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Gutman et al. introduced the concepts of energy E (G) and Laplacian energy EL(G) for
a simple graph G , and furthermore, they proposed a conjecture that for every graph G ,
E (G) is not more than EL(G). Unfortunately, the conjecture turns out to be incorrect since
Liu et al. and Stevanović et al. constructed counterexamples. However, So et al. verified the
conjecture for bipartite graphs. In the present paper, we obtain, for a random graph, the
lower and upper bounds of the Laplacian energy, and show that the conjecture is true for
almost all graphs.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Throughout this paper, G denotes a simple graph of order n. The eigenvalues λ1, . . . , λn of the adjacency matrix A(G) =
(aij)n×n of G are said to be the eigenvalues of G . In chemistry, there is a closed relation between the molecular orbital
energy levels of π -electrons in conjugated hydrocarbons and the eigenvalues of the corresponding molecular graph. For the
Hüchkel molecular orbital approximation, the total π -electron energy E in a conjugated hydrocarbon is given by the sum
of absolute values of the eigenvalues corresponding to the molecular graph G in which the maximum degree is not more
than 4 in general. In 1970s, Gutman [8] extended the concept of energy to all simple graphs G , and defined that

E (G) =
n∑

i=0

|λi|,

where λ1, . . . , λn are the eigenvalues of G . Evidently, one can immediately get the energy of a graph by computing the
eigenvalues of the graph. It is rather hard, however, to compute the eigenvalues for a large matrix, even for a large symmet-
ric (0,1)-matrix like A(G). So many researchers established a lot of lower and upper bounds to estimate the invariant for
some classes of graphs. For further details, we refer the readers to the comprehensive survey [10]. But there is a common
flaw for those inequalities that only a few graphs attain the equalities of those bounds. Consequently we can hardly see the
major behavior of the invariant E (G) for most graphs with respect to other graph parameters (|V (G)|, for instance). In the
next section, however, we shall present an exact estimate of the energy for almost all graphs by Wigner’s semi-circle law.
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In spectral graph theory, the matrix L(G) = D(G) − A(G) is called the Laplacian matrix of G , where D(G) is a diagonal
matrix in which dii equals the degree dG(vi) of the vertex vi , i = 1, . . . ,n. Gutman et al. [11] introduced a new matrix L(G)

for a simple graph G , i.e.,

L(G) = L(G) −
n∑

i=1

dG(vi)/nIn = L(G) − 2
n∑

i=1

∑
j>i

ai j/nIn,

where In is the unit matrix of order n, and defined the Laplacian energy EL(G) of G , i.e.,

EL(G) =
n∑

i=1

|ζi |,

where ζ1, . . . , ζn are the eigenvalues of L(G). Obviously, we can easily evaluate the Laplacian energy EL(G) if we could
obtain the eigenvalues of L(G). In Section 3 we shall establish the lower and upper bounds of the Laplacian energy for
almost all graphs by exploring the spectral distribution of the matrix L(Gn(p)) for a random graph Gn(p) constructed from
the classical Erdös–Rényi model [3].

In a recent paper [9], Gutman et al. proposed the following conjecture concerning the relation between the energy and
the Laplacian energy of a graph.

Conjecture 1. Let G be a simple graph. Then E (G) � EL(G).

Unfortunately, the conjecture turns out to be incorrect. In fact, Liu et al. [13] and Stevanović et al. [18] constructed two
classes of graphs violating the assertion. However, So et al. [16] proved that the conjecture is true for bipartite graphs. In
Section 3 we shall show that the conjecture is true for almost all graphs by comparing the energy with the Laplacian energy
of a random graph.

2. The energy of Gn(p)

In this section, we shall formulate an exact estimate of the energy for almost all graphs by Wigner’s semi-circle law.
We start by recalling the Erdös–Rényi model Gn(p) [3], which consists of all graphs with vertex set [n] = {1,2, . . . ,n}

in which the edges are chosen independently with probability p = p(n). Apparently, the adjacency matrix A(Gn(p)) of the
random graph Gn(p) ∈ Gn(p) is a random matrix, and thus one can readily evaluate the energy of Gn(p) once the spectral
distribution of the random matrix A(Gn(p)) is known.

