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Abstract The thermal expansion coefficients of kyanite at ambient pressure have been investigated by

an X-ray powder diffraction technique with temperatures up to 1000 �C. No phase transition was

observed in the experimental temperature range. Data for the unit-cell parameters and temperatures were

fitted empirically resulting in the following thermal expansion coefficients: aa Z 5.8(3) � 10�5, ab Z 5.8

(1) � 10�5, ac Z 5.2(1) � 10�5, and aV Z 7.4(1) � 10�3 �C�1, in good agreement with a recent neutron

powder diffraction study. On the other hand, the variation of the unit-cell angles a, b and g of kyanite

with increase in temperature is very complicated, and the agreement among all studies is poor. The

thermal expansion data at ambient pressure reported here and the compression data at ambient temper-

ature from the literature suggest that, for the kyanite lattice, the most and least thermally expandable

directions correspond to the most and least compressible directions, respectively.
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1. Introduction

Kyanite, andalusite and sillimanite are polymorphs with
a composition of Al2SiO5. Their relative stability has been
extensively investigated because of their importance in meta-
morphic petrology (Kerrick, 1990, and references therein).
However, their exact phase relationships remain controversial
because of the very slow polymorphic phase transitions resulting
from small differences in their structures and thermodynamic
properties (Robie et al., 1995, and references therein). It is
generally understood that kyanite has the largest PeT stability
field; according to the high-P experimental data, kyanite breaks
down to stishovite and corundum at about 16 GPa (Liu, 1974;
Irifune et al., 1995; Schmidt et al., 1997; Liu et al., 2006; Ono
et al., 2007). Kyanite is also a very important high-P phase for
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Figure 1 Zero-point shift vs. temperature. Solid circles are for the

1st series of experiments; shaded circles are for the 2nd series. The

line and equation are based on all data. See text for the details of

the calculation.
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materials of the continental crust and deeply buried pelagic
sediments, so that knowledge of its physical properties is of
importance to understanding geodynamic processes in the mantle
(Irifune et al., 1994; Schmidt et al., 2004; Rapp et al., 2008).
Additionally, kyanite plays a significant role in a large number of
geological reactions, particularly those involving mineral phases
such as paragonite, zoisite, lawsonite, pumpellyite, chloritoid,
staurolite, stishovite, etc. (e.g. Chatterjee, 1972; Liu, 1974;
Schreyer, 1988; Irifune et al., 1995; Poli and Schmidt, 1995;
Figure 2 Examples of the X-ray diffraction patterns of kyanite at ambie

shift).
Schmidt et al., 1997; Liu et al., 2006; Ono et al., 2007). In
order to fully understand these reactions and their phase relations
it is necessary to accurately constrain the thermodynamic prop-
erties of kyanite, including compressibility and thermal expansion.

The compressibility of kyanite under high pressures has been
investigated both by high-pressure experiments (Brace et al.,
1969; Comodi et al., 1997; Yang et al., 1997a; Friedrich et al.,
2004; Liu et al., 2009) and by theoretical simulations (Matsui,
1996; Oganov and Brodholt, 2000; Winkler et al., 2001). As
summarized by Liu et al. (2009), the bulk modulus and its pressure
derivative of kyanite at ambient temperature have been well
established, and are close to 196 � 6 GPa and 4, respectively.

In contrast, the thermal expansion of kyanite at high tempera-
tures has been investigated in only three experimental studies
(Skinner et al., 1961; Winter and Ghose, 1979; Gatta et al., 2006).
Skinner et al. (1961) collected X-ray diffraction data on a kyanite
powder that was heated up to 1055 �C, but they calculated the unit-
cell parameters by using only six d-spacings. Unfortunately, kyanite
has low symmetry (space group P1), and the determination of six
unknowns (a, b, c, a, b and g) from six independent equations is
questionable. Winter and Ghose (1979) collected single-crystal
X-ray data at 25, 400, 600 and 800 �C, from which they determined
the unit-cell dimensions of kyanite. Their limited data, however,
showed apparent deviation from the trends defined by Skinner et al.
(1961), especially at high temperatures. Recently, Gatta et al. (2006)
carried out a neutron powder diffraction study at ambient temper-
ature and in the temperature range of 600e1200 �C. Putting aside
the large gap between room temperature and 600 �C, the thermal
expansion coefficients obtained in this study are generally in good
agreement with those of Winter and Ghose (1979) but the changes
nt temperature, 600 �C and 1000 �C (without correcting the zero-point



Table 1 Unite-cell parameters of kyanite vs. temperature.

