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(ii) For any q z E.. lfG,,(q,  E) (I has a winning strategy in C&&j,  E), i.e. E is
B IV-spaze  in the sense of [4jj.

(iii) E is strictly Fr&chet.
(iv) E is FrGchet.
(v) E is sequential.
(4) t(E) = 0.

It is very easy to see that each property implies the next one. only (VP+ (vi) is
not quite trivial; for its proof see 12, p. 871.

We prove now by examples that none of these imphcations  is reversible.
(ii)*(i). ‘Iake  the one-point compactification  of an uncountable_&crete space

[4, p. 3411.
(vi):$(v). Let h’ denote a countable discrete space, $SM its Stonexech corn-’

pactification,  p E @+ &. If E is the subspace  fV u(y), then E is a suitable example
[Z. p. 2291.

Note that no compact Hausdorff space of this kind is known [l].
(v)+(iv). A compact Hador example  is given in [2,3&I].
(i:t)*(iii). Example 1.4.17 in [2] is a L&table space. We n.ow give a compact

Haiisdorff counter-example. Let X be the ‘IWO  arrows space“ @, 3.lO.CJ>* Let E
be ,!he quotient of X XX de@* ;bd by the equivalence relation, the only non-trivial
element of which is the diagonal  ,hj.

E’ is Fr&het  [Z, p. 1341; we prove it is not strictly Fr&het.
Let S denote the image of 41 by the quotient mapping and choose an enumeration

(t, : n E o) of the aationals  in the interval (0,l). For n E o put

A, ={((a, rj),(b,O)):O<:a,b<l,r,-2’“<~<&(r,}.

Evidently A,, c E, 6 E &, /n c to). If pn = (la,, Oj, (b,,,  0)) E A, for n E o, tLen it is easy
to find a subsequence  QQ: k E 2) with

However, this means that limk pnk = ((x, 0), (x, 1)) f 5: so lim pn = S &m not hold.
Before we proceed to the example for (iii)+(ii) we mention a result pf> FL.