In fact, the research on the spectral distributions of random matrices is rather abundant and active, which can be traced
back to [23]. We refer readers to [1,6,14] for an overview and some spectacular progress in this field. One important
achievement in that field is Wigner’s semi-circle law which characterizes the limiting spectral distribution of the empirical
spectral distribution of eigenvalues for a sort of random matrix.

In order to characterize the statistical properties of the wave functions of quantum mechanical systems, Wigner in 1950s
investigated the spectral distribution for a sort of random matrix, so-called Wigner matrix,

Xn := (xij), 1 � i, j � n,

which satisfies the following properties:

• xij ’s are independent random variables with xij = x ji ;
• the xii ’s have the same distribution F1, while the xij ’s (i �= j) are to possess the same distribution F2;
• Var(xij) = σ 2

2 < ∞ for all 1 � i < j � n.

We denote the eigenvalues of Xn by λ1,n, λ2,n, . . . , λn,n , and their empirical spectral distribution (ESD) by

ΦXn (x) = 1

n
· #{λi,n | λi,n � x, i = 1,2, . . . ,n}.

Wigner [21,22] considered the limiting spectral distribution (LSD) of Xn(x), and obtained the semi-circle law.

Theorem 1. Let Xn be a Wigner matrix. Then

lim
n→∞Φn−1/2Xn

(x) = Φ(x) a.s.

i.e., with probability 1, the ESD Φn−1/2Xn
(x) converges weakly to a distribution Φ(x) as n tends to infinity, where Φ(x) has the density

φ(x) = 1

2πσ 2
2

√
4σ 2

2 − x21|x|�2σ2 .
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Remark. It is interesting that the existence of the second moment of the off-diagonal entries is the necessary and sufficient
condition for the semi-circle law, and there is no moment requirement on the diagonal elements. Moreover, there exists only
one eigenvalue which is of O (n), while the others are not more than 2σ2

√
n + O (n1/3 logn) with probability 1 as n tends

to infinity (see [7], for instance). For further comments on Wigner’s semi-circle law, we refer readers to the extraordinary
survey by Bai [1].

Following the book [3], we will say that almost every (a.e.) graph in Gn(p) has a certain property Q if the probability
that a random graph Gn(p) has the property Q converges to 1 as n tends to infinity. Occasionally, we shall write almost
all instead of almost every. It is easy to see that if F1 is a pointmass at 0, i.e., F1(x) = 1 for x � 0 and F1(x) = 0 for x < 0,
and F2 is the Bernoulli distribution with mean p, then the Wigner matrix Xn coincides with the adjacency matrix of Gn(p).
Obviously, σ2 = √

p(1 − p) in this case. By means of Theorem 1, we have

lim
n→∞Φn−1/2A(Gn(p))(x) = Φ(x) a.s.

According to the remark above, for any given ε > 0, there exists an integer N such that for all n > N , except only one
eigenvalue, the eigenvalues of n−1/2Xn are not more than 2σ2 + ε . Invoking Egoroff’s theorem yields

lim
n→∞

∫
|x|dΦn−1/2A(Gn(p))(x) = lim

n→∞

( 2σ2+ε∫
−2σ2−ε

|x|dΦn−1/2A(Gn(p))(x) + O (
√

n ) · 1

n

)
a.s.

=
2σ2+ε∫

−2σ2−ε

|x|dΦ(x) a.s.

=
∫

|x|dΦ(x).

Suppose λ1, . . . , λn and λ′
1, . . . , λ

′
n are the eigenvalues of A(Gn(p)) and n−1/2A(Gn(p)), respectively. Clearly,

∑n
i=1 |λi | =

n1/2 ∑n
i=1 |λ′

i |. Therefore, by the definition of the energy we can deduce that for a.e. random graph Gn(p),

E
(
Gn(p)

)
/n3/2 = 1

n3/2

n∑
i=1

|λi|

= 1

n

n∑
i=1

∣∣λ′
i

∣∣
=

∫
|x|dΦn−1/2A(Gn(p))(x)

→
∫

|x|dΦ(x) almost surely as n → ∞

= 1

2πσ 2
2

2σ2∫
−2σ2

|x|
√

4σ 2
2 − x2 dx

= 8

3π
σ2 = 8

3π

√
p(1 − p).

Note that for p = 1
2 , Nikiforov in [15] got the above result. Here, our result is for any probability p, which could be seen

as a generalization of his result.