T(oC) a(Å) b(Å) c(Å) a(�) b(�) g(�) V(Å3)

1st series of experiments

28 7.1166(10) 7.8466(7) 5.5737(7) 89.99(1) 101.10(1) 105.99(1) 293.14(4)

100 7.1180(9) 7.8490(6) 5.5760(6) 90.00(1) 101.08(1) 105.98(1) 293.44(4)

200 7.1220(12) 7.8540(9) 5.5793(8) 90.01(1) 101.08(1) 105.96(1) 293.99(5)

300 7.1289(15) 7.8594(11) 5.5847(10) 90.04(2) 101.05(2) 105.96(1) 294.81(7)

400 7.1363(12) 7.8680(9) 5.5916(9) 90.01(1) 101.07(2) 105.97(1) 295.76(5)

500 7.1460(13) 7.8717(10) 5.5949(9) 90.01(1) 101.07(2) 105.97(1) 296.25(6)

600 7.1443(14) 7.8755(10) 5.6000(10) 90.00(1) 101.07(2) 105.97(1) 296.83(6)

700 7.1504(15) 7.8836(10) 5.6077(9) 90.02(1) 101.02(2) 105.96(1) 297.86(6)

800 7.1561(16) 7.8902(11) 5.6137(10) 90.00(2) 101.05(2) 105.95(1) 298.66(6)

900 7.1682(10) 7.8960(6) 5.6183(7) 89.91(1) 101.06(1) 106.01(1) 299.55(4)

1000 7.1763(15) 7.9058(10) 5.6225(11) 89.85(2) 101.11(2) 106.05(2) 300.39(6)

2nd series of experiments

28 7.1203(9) 7.8484(6) 5.5758(6) 90.00(1) 101.09(1) 106.00(1) 293.47(4)

100 7.1217(10) 7.8497(8) 5.5766(6) 90.02(1) 101.08(1) 105.99(1) 293.64(4)

200 7.1259(14) 7.8558(9) 5.5823(9) 90.01(1) 101.05(2) 105.98(1) 294.39(6)

300 7.1309(14) 7.8608(10) 5.5854(10) 90.02(1) 101.05(2) 105.97(1) 294.96(6)

400 7.1315(21) 7.8644(13) 5.5883(12) 90.03(2) 101.03(2) 105.95(2) 295.33(8)

500 7.1347(27) 7.8722(17) 5.5917(17) 90.07(2) 100.96(3) 105.92(2) 296.04(10)

600 7.1404(22) 7.8823(16) 5.5980(13) 90.08(2) 100.98(2) 105.90(2) 297.00(9)

700 7.1525(16) 7.8866(10) 5.6101(9) 90.02(1) 101.04(2) 105.96(1) 298.16(6)

800 7.1625(9) 7.8919(5) 5.6124(9) 89.92(1) 101.10(1) 105.99(1) 298.81(5)

900 7.1666(14) 7.8957(9) 5.6181(11) 89.96(2) 101.05(2) 105.98(1) 299.50(6)

1000 7.1746(11) 7.9009(8) 5.6233(8) 89.93(2) 101.07(1) 106.00(1) 300.27(5)
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with temperature of the unit-cell angles of kyanite are not. Clearly,
further investigation on the thermal expansion of kyanite is
necessary.