‘Zt is fW&re that E is R&bet. (MM: a tree either contains infinitely many 
pairwia: &xqparable.elements QT can be covered with finitely many branches). 
Using n~&#rat~ .sttiy countable subspace ,cbf E is Arst;countable we get that E is ,i’l ‘i ,,LT ,_ i.l , , 
~~~~~.~~~et.“~~~t~.~ther: hfmd p&qwr P has na’WS in GnP(q, _E?), either. Assume 
that ‘&is. a stratew of I. We may assume without l;oss of generality that’ each move 
of I has the form U(F) where F is a finite subset of E _- (q} and u(F) = {x E E: x 4 y 
does not hold for any y 0). Using now that each level of an Aronszajn-tree is 
countable we get a limit ordinal LY <ml such that if Flayer II picks points always 
below the &,tb $3~44; then tltei finite sets F determining the responses U(F) of player 
‘I according to rfie strategy S are also b&w the arth level. 

Know fI selects any point x from the llrth level and in any step he chooses a 
qr, 4x, then Iim qM = q does not hold. 

DeriiilHtteon (F. Galtin [3], R. Telg&sky [lo]). Let x be a topological space. The 
pailtt-q&n game GPO(X) is defined as fallows. It il played by two players; I and II. 
In the nth step (n E o) I chores a finite subset F, of X and %I selects an open set 
G, in X, F, c G,,. I wins if U(G,: n E O} = X, otherwise II wins. 

DefW&rpn. A family of subsets (PQ of a set X is said to be an w-cover of X if for 
any finite subset F of X there is an A E ,d with F’c AL. 

Definition. If {An : n E o) is a sequence of subsets of a set X, 

If & is a family of subsets of 3 set X, then L(d) denotes the smallest family of 
subsets of X containing & and closed under Lim. 

Consider now the following list of properties of a topologisai space X. 
(ar) X is countable. 
(8) 1 t G,(X). 

e G,, E 9 with ‘Lim G, = 
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($1 *(E) Let 48 be an open o-cover of X and let ls4 denote t&s family. 168, the 
A CX for which there is a c~srM&k g=!# such that 9!l&)(Al; 
( = {G n A: G c, So}) is an u-cover of the subspace 24. It is easily seen that %fk d 

= E(d), hence X E L( ’ ,F, /I ,- 

For the proof of (fl)+ (y) we need 8 modifications of- the pcintqen-Gk the. 
stict pint-open game GL (Xi. Its rules ate the same’as those of the,origiplal me, 
i.e. in the nth step I chooses a finite set & 6 X and II an ~pewse%- G,, ,1pn cz ‘Gh ‘= X, 
but I wins if Lim G,, = X -- 

Thearea 1. ItG,,(X) iJV~&,(X). 

Roof. To prove the non-trivial part, assume S is 3 WS of 3 in Gr,&Y). We shall 
say that a sequence ((F,, GJ: i < w} is compatible with S if Ff is finite3. Gi is open, 
F; c Gi for i < o and for any k C W, .Fk 3 T((Gi: i <: k.)). Evidently if ((&, Gi): i Co) 
is compatible with S, then ((Fi, GJ: i <w) is a win for I. We ROW givre a WS for I 
in C&(X). Assume it is f’s turn after the moves ((I$, G,): i < n). Choose a sub- 
sequence (i,: j <k) with OsiO+* l c ik c ?I and put F(io, l . l , ih) = S((Gi,: j s k)). 
Finally, Iet Fn be the unior-! of all such finite sets. It is easily seen that if ((& Gd): i < o) 
is a game we get, by using this strategy and 0 < iO < il <a l l < i,, <: l l l is any infinite 
subsequence, then also the game ((F;:,, Gdk): k co) is compatible with S and hence 
a win for I; consequently !J.!I&,: k < W) = X. This means just that Lim G,, = X. -_ 

Problem. Are the games G, and GL equivaknt also for ptayer II?’ 

We are now ready to prove the implication (@,&(Y). Indeed, if $9 is an open 
o-cover witnessing that (y) does not hold, then II has a WS in GL(X); in the nth 
step he simply chooses a G, E g with F, c C,. 

Note that exactly as in the proof of Sharma’s theorem in Section 1, it can be 
shown that II has a WS in G”,(X) iff (y) does not hold. 

We now iorniulate the main theorem of the paper. 

eorem 2. Lci X be a Tychonoff-space. If E = C(X), then the followitrg implica- 
ticns are valid. 
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(It is enuugh to’ p$XWe rpn!y this because C?(X) is a topological group.) Let S be a 
fix&i VI inning strategy of I for C?“,,(X)* NOW the strategy of player I is the following: 