3. The Laplacian energy of Gn(p)

In this section, we shall establish the lower and upper bounds of the Laplacian energy of Gn(p) by exploring the LSD
of L = L(Gn(p)). Finally, we shall show that Conjecture 1 is true for almost all graphs by comparing the energy with the
Laplacian energy of a random graph.

3.1. The limiting spectral distribution of L

We begin with another random matrix. Define a random matrix Mn = Xn − Dn to be a Markov matrix if Xn is a Wigner
matrix such that F1 is the pointmass at zero, and Dn is a diagonal matrix in which dii = ∑

j �=i xi j , i = 1, . . . ,n. The matrix
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is introduced as the derivative of a transition matrix in a Markov process. Bryc et al. in [5] obtained the LSD of a Markov
matrix. Define the standard semi-circle distribution Φ0,1(x) of zero mean and unit variance to be the measure on the real
set of compact support with density φ0,1(x) = 1

2π

√
4 − x21|x|�2.

Theorem 2. (See Bryc et al. [5].) Let Mn be a Markov matrix such that
∫

x dF2(x) = 0 and σ2 = 1. Then with probability 1, Φn−1/2Mn
(x)

converges weakly to a distribution Ψ (x) as n tends to infinity, where Ψ (x) is the free convolution of the standard semi-circle law
Φ0,1(x) and the standard normal measures. Moreover, this measure Ψ (x) is a non-random symmetric probability measure with smooth
bounded density, and does not depend on the distribution of the random variable xi j .

Remark. To prove the theorem above, Bryc et al. employed the moment approach. In fact, they showed that for each positive
integer k,

lim
n→∞

∫
xk dΦn−1/2Mn

(x) =
∫

xk dΨ (x) a.s. (1)

For two probability measures μ and ν , there exists a unique probability measure μ � ν , called the free convolution of μ
and ν . This concept was introduced by Voiculescu [19] via C∗-algebraic, which will be discussed in detail in the second part
of this section.

Let Gn(p) be a random graph of Gn(p). Set σ = √
p(1 − p). One can easily see that σ 2 is the variance of the random

variable aij (i > j) in A(Gn(p)). The main result of this part is concerned with the LSD of L.

Theorem 3. Let Gn(p) be a random graph of Gn(p). Then with probability 1, Φ(σ
√

n)−1L(x) converges weakly to the distribution Ψ (x)
as n tends to infinity.

To prove the theorem above, we introduce two auxiliary matrices as follows:

L1 = L1
(
Gn(p)

) = L
(
Gn(p)

) + pJn

=
(

D
(
Gn(p)

) − 2
n∑

i=1

∑
j>i

ai j/nIn

)
− (

A
(
Gn(p)

) − pJn
)
,

and

L2 = L2
(
Gn(p)

) = L
(
Gn(p)

) − (n − 1)pIn + p(Jn − In)

= (
D
(
Gn(p)

) − (n − 1)pIn
) − (

A
(
Gn(p)

) − p(Jn − In)
)
,

where Jn is the matrix in which all elements equal 1.
First of all, one can readily see that L2 is a Markov matrix in which the Wigner matrix is −A(Gn(p))+ p(Jn − In) and the

diagonal matrix is −D(Gn(p)) + (n − 1)pIn . Thus σ−1L2 is a Markov matrix such that the off-diagonal entries have mean 0
and variance 1. Since the LSD Ψ (x) does not depend on the random variables xij , Theorem 2 yields

lim
n→∞Φ(σ

√
n)−1L2

(x) = Ψ (x) a.s.

In what follows, we shall show that (σ
√

n)−1L, (σ
√

n)−1L1 and (σ
√

n)−1L2 have the same LSD Ψ (x), by which Theorem 3
follows.

To this end, we first estimate the difference (σ
√

n)−1(L1 − L2) by Chernoff’s inequality (see [12, p. 26] for instance) and
show that (σ

√
n)−1L1 has the same LSD as (σ

√
n)−1L2.

Lemma 4 (Chernoff’s inequality). Let X be a random variable with binomial distribution Bi(n, p). Then, for any ε > 0,

P
(∣∣X − E(X)

∣∣ � ε
)
� exp

{
− ε2

2(np − ε/3)

}
.

Apparently,

(σ
√

n)−1L2 − (σ
√

n)−1L1 = (σ
√

n)−1

(
2

n∑
i=1

∑
j>i

ai j/n − np

)
In.

