It is easy to see that C(Q ) is a multiplicative group [22] and I is a group isomorphism. For g ∈ G Cμ(Γ ),

I −1(g) =
[

gE ℘2 gO
℘1 gO gE

]
, I −1(g∗) =

[
gE −℘2 gO

−℘1 gO gE

]
= (

I −1(g)
)∗

(6.20)

where by M∗ we denote the adjugate (algebraic conjugate) of a matrix M . Moreover, we have the following property:

Proposition 6.9. The image of C(Q ) ∩ G(C±
μ(Ṙ))2×2 by I is G C±

μ(Γ ).



358 M.C. Câmara, M.T. Malheiro / J. Math. Anal. Appl. 386 (2012) 343–363
Proof. If G ∈ C(Q ) ∩ (C+
μ(Ṙ))2×2, then from (6.9) we see that we must have α, δ ∈ C+

μ(Ṙ), δ(i) = δ(ik0) = 0 so that g =
I(G) = α + (τ/℘2)δ ∈ C+

μ(Γ ). On the other hand, if G is invertible in (C+
μ(Ṙ))2×2, then det G = α2 − qδ2 = gg∗ ∈ G C+

μ(Ṙ).
Therefore g is bounded away from zero and we conclude that g = I(G) ∈ G C+

μ(Γ ).

Conversely, if g ∈ G C+
μ(Γ ), then gE , λ2+ gO ∈ C+

μ(Ṙ) (cf. Section 2) and gg∗ ∈ G C+
μ(Ṙ), and it follows from (6.20) that

I −1(g) ∈ G(C+
μ(Ṙ))2×2.

We can prove analogously that the image of C(Q ) ∩ G(C−
μ(Ṙ))2×2 by I is G C−

μ(Γ ). �
We can now characterize completely the subclass of matrix functions belonging to C(Q ) and admitting a commutative

canonical factorization within C(Q ) (see for instance [24,25] as regards the discussion of this problem).

Theorem 6.10. G ∈ C(Q ) admits a canonical WH factorization with G± ∈ C(Q ) if and only if its Σ-symbol g admits a special Σ-
factorization.

Proof. If G = G−G+ with G± ∈ C(Q ) ∩ G(C±
μ(Ṙ))2×2 then by Proposition 6.9 we have g = g− g+ with g± ∈ G C±

μ(Γ ), and
conversely. �

We remark that in the case where G admits a canonical WH factorization we necessarily have indΓ g = 0, so that (4.10)
gives a necessary and sufficient condition for existence of a factorization G = G−G+ with factors in C(Q ).

It is also useful to remark at this point that, if f ∈ G Cμ(Ṙ) and we identify it with a function in G Cμ(Γ ), we have
I −1( f ) = f I . Moreover:

I −1(rν) =
[

ν ξ−i
ξ+i

ξ+ik0
ξ−ik0

ν

]
=: Rν,

I −1(α−) =
[

C ρ−
ξ+i

ξ+ik0
ρ− C

]
=: A−, I −1(α+) =

[
C ξ−ik0

ρ+
ρ+
ξ−i C

]
=: A+,

I −1(α−1+ (α+)∗
) = 2

k0 − 1

ξ − i

ξ + i

[
C2 + ξ−ik0

ξ−i −2C ξ−ik0
ρ+

−2C ρ+
ξ−i C2 + ξ−ik0

ξ−i

]
∈ G C+

μ(Ṙ)2×2, (6.21)

where rν , α± and C are defined by (3.21), (3.3) and (3.4), respectively.
Since, by Theorem 5.5, every g ∈ G Cμ(Γ ) admits a meromorphic Σ-factorization of the form (5.2), it is clear that

applying I −1 to its right-hand side we obtain a meromorphic factorization [9,26] for any G ∈ C(Q ).
Moreover, by (5.7) and Theorem 5.2, we can reduce the problem of factorizing g to the case where, apart from a rational

function (λ−/λ+)−k̃ , we have g = g−αs−rt
μαv+ g+, with s, t ∈ {0,1,2} and v ∈ {0,1}, g± ∈ G C±