This study was designed to evaluate the thermal expansion of
kyanite at ambient pressure using an X-ray powder diffraction
technique.
2. Experimental details

The natural kyanite used in this study was taken from Liu et al.
(2009). X-ray fluorescence spectrometry at the Department of
Earth Sciences, University of Western Ontario indicated a che-
mical formula of (Al1.99Fe0.01)SiO5 for this material (Liu et al.,
2009). The material was also characterized using the powder
X-ray diffractometer hosted at the School of Earth and Space
Sciences, Peking University (X’Pert Pro MPD system; Cu Ka1
X-ray radiation): kyanite was confirmed to be the only solid
crystalline phase, with the room-temperature unit-cell parameters
of a Z 7.115(2) Å, b Z 7.841(2) Å, c Z 5.573(2) Å, a Z 90.01�

(3), b Z 101.13�(3) and g Z 105.96�(3), which are essentially
identical to the values from the JCPDS reference pattern card
Table 2 Thermal expansion coefficients of kyanite.

Data source a b

This study 5.8(3) � 10�5 5.8(

Skinner et al. (1961) 6.9(2) � 10�5 6.6(

Winter and Ghose (1979) 5.6(5) � 10�5 5.1(

Gatta et al. (2006) 5.3(1) � 10�5 5.8(
11e46. Its unit-cell volume at ambient pressure was determined to
be 292.8 � 0.1 Å3.

High-temperature X-ray diffraction experiments on kyanite at
ambient pressure were carried out as well with the X’Pert Pro
MPD system at the School of Earth and Space Sciences, Peking
University. An attached Anton Paar HTK e 1200N oven with
a Eurotherm temperature controller (Eurotherm 2604; type S
thermocouple) was used to heat up the sample (about 0.20e0.25 g
in mass). The maximum temperature achievable with this heating
system is 1200 �C with an accuracy of �2 �C; the controlling
thermocouple was checked against the melting point of NaCl. The
oven ran in a vacuum chamber with a nickel window, in order to
protect the heating element. The X’Pert Pro MPD diffractometer
system was equipped with a Cu target, and was operated at 40 kV,
40 mA, with a scanning step length in our experiments of
0.017�2q. The alignment was done at ambient temperature only
with a standard of silicon crystalline powder.

Two series of experiments were conducted up to 1000 �C, with
the material from the first series reused in the second. The heating
and data-collection procedures were as follows: after collection of
X-ray diffraction data at a given temperature, the sample was
heated up to the next setpoint using a fixed ramp; the kyanite
c v

1) � 10�5 5.2(1) � 10�5 7.4(2) � 10�3

1) � 10�5 6.0(2) � 10�5 8.3(2) � 10�3

1) � 10�5 6.0(3) � 10�5 7.4(2) � 10�3

1) � 10�5 5.2(1) � 10�5 7.4(1) � 10�3



Figure 3 Variation of a-axis of kyanite with temperature. Solid

circles, data collected at different temperatures in the 1st series of

experiments; shaded circles, data collected at different temperatures in

the 2nd series of experiments; empty triangles, data from Gatta et al.

(2006); pluses, data from Winter and Ghose (1979); diamonds, data

from Skinner et al. (1961). For most data, error bars are smaller than

or equal to symbol size.

Figure 5 Variation of c-axis of kyanite with temperature. See the

caption of Fig. 3 for the symbol information and datum sources. For

most data, error bars are smaller than or equal to symbol size.
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sample was then allowed to relax before collection of the powder
diffraction spectrum. In the first series of experiments, the heating
ramp was 10 �C/min, the equilibration time was 5 min and data
were collected between 10 and 80�2q. The same parameters in the
second experimental series were 2�C/min, 10 min, and
10e120�2q, respectively. The thermal relaxation interval of the
sample was, thus, evaluated by changing the heating ramp and the
equilibration time: as detailed below, these two heating and data-
collection procedures generated essentially identical results.