Denote (σ
√

n)−1(2
∑n

i=1
∑

j>i ai j/n − np) by �n for convenience. Note that in the brackets the multiplied times of variable
p is n. By Lemma 4, for any given ε > 0, we have
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P

(
(σ

√
n)−1

∣∣∣∣∣2
n∑

i=1

∑
j>i

ai j/n − (n − 1)p

∣∣∣∣∣ � ε

)
= P

(∣∣∣∣∣
n∑

i=1

∑
j>i

ai j − n(n − 1)p

2

∣∣∣∣∣ � ε · σn3/2

2

)

� exp

{
− 2−2(εσ )2n3

2(n(n − 1)p + εσn3/2/6)

}

< exp

{
− (εσ )2 · n3

8(p + εσ/6) · n2

}

= exp

{
− (εσ )2

8(p + εσ/6)
· n

}
.

Therefore, by the first Borel–Cantelli lemma (see [2, p. 59] for instance), we can deduce

(σ
√

n)−1

∣∣∣∣∣2
n∑

i=1

∑
j>i

ai j/n − (n − 1)p

∣∣∣∣∣ → 0 a.s. (n → ∞),

and thus

�n → 0 a.s. (n → ∞).

Furthermore, it is easy to see that λ is an eigenvalue of (σ
√

n)−1L1 if and only if λ + �n is an eigenvalue of (σ
√

n)−1L2.
By the definition of ESD, it follows that

Φ(σ
√

n)−1L1
(x) = Φ(σ

√
n)−1L2

(x + �n). (2)

Clearly, for any ε > 0, there exists an N such that |�n| < ε a.s. for all n > N . Noting that Φ(σ
√

n)−1L2
(x) is an increasing

function, for all n > N , we have

Φ(σ
√

n)−1L2
(x − ε) � Φ(σ

√
n)−1L2

(x + �n) � Φ(σ
√

n)−1L2
(x + ε) a.s.

Consequently,

Ψ (x − ε) = lim
n→∞Φ(σ

√
n)−1L2

(x − ε)

� lim
n→∞Φ(σ

√
n)−1L2

(x + �n)

� lim
n→∞Φ(σ

√
n)−1L2

(x + ε) = Ψ (x + ε) a.s.

Moreover, since the density of Ψ (x) is smooth, Ψ (x) is continuous. Together with the fact that ε > 0 is arbitrary, we
conclude

lim
n→∞Φ(σ

√
n)−1L1

(x) = lim
n→∞Φ(σ

√
n)−1L2

(x + �n) = Ψ (x) a.s.

We now turn to the LSD’s of (σ
√

n)−1L and (σ
√

n)−1L1. For a function f , set ‖ f ‖ = supx | f (x)|.

Lemma 5 (Rank inequality). (See [1].) Let Un and Vn be two real symmetric matrices. Then

∥∥ΦUn(x) − ΦVn (x)
∥∥ � 1

n
rank(Un − Vn).

Evidently,

(σ
√

n)−1L1 − (σ
√

n)−1L = (σ
√

n)−1 pJn.

Note that the rank of Jn is 1, and then we conclude, by Lemma 5, that the LSD’s of (σ
√

n)−1L1 and (σ
√

n)−1L are the same.
Therefore, (σ

√
n)−1L, (σ

√
n)−1L1 and (σ

√
n)−1L2 have the same LSD Ψ (x), as we set out to show.

3.2. The bounds of EL(Gn(p))

In this part, we shall establish the lower and upper bounds of EL(Gn(p)) by employing Theorem 3 and the trace method,
and then show that Conjecture 1 is true for almost all graphs.

Let ξn be a random variable with the distribution Φ(σ
√

n)−1L(x). Then, by the definition of the Laplacian energy, we have

EL
(
Gn(p)

) = σn3/2
E|ξn|.
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Evidently, to estimate EL(Gn(p)), it suffices to evaluate E|ξn|. Let X be a random variable with distribution Ψ (x). We shall
apply E|X | to evaluate E|ξn| by employing Theorem 3 and the trace method.