He *mentally plays also another_ game on the ‘bqarrd’ X according to S. After a I 
matrrS O! play&II dn the genuine b&ard, C(X) he ‘tk&ia.t& this move to a move 
of IA’@ th& b@ti X; r~pQhalls to It according to $ and then translates his own 
resp&xseto a mov&n t.he board 64X)* 

Nowi if the winning move of player I in the game on the board X is F,, then 
let his move on the herd C(X) be 

c(:, = U(& 2-‘7 = {f~ C(X): If(x)1 < 2-” for any x E F,}. 

If II’s response is fn E U& then let the move of the imaginary player I1 on the 
board X be 

c, = {x E x2 Ifn*(X)i e 2--“). 

As fn E U(Fn, 2”‘1!3 Gn is open and Fn c Gn, hence this is a correct move. 
’ Using that S is a winning strategy of I in the game Gh (X), Lim di,‘ = X; hence 

for any x E X there is an ~~ E o such that for n 3 ltor w E Gn. Consequently Ifn(x)l < 
2-n for 8 Z= no atid sir> the sequenqe (fn : n E c1p) converges to 0. 

The proof of the other half of the proplosition is sir,lilar. If S is a WS for I on 
the board C(X) (in the game G,,(O, C(X))), our sclem=z for the translations is as 
follows. If the winning move of I on the board C(X) iH U(r;l,, E), then his move 
on the board X is to be Fn. If 11% response is the 13pen set G,, F, c G,, choose 
any fn E C(X) with fn 1 Fn =E 0, jn I (X -GO) a 1. AS X is Tychonoff, there exists such 
a function fn ; interpret it as II’s response on the board C(X). This is a coi.rr=ct 
move because fR g U(F,, e). 

Using now that S is a winning strategy for I on the board C(X), fn + 0. Con- 
sequently for any x EX there is an no E o such that fn(x) c 1 for it a pto but then, 
x E G, for n a no, i.e. Lim G, =X. 

To prove (iii) Cs, (iv)G(r) we prove (iii) $ (ivj * (7) * (iii). 
(iv) 3 (y)* Let 99’ be an open w-cover of X and put 

Qi = {f~ G(X): 3G E 99 (x E X: Ifix) < 1) c G}. 

Note that 0 E $ (the closure taken in C(X)). Indeed, if WF, E) is a basic: n&$bo~r- 
in C(X), choose a aS E 38 with F c G and an f E C(X), osf s 1 with 

I (X - 6) = 1. Evidently then f tz U(F, E) n 42 Now, as C(X) is assumed 
to be Frechet, there is a sequence fn E @ with fn + l GxxBe a set G E 3 with 
ix 02 tfne>l< 11 

The proof of (y) ii) will be carried 4)~; via a new property for X* 
(7’) lf (g8: 0 e m) is a sequence of open w-covers of X, then there is a ! ewence 

ence of open 6+covers of 
pa E U, it is enou 
a sec&rence 



4s 0 E &, @a c C(X), YH is an open t*cover of X for any 82 6 t.0. Choose a Gn E $I& 
with Lim G, =X.IfG~={x~X:~f,(x)~<:2-~;),where~,~~~,then~’,~9. 

(v)j(a). Assume C(X) is sequential and let @ ~HZ an open &cover of X, :?at 

* T&mm *&am+ ~~WlI~ 4lIQ4 3 ia an open @cover of X and 99 e t(g), we get that 9~ 4. Moreover, 
@ is sequentiatly closed because if fn E (I, :xnd pn +‘E C(X), choose a &t 1;, E L,(3) 
with {x E X’: Ifn (x)1 c 1) c L,. 

If L = Lim L,, then L E L(46) and {x E X: I{(x)1 c 11)~ L. Consequently @E t!j so 
.XEt(g--- 

Problem. Is (8) => (v) true? 

We shall show in Section 3 that in a suitable model of ZFC the answer is yes. 
For the proof of (vi) e (E) I remark that Arhangel’skii and Pytkeiev proved [1, 

Theorem 41.23 that r(C(X)) = ti iff X” is LindeIiif for each tt E CO. Cor,r;6;quently 
the equivalence follows from the following Proposition. 

Buoposition. X” is Linderiif for each n E 8~ iff Xsatisfies (8). 

Proof. If X” is LindeEf for each II E &r) irnd 5!? is an open o-cover of X, it is easily 
Seen that 

W’={G”:GE 

3s an open cover of X” for n EW. 1% S,, c 3 is countable and 46: ~yvvers X” for each 
n, then S$,, = ~9~: ,- - E U} is a countable Iu-subcover of 3. Conversely, if X satisfies 
!e ) and % is an open cover of X”, put 

% = {G c X: G is open in X, G” can be covered 
with finitely many sets of 4!Z). 



(6) $9 (y) This problem will be discussed in Section 3. 
(c) =$(6) Simple example is the closed interval [O, I]; see Lemma 1 at the 

beginning of Section 3 and the Proposition. 

In this section we study properties (j3), (y) and (6). 

TBeoretir 3. Any of the properties (a)-(s) are hewditary to closed wkspaces md 
&3tMwUs images. 