According to our experimental procedure, realignment of the
experimental system was not made for high temperature. Because
Figure 4 Variation of b-axis of kyanite with temperature. See the

caption of Fig. 3 for the symbol information and datum sources. For

most data, error bars are smaller than or equal to symbol size.
of the thermal expansion of the furnace and sample holder
components, the sample position is slightly, but progressively
elevated as temperature is increased, so that the X-ray diffraction
data are subjected to a small zero-point shift. As a first-order
approximation, we used the peak positions of the well-resolved
reflection lines 100 and 200, obtained from the raw X-ray
diffraction patterns, to calculate the zero-point shift:

sin

�
f2 � d

2

�
Z2sin

�
f1 � d

2

�
;

where f1, f2 and d are the 2q value of the peak 100, 2q value of
the peak 200, and zero-point shift, respectively. The results are
shown in Fig. 1, and are well represented by the
equation dZ 0.014(3) þ 0.000240(5) � Twith d in � and T in �C.
Testing was also done with different peak pairs such as 100 and
500, and no real difference was found. Subsequently, small
adjustments according to our regressed equation were made to the
raw X-ray diffraction patterns before we fully processed them to
determine the unit-cell parameters.

Kyanite is of low symmetry (space group P1) and has large unit-
cell parameters. Consequently, in order to achieve good data quality,
kyanite should be probed by X-ray radiation of long wavelength
whenever possible. Both this study and that of Skinner et al. (1961)
used copper as the X-ray target. As shown in Fig. 2, even with the
Cu Ka1 X-ray radiation, some peak overlap is still inevitable; for
instance, peak 2e11 slightly overlaps with peak�2e11, peak�112
with peak �130, peak 012 with peak 030, peak �131 with
peak �202, peak �212 with peak �230, and peak 112 with
peak�2e12. Since Winter and Ghose (1979) used Mo as the X-ray
source, and the wavelength of the neutrons in Gatta et al. (2006) was
1.09600 Å, a more severe peak-overlap would be expected in these
two studies. To avoid the peak-overlap problem, we used only well-
deconvolved peaks between 10 and 43�2q to refine the unit-cell
parameters. These peaks were 100, �110, 110, �111, 020, �210,
200,�211, 021,�220, 210,�102, 2e11,e2e11,�112,�130, 012,
030, 2e21, �131, �202, �212, �230, 1e31, 0e22, 031,
220, �2e21 and �2e12.



Figure 6 Variation of angle a of kyanite with temperature. See the

caption of Fig. 3 for the symbol information and datum sources.

Curves are fitted visually. For most data, error bars are smaller than or

equal to symbol size.
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3. Results and discussion

Both series of experiments were conducted up to 1000 �C at
ambient pressure, and neither showed any apparent evidence of
potential phase transition, in agreement with previous high
temperature investigations (Skinner et al., 1961; Winter and
Ghose, 1979; Gatta et al., 2006). According to published experi-
mental data (Kerrick, 1990, and references therein), andalusite is
the room-P stable form at high temperatures; prolonged heating of
kyanite in this investigation did not produce any andalusite,
evidencing the sluggish nature of the polymorphic phase transi-
tion. Typical X-ray powder diffraction patterns are shown in
Fig. 2. The effect of temperature on the unit-cell parameters is
Figure 7 Variation of angle b of kyanite with temperature. See the

caption of Fig. 3 for the symbol information and datum sources.

Curves are fitted visually. For most data, error bars are smaller than or

equal to symbol size.
summarized in Tables 1 and 2, and graphically illustrated in Figs.
3e9. For the purpose of comparison, the results of Skinner et al.
(1961), Winter and Ghose (1979) and Gatta et al. (2006) are also
plotted on those figures.

Figs. 3e5 show the variation of the unit-cell parameters a,
b and c with temperature. In general, a, b and c increase almost
linearly with increase in temperature. To keep the regression
simple, the axial thermal expansion coefficients ðajZl�1

j ðvlj=vTÞÞ
were eventually calculated by a linear regression through all the
data points obtained in our experiments; they are aa Z 5.8
(3) � 10�5, ab Z 5.8(1) � 10�5 and ac Z 5.2(1) � 10�5 �C�1.
Comparing these values with the results in the literature (Table 2),
we can find an excellent agreement among this X-ray powder
diffraction study, the single-crystal X-ray diffraction study (Winter
and Ghose, 1979) and the neutron powder diffraction study (Gatta
et al., 2006). The earliest X-ray powder diffraction study done by
Skinner et al. (1961) apparently resulted in larger thermal
expansion coefficients, especially for the a-axis.