We start with an estimate of E|X | = ∫ |x|dΨ (x). Since Ψ (x) is the free convolution of the standard semi-circle law
Φ0,1(x) and the standard normal measure, let us further investigate the free convolution. Here, we follow the notation given
by Voiculescu [20]. The Cauchy–Stieltjes transform of a probability measure μ is

Gμ(z) =
∞∫

−∞

μ(dx)

z − x

which is analytic on the complex upper half plane. For some α,β > 0, there exists a domain Dα,β = {u + iv | |u| < αv,

v > β} on which Gμ is univalent. For the image Gμ(Dα,β), we can define the inverse function Kμ of Gμ in the area
Γa,b = {u + iv | |u| < −av, −b < v < 0}. And let Rμ(z) = Kμ(z) − 1/z. Then for probability measures μ and ν , there exists
a unique probability measure, denoted by μ � ν , on Γa,b such that

Rμ�ν = Rμ + Rν .

The measure μ � ν is said to be the free convolution of μ and ν .
In the above definition, the Cauchy–Stieltjes transform and inverse function may be difficult to compute in practice.

Consequently, we do not compute E|X | directly. In what follows, we employ another definition of free convolution via
combinatorial way (see [4,17]) applicable only to probability measures with all moments.

For probability measure μ, set mk = ∫
xk μ(dx) and

Mμ(z) = 1 +
∞∑

k=1

mkzk.

Define a formal power series

Tμ(z) =
∞∑

k=1

ckzk−1

such that

Mμ(z) = 1 + zMμ(z)Tμ

(
zMμ(z)

)
.

Then, the free convolution of μ,ν is the probability measure μ � ν satisfying

Tμ�ν(z) = Tμ(z) + Tν(z). (3)

It is not difficult to see that this definition is coincident with the analytical one (see [17]).
Next, we calculate E|X | by the following result due to Bryc [4]. Let Mμ,n ≡ Mμ(z) mod zn+1, Tμ,n(z) ≡ Tμ(z) mod zn+1

be the n-th truncations, i.e., Mμ,n = 1 + ∑n
k=1 mkzk and Tμ,n(z) = ∑n+1

k=1 ckzk−1.

Lemma 6. (See Bryc [4].) With Mμ,0(z) = 1 and c1 = M ′
μ,1(0), we have

Mμ,n(z) ≡ 1 + zMμ,n−1(z)Tμ,n−1
(
zMμ,n−1(z)

)
mod zn+1, n � 1,

and

ck = − 1

k − 1

1

k!
dk

dzk

1

Mk−1
μ,n (z)

∣∣∣∣
z=0

.

Therefore, combining with the formula (3), we can calculate the moments of μ�ν by the moments of μ, ν in recurrence.
It is not difficult to verify that EX2 = 2 and EX4 = 9 (see [4] for details). Employing Cauchy–Schwartz inequality∣∣E(XY )

∣∣2 � EX2 · EY 2,

we have

E|X | �
√

EX2

and (
EX2)2 � E|X | · E|X |3 � E|X | ·

√
EX2 · EX4.



W. Du et al. / J. Math. Anal. Appl. 368 (2010) 311–319 317
Therefore,

2
√

2

3
� E|X | � √

2.

We shall establish the lower bound of E|ξn| at first. Since E|X | = ∫ |x|dΨ (x) �
√

2, for any given ε > 0, there exists an
integer K such that∣∣∣∣∣

∫
|x|dΨ (x) −

K∫
−K

|x|dΨ (x)

∣∣∣∣∣ < ε,

and thus Egoroff’s theorem implies

E|ξn| =
∫

|x|dΦ(σ
√

n)−1L(x)

�
K∫

−K

|x|dΦ(σ
√

n)−1L(x)

→
K∫

−K

|x|dΨ (x) a.s.

�
∫

|x|dΨ (x) − ε � 2
√

2

3
− ε.

Consequently,

lim
n→∞E|ξn| � 2

√
2

3
,

because ε is arbitrary.
We proceed to evaluate the upper bound of E|ξn|. Since σ−1L2 is the Markov matrix such that the off-diagonal entries

have mean 0 and variance 1, we can deduce, by the assertion (1), that for each positive integer k,

lim
n→∞

∫
xk dΦ(σ

√
n)−1L2

(x) =
∫

xk dΨ (x) a.s. (4)

According to the equality (2), we have∫
x2 dΦ(σ

√
n)−1L1

(x) =
∫

x2 dΦ(σ
√

n)−1L2
(x + �n)

=
∫

(x − �n)
2 dΦ(σ

√
n)−1L2

(x)

=
∫

x2 dΦ(σ
√

n)−1L2
(x) − 2�n

∫
x dΦ(σ

√
n)−1L2

(x) + �2
n

∫
dΦ(σ

√
n)−1L2

(x).