μ(Γ ). In this case by applying

I −1 we obtain a meromorphic factorization of the form

G = G−MG+, where G± ∈ G
(
C±

μ(Ṙ)
)2×2

(6.22)

and the middle factor M is a product whose factors are equal to A+ , A− or Rν . More precisely, the middle factor M takes
one of the forms I , Rν , R2

ν , A− A+ , A−Rν A+ if m = 0, or A− , A−Rν , A−R2
ν , A2− A+ , A2−Rν A+ if m = 1. The following results,

together with (6.20) and Proposition 6.9 provide a WH factorization for M in each case.

Theorem 6.11. If ν �= 0, ν2 �= 1 then Rν admits a canonical WH factorization Rν = (Rν)−(Rν)+ with

(Rν)− =
[

ν 0
ξ+ik0
ξ−ik0

1−ν2

ν
ξ−k0/z0
ξ−ik0

]
, (Rν)+ =

[
1 1

ν
ξ−i
ξ+i

0 − ξ−z0
ξ+i

]
.

If ν = 0, then R0 admits a WH factorization R0 = (R0)− diag(λ+/λ−, λ−/λ+)(R0)+ , where

(R0)− =
[

0 1
ξ−i

ξ−ik0
0

]
, (R0)+ =

[ ξ+ik0
ξ+i 0

0 1

]
. (6.23)

Proof. The equality Rν = (Rν)−(Rν)+ , for ν �= 0, ν2 �= 1, can be checked directly, taking (3.27) into account, and it is easy
to verify that (Rν)± ∈ (C±

μ(Ṙ))2×2 and det(Rν)± ∈ G C±
μ(Ṙ). The factorization for R0 is straightforward. �

As regards the statement of the previous theorem, we remark that in (3.23) we may have ν = 0 but we never have
ν2 = 1, so that the latter case was not considered above. On the other hand it is well known, and easy to see, that the
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canonical WH factorization presented in Theorem 6.11 for Rν is not unique; however, by choosing that particular factoriza-
tion, we obtain factors which satisfy some relations that will be useful later. Namely, we have

(Rν)+ diag(1, λ+/λ−) = diag(1, λ+/λ−)T+ (6.24)

where the second factor on the right-hand side is a matrix function belonging to G C+
μ(Ṙ)2×2, given by

T+ =
[

1 1
ν

0 − ξ−z0
ξ+i

]
if ν �= 0, T+ = (R0)+ if ν = 0. (6.25)

The following property regarding Rν will also be used later.

Lemma 6.12. Let Rν be given by (6.21); we have

diag(1, λ−/λ+)Rν diag(1, λ+/λ−) =
[

ν 1
(ξ−i)(ξ+ik0)
(ξ+i)(ξ−ik0)

ν

]
=: R̃ν, (6.26)

and R̃ν admits a canonical WH factorization R̃ν = (R̃ν)−(R̃ν)+ with

(R̃ν)− =
[

1 0

ν −(ν2 − 1)
ξ−k0/z0
ξ−ik0

]
, (R̃ν)+ =

[
ν 1

ξ−z0
ξ+i 0

]
. (6.27)

Proof. The equality in (6.26) is obvious and it is easy to verify that R̃ν = (R̃ν)−(R̃ν)+ , taking the second equality of (3.27)
into account. The relations (R̃ν)± ∈ G(C±

μ(Ṙ))2×2 are also simple to check. �
Theorem 6.13. If ν �= 0 (and ν2 �= 1), R2

ν admits a canonical WH factorization R2
ν = (R2

ν)−(R2
ν)−1+ with (R2

ν)± = [r±
i j ] given by

r+
11 = 1

ν

ξ − i

ξ − z0
− 1

ν

ξ − i

ξ + i
r+

21; r+
12 = 1

ν

ξ + i

ξ − z0
− 1

ν

ξ − i

ξ + i
r+

22;

r+
21 = − 1

ν2 − 1

(ξ + i)2

(ξ − z0)(ξ − k0/z0)