Figs. 6e8 show the variation of the unit-cell angles a, b and g

of the kyanite lattice with temperature increase. For all three
angles, our data define complicated variation patterns: the a-angle
appears to increase with temperature increase up to about 500 �C
and then to decrease; the angles of b and g, however, show the
opposite trend. Additionally, the results show that large discrep-
ancies clearly exist among all the experimental investigations. The
values of the a-angle obtained by the neutron powder diffraction
method (Gatta et al., 2006) are clearly larger than those con-
strained by the X-ray diffraction method (Fig. 6); and, Skinner
et al.’s (1961) data clearly fall outside the main population of
data points (see Figs. 7 and 8). This complicated situation most
likely resulted from the fact that kyanite has low symmetry (P1)
and large unit-cell parameters. Therefore, high-temperature
single-crystal X-ray diffraction would be desirable to resolve these
discrepancies.

The volumeetemperature data are shown in Fig. 9. Our data
suggest that the unit-cell volume at 1000 �C is just w2.4% larger
than that at 28 �C, indicating a small volumetric thermal expan-
sion coefficient for kyanite. We used the equation to linearly fit all
Figure 8 Variation of angle g of kyanite with temperature. See the

caption of Fig. 3 for the symbol information and datum sources.

Curves are fitted visually. For most data, error bars are smaller than or

equal to symbol size.



Figure 9 Variation of V of kyanite with temperature. See the

caption of Fig. 3 for the symbol information and datum sources. For

most data, error bars are smaller than or equal to symbol size.
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our volumeetemperature data, and obtained aV Z 7.4
(1) � 10�3 �C�1, which agrees perfectly with the results from
Winter and Ghose (1979) and Gatta et al. (2006). In comparison,
the volumetric thermal expansion coefficient determined by
Skinner et al. (1961) now appears too large (Table 2).

For many silicate minerals, isobaric thermal expansion and
isothermal compression have generally opposite effects on
changes in crystal structure (Hazen and Finger, 1982; Yang et al.,
1997b). As illustrated in Fig. 10, kyanite shows this behaviour: the
c-axis has the largest compressibility and thermal expansibility,
and the a-axis has the smallest compressibility and thermal
expansibility. However, since kyanite is triclinic, it should be kept
in mind that the principle axes of the strain ellipsoid do not
coincide with the unit-cell axes.
Figure 10 Variations of unit-cell dimensions (d/d0) with V/V0.

Solid diamonds, axis a; empty squares, axis b; solid triangles, axis c.

High-pressure data are from Liu et al. (2009).
For the three Al2SiO5 polymorphs, the volumetric thermal
expansion coefficients generally increase in the sequence of
andalusite > kyanite > sillimanite. The unit-cell parameters of
andalusite taken from Skinner et al. (1961) suggested a volumetric
thermal expansion coefficient of 1.25(1)� 10�2 �C�1, whereas those
from Winter and Ghose (1979) suggested a value of 8.4
(1)� 10�3 �C�1da difference up to about 50%. For sillimanite, the
values were constrained as 6.7(3)� 10�3 �C�1 (Skinner et al., 1961)
and 4.8(1) � 10�3 �C�1 (Winter and Ghose, 1979), so that the
difference here is also close to 50%. Accordingly, more careful
investigation on the thermal expansion of andalusite and sillimanite is
desirable. Regarding the compressibility of the three polymorphs, the
sequenceof the bulkmoduli is kyanite> sillimanite> andalusite, and
has been better constrained than the sequence of the volumetric
thermal expansion coefficients. As summarized by Liu et al. (2009),
the bulk modulus of kyanite is about 196(6) GPa (when the first
pressure derivative is set at 4). The values obtained by Yang et al.
(1997b) for sillimanite and andalusite are 171(1) and 151(3) GPa,
respectively.
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