Since limn→∞ �n → 0 a.s., the equality (4) implies that

lim
n→∞

∫
x2 dΦ(σ

√
n)−1L1

(x) = lim
n→∞

∫
x2 dΦ(σ

√
n)−1L2

(x) =
∫

x2 dΨ (x) a.s. (5)

We shall employ the trace method to estimate E(ξ2
n ) = ∫

x2 dΦ(σ
√

n)−1L(x) in what follows. It is not difficult to see that

∫
x2 dΦ(σ

√
n)−1L(x) = n−1 trace

((
1

σ
√

n
L
)2)

= (σn)−2 trace
(
L2).

Since L1 = L + pJn , we have∫
x2 dΦ(σ

√
n)−1L1

(x) −
∫

x2 dΦ(σ
√

n)−1L(x) = (σn)−2(trace
(
L2

1

) − trace
(
L2))

= (σn)−2 trace
(

pLJn + pJnL + p2J2
n

)
= (σn)−2(2p trace(JnL) + p2 trace

(
J2
n

))
. (6)
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For convenience, we shall use A and D to denote the matrices A(Gn(p)) and D(Gn(p)), respectively. Set ε =∑n
i=1

∑
j>i ai j/n. In accordance with the definition of L, we have L = D − A − 2ε

n In , and thus

trace(JnL) = trace

(
Jn

(
D − A − 2ε

n
In

))
= trace(JnD) − trace(JnA) − 2ε

n
trace(Jn).

It is easily seen that trace(JnD) = trace(JnA) = 2ε
n trace(Jn) = 2ε. Recall that σ = √

p(1 − p). Invoking the strong law of large
number, we can deduce that

lim
n→∞(σn)−2(2p trace(JnL) + p2 trace

(
J2
n

)) = lim
n→∞(σn)−2(p2n2 − 4pε

)
= lim

n→∞
p

p(1 − p)

(
p − 2

2ε

n2

)

= − p

(1 − p)
a.s.

By means of the relations of (5) and (6), we have

lim
n→∞E

(
ξ2

n

) = lim
n→∞

∫
x2 dΦ(σ

√
n)−1L(x)

= lim
n→∞

∫
x2 dΦ(σ

√
n)−1L1

(x) − lim
n→∞(σn)−2(2p trace(JnL) + p2 trace

(
J2
n

))
= EX2 + p

(1 − p)
a.s.

= 2 + p

(1 − p)
.

Since E|ξn| �
√

Eξ2
n , it follows that

lim
n→∞E|ξn| �

√
2 + p

(1 − p)
a.s.

Therefore, the following inequality holds a.s.

2
√

2

3
+ o(1) � E|ξn| �

√
2 + p

(1 − p)
+ o(1).

Thus, we obtain the lower and upper bounds of the Laplacian energy for almost all graphs.

Theorem 7. Almost every random graph Gn(p) satisfies

(
2
√

2

3

√
p(1 − p) + o(1)

)
· n3/2 � EL

(
Gn(p)

)
�

(√
2p − p2 + o(1)

) · n3/2.

Since a.e. random graph Gn(p) satisfies

lim
n→∞

E (Gn(p))

n3/2
= 8

3π

√
p(1 − p) <

2
√

2

3

√
p(1 − p) � lim

n→∞
EL(Gn(p))

n3/2
,

we thus establish the result below.

Theorem 8. For almost every random graph Gn(p), E (Gn(p)) < EL(Gn(p)).

By virtue of the theorem above, we see that Conjecture 1 is true for almost all graphs.
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Comput. Chem. 59 (2008) 343–354.
[10] I. Gutman, X. Li, J. Zhang, Graph energy, in: M. Dehmer, F. Emmert-Streib (Eds.), Analysis of Complex Networks: From Biology to Linguistics, Wiley–VCH

Verlag, Weinheim, 2009, pp. 145–174.
[11] I. Gutman, B. Zhou, Laplacian energy of a graph, Linear Algebra Appl. 414 (2006) 29–37.
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