[
ξ − ik0

ξ − z0

(
ν2 + (ξ − i)(ξ + ik0)

(ξ + i)(ξ − ik0)

)
− Bν

]
; r+

22 = B̃
ν

ν2 − 1

(
ξ + i

ξ − z0

)2

;

r−
11 = B

ξ − i

ξ − ik0
; r−

12 = 1

ν

ξ + i

ξ − z0

(
ν B̃

(ξ − i)(ξ − k0/z0)

(ξ + i)(ξ − ik0)
+ ν2 + (ξ − i)(ξ + ik0)

(ξ + i)(ξ − ik0)

)
;

r−
21 = Bν(ξ + i) − (ν2 − 1)(ξ − k0/z0)

ξ − ik0
; r−

22 = ξ + i

ξ − z0

(
2
ξ + ik0

ξ − ik0
+ B̃ν

ξ − k0/z0

ξ − ik0

)
,

where

B = 1

ν

[
ξ − ik0

ξ − z0

(
ν2 + (ξ − i)(ξ + ik0)

(ξ + i)(ξ − ik0)

)]
ξ=k0/z0

,

B̃ = − 1

ν

[
(ξ + i)(ξ − ik0)

(ξ − i)(ξ − k0/z0)

(
ν2 + (ξ − i)(ξ + ik0)

(ξ + i)(ξ − ik0)

)]
ξ=z0

.

Proof. From Corollary 6.5, R2
ν admits a canonical WH factorization. We have

R2
ν =

[
ν2 + (ξ−i)(ξ+ik0)

(ξ+i)(ξ−ik0)
2ν ξ−i

ξ+i

2ν ξ+ik0
ξ−ik0

ν2 + (ξ−i)(ξ+ik0)
(ξ+i)(ξ−ik0)

]
= M−M+

where

M− =
[

ν ξ−i
ξ−ik0

ξ+ik0
ξ−ik0

ν ξ+i
ξ−ik0

]
, M+ =

[
ν ξ−i

ξ+i

ξ+ik0
ξ+i ν ξ−ik0

ξ+i

]
,

so that the equation R2
νφ+ = φ− , φ± ∈ (C±

μ)2 is equivalent to

M+φ+ = M−1− φ−. (6.28)

Solving (6.28) under the condition φ1+(i) = 0, φ2+(i) �= 0, we obtain φ+ = (r+
11, r+

21), φ− = (r−
11, r−

21); solving the same equa-
tion under the condition φ1−(−i) �= 0, φ2−(−i) = 0, we obtain φ+ = (r+

12, r+
22), φ− = (r−

12, r−
22). Thus we have R2

ν(R2
ν)+ =

(R2
ν)− and, since (R2

ν)−(−i) is invertible, we conclude that R2
ν = (R2

ν)−(R2
ν)−1+ is a canonical WH factorization [24, Theo-

rem 3.1]. �
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Remark 6.14. The canonical WH factorization of R2
ν where ν = 0 can be obtained trivially since R2

0 = [(ξ − i)(ξ + ik0)]/[(ξ +
i)(ξ − ik0)]I .

The factors involved in the factorizations presented in Theorem 6.13 and Remark 6.14 also possess some useful properties.
We have, in particular,

diag(1, λ−/λ+)
(

R2
ν

)
− = R̃− diag(λ−/λ+,1) (6.29)

where

R̃− =
[

B ξ+i
ξ−ik0

r−
12

r−
21 νr−

12 − (ν2 − 1)
ξ−k0/z0
ξ−ik0

]
∈ G

(
C−

μ(Ṙ)
)2×2

. (6.30)

Now we consider the factorization of the non-rational matrices A± .

Theorem 6.15. A+ and A− admit the following non-canonical WH factorizations:

A− = Ã− diag(1, λ−/λ+), A+ = diag(1, λ+/λ−) Ã+, (6.31)

with Ã± ∈ G(C±
μ(Ṙ))2×2 given by

Ã− =
[

C ξ−ik0
ρ−

ξ+ik0
ρ− C ξ+i

ξ−i

]
, Ã+ =

[
C ξ−ik0

ρ+
ρ+
ξ+i C ξ−i

ξ+i

]
. (6.32)

Proof. The equalities in (6.31), (6.32) can be easily verified; on the other hand, it is clear that Ã± ∈ (C±
μ(Ṙ))2×2 and

det Ã± = (k0 − 1)/2 ∈ C\{0}. �
Analogously to what happened in the previous factorizations, the factors Ã± possess some properties which will later be

helpful.

Lemma 6.16. For Ã− defined by (6.32) we have diag(1, λ−/λ+) Ã− = B− diag(λ−/λ+,1) where

B− =
[

C ξ+i
ξ−i

ξ−ik0
ρ−

ξ+ik0
ρ− C

]
∈ G

(
C−

μ(Ṙ)
)2×2

. (6.33)

Proof. Straightforward. �
Now we can present WH factorizations for the middle factor M in (6.22) when it is not of the form I , Rν (see Theo-

rem 6.11), R2
ν (see Theorem 6.13 and Remark 6.14) or A− (see Theorem 6.15).

Theorem 6.17. We have the following WH factorizations:

A− A+ = Ã− Ã+, (6.34)

A−Rν A+ = (
Ã−(R̃ν)−

)(
(R̃ν)+ Ã+

)
(6.35)

with (R̃ν)± given by (6.27),

A−R2
ν = ( Ã− R̃−)diag(λ−/λ+,1)

(
R2

ν

)
+ (6.36)

with R̃− given by (6.30),

A2− A+ = ( Ã−B−)diag(λ−/λ+,1) Ã+ (6.37)

with B− given by (6.33),

A2−Rν A+ = (
Ã−B−(Rν)−

)
diag(λ−/λ+,1)(T+ Ã+) (6.38)

with T+ given by (6.25), and A−Rν = ( Ã−(R̃ν)− Q −)diag(1, λ−/λ+)Q −1+ with
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Q + =
[ ξ+i

ξ−z0

ξ+i
ξ−z0

� ξ+i
ξ−i − ν (ξ+i)2

(ξ−i)(ξ−z0)
(δ − ν ξ+i

ξ−z0
)
ξ+i
ξ−i − 1

]
,

Q − =
[

� � ξ+i
ξ−i − 1

1 ξ+i
ξ−i

]
, (6.39)

where

� = ν

(
ξ + i

ξ − z0

)
ξ=i

= 2iν

i − z0
.

Proof. The canonical factorization (6.34) is a direct consequence of Theorem 6.15. From the latter theorem and Lemma 6.12,
we obtain (6.35). The factorization in (6.36) follows from Theorems 6.15 and 6.13, Remark 6.14 and (6.29). Theorem 6.15
and Lemma 6.16 imply (6.37), while Theorem 6.15 and (6.24) imply (6.38). Finally, we have A−Rν = Ã− diag(1, λ−/λ+)Rν

where, by Lemma 6.12,

diag(1, λ−/λ+)Rν = R̃ν diag(1, λ−/λ+) = (R̃ν)−(R̃ν)+ diag(1, λ−/λ+) = (R̃ν)−

[
ν ξ−i

ξ+i

ξ−z0
ξ+i 0

]

and [
ν ξ−i

ξ+i

ξ−z0
ξ+i 0

]
= Q − diag(1, λ−/λ+)Q −1+

with Q ± defined by (6.39)–(6.40). �
As an illustration of the application of the previous results, we present the examples that follow.

Example 1. We consider here the factorization problem for G ∈ C(Q ) of the form

G = exp(tL) (6.40)

where t is a real parameter and L is a rational matrix function

L =
[

0 ξ−ik0
ξ+i

ξ+ik0
ξ−i 0

]
. (6.41)

This can be seen as a real line analogue of a factorization problem relative to the unit circle S 1, arising when solving a
Lax equation for some integrable systems [17,18]. We assume here for simplicity that G takes the normal form (6.9); for a
general L ∈ G R2×2, G defined by (6.40) can be reduced to the normal form by multiplication on the left and on the right
by a rational matrix and its inverse, respectively [22]. For L given by (6.41) we have L = (ξ2 + 1)−1 S−1 diag(ρ,−ρ)S where

S =
[

1 ρ
℘1

1 − ρ
℘1

]
, (6.42)

so that G can be diagonalized with eigenvalues g1 = exp(tρ/(ξ2 +1)), g2 = exp(−tρ/(ξ2 +1)), for which ind g1 = ind g2 = 0.
An important question when studying that kind of factorization problem is to determine for which values of the (dynamical
variable) t does G admit a canonical WH factorization, which is connected with the question of global existence of solutions
to some Lax equations (see for instance [17,18]). We have the following.

Theorem 6.18. G admits a canonical bounded factorization for all t ∈ R.

Proof. Since det G = 1 (m = 0), G admits a canonical WH factorization (which is necessarily bounded) if and only if the RH
problem (6.8) admits only the trivial solution φ± = 0. By Theorem 6.2 there are non-zero solutions to that problem if and
only if βg = iK ′ mod L, where g = exp(tτ (ξ2 + 1)−1) is the Σ-symbol of G . Since

βg = k0

2π

∫
Γ

t

ξ2 + 1
dξ = k0t ∈ R,

we conclude that we must have φ± = 0. �
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The factorization of G can be obtained in each case (depending on the value of t) from Theorem 5.2, the properties of I
and the preceding results in this section. In particular we conclude that G admits a factorization G = G−G+ with G± in
C(Q ) if and only if k0t = 0 mod L and, assuming that g = g−g+ is a special Σ-factorization in that case, the factors are
G± = I −1(g±).

Example 2. Let G ∈ C(Q ) and let g be its Σ-symbol. We consider here two cases related, on the one hand, to Theorem 6.3
and Corollary 6.5 and, on the other hand, to Theorem 6.6.

In the first case, suppose that the assumptions of Theorem 6.3 hold. Then it follows from (6.14) that G =
I −1(g−)I −1(r0)I −1(g+) (with r0 = τ [(ξ + i)(ξ − ik0)]−1). Then, from (6.20), (6.21) and (6.23) we have G = G−DG+ with
D = diag(λ+/λ−, λ−/λ+),

G− =
[

(ξ − i)2(g−)O (g−)E
ξ−i

ξ−ik0
(g−)E ℘1(g−)O

]
, G+ =

[ ξ+ik0
ξ+i (g+)E

ξ+ik0
ξ+i ℘2(g+)O

℘1(g+)O (g+)E

]
.

As a result, the factorization of G allows us to determine two linearly independent solutions to (6.12) with ψ± in
C±

μ(Γ ) (see Remark 6.4). Denoting by G1+ and G1− the first column of G−1+ and G− , respectively, those solutions are

(TΣ(SG1+), TΣ(λ+λ−1− SG1−)) and (TΣ(λ−λ−1+ SG1+), TΣ(SG1−)) where S was defined in (6.42).
In the second case, suppose that the assumptions of Theorem 6.6 hold and, for simplicity, ind g1 = 0, ind g2 = 1 and g̃ =

gα+ admits a special Σ-factorization g̃ = g̃− g̃+ . Then a WH factorization for G , with partial indices 0, 1 as in Theorem 6.6,
is G = G−DG+ with D = diag(λ−/λ+,1),

G− =
[

(g̃−)E ℘2(g̃−)O
℘1(g̃−)O (g̃−)E

]
, G+ = 2

k0 − 1
J̃ Ã+ J̃

[
(g̃+)E ℘2(g̃+)O

℘1(g̃+)O (g̃+)E

]

where we took into account that I −1(α−1+ ) = A−1+ = 2(k0 − 1)−1 diag(λ−/λ+,1) J̃ Ã+ J̃ , with J̃ = diag(−1,1).
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