hf, Routine. 

A certain converse holds for (y) and (6). We begin with a lemma. 

~ernma I. The iEternal I =: [0, 1] does not satisfy (6). 

en&e the family of open sets of I having Lebesgue-measure =G $. 
asurable subsets of 1 having Lebesgue- 



158 
. 

proof, If ind X # 0, there is a point x E X md.a, n&glb~W~~U Qb x in X. awh 
that there is no ckqxn set V with x E V C U SHOOS% B CQ~&NIOQ& d+ fkq%ct&n f 
onXwithO~f~f,~(~)=O~~(X-~)~1.Now~X~~~~~f]~~~~~if,O<~~1, 
then f’([O, 6)) c U is not closed and there is therefort a y 6 X with fl;r) = 6. 

Tkeorear 4* Let X k clech-comp!ete. men we haue ilkme possibilities. 
;a) If X is not Lindeliif, then t(C(X)) > o. - , 

(b) If X is Lindel6fand not scattered, then tic(X)) = cd and C(x) is mt sequential. 
(c) 11 X is LindeGf and scattered, theH C(X) ,~&sfies (ii). 

Proof. (c) If X is Lindekf and scattered, then by a result of R. Telgksky [lo] X. 
satisfies (/3). 

(b) As the product of countably many LindeBf &ch-complete spaces is again 
Eindelaf [Z, 3.9.F], X satisfies (e), 0n the other hand, it is eqy <to see that a 
?on-scattered tech-complete space contains a compact subspace which ~QI be 
continuously mapped onto the Cantor-set, hence onto ihe closed interval I so, by 
3,‘heorem 3 and Lemma I, X does not satisfy (6). 

G~~Iiary. U X be GI compact rTz-space. C(X) is Ftichet ifl X is scattwed. 

meorem 5. 7%e space X satisfies (y) (resp. (6)) iff X suti@es (E ), and et&of its 
continuous images on the real line satisfies (y) (resp. (8)). 

Proof. The necessity is obvious. Assume now that X satisfies (E) but does not 
satisfy (y). ILet 3 be an open cila-cover of X witnessing that X does not satisfy (y). 
Using that X can be assumed to be zero-dimensional (see the argum&t of thts 
corollary to Lemma 1) and satisfies (E) we can suppose that %# is countable anti 
consists of clopen sets. The members of 93 and their complements define a coarser 
zero-dimensional topology on I’; it has also a countable base. In general it is nqt 
a &-space but identifying the points with identical closures [2, 2.4.A] we get a 
cor:.=inuous mapping f: X -b M where M is a zero-dimensional separable met&able 
space and hence homeomorphic to a subset of the real line. It is immediate that 
/IX) = M does not satisfy (7). The proof of the case for (6) is perfectly an&go&. 

‘We shall now prove that (8) is a very strict restriction for a subset of the real 
line; Indeed (6) implies property C”: 

A space x Eatisfies C”, [Q], if for any sequence (S$ : n E w) of open covers of X 
bhere is a sequence G, E 3, with u(6, : n E o) = X. Let # = (%?& : n E w ) be a sexpwnce 
of open covers of the space X. A set A c X is said to Se #-small if for any ~lt E w 
there are a k E w and sets Gi E E4,+i (i < k) with A c U {Gi: i < k}. 

Let now (*:) be the fo~lowin erty : 
is a sequence of open covers of X, then X is the tinio 
SHS. 
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ZbWa@d& The property (6) implies (*)” * 

RWQL Ass~ae X satisfies (8) and q5 = (%F& : n E w) is a sequence of open covers of 
X Using now that X must be a Liildel&f-space WC can assume that $J,, is local114 r 
finite for any it E w. For p1 E o put now 

2& = {(JfFi: i < 2n + 1): Gi E %Jn2+i}, %=u(z@: n Ew) 
I *. 

8 is then an open w-cpver of Xl Put 

98 = (UC& : n e w): S, t X ls &small}. 

Evidently %‘c=: 9$ w &8; we assert that & u $8 in closed under Lirn, hence L(Z) c 
.& u @, Indeed, let T, Ed u 3 (n e o), &= Lim TB. If for infinitely many ~2’s 
T=,, E 98, then T is contained in the union of these T,‘s, hence T G 3. so we can 
assume that T,, E & for each n E o. Consequently, T, c Hn E 8’ for a suitable H,. 
For each II ELM there is a &fn)~w with H, E R$(,,). If now the slet {k(n): n E W} is 
infiriite, then T is, evidently, the union of countably many &small se::s. Otherwise 
for intiitety many indices tz k(n) = k is fixed, hence 7’~ Lim K,,, K, E Zk (n E 0). 
Using now that any of *he systems gkz+i (i s 2k) is point-tinite, it is not drfficult to 
see that 7’ can be covered with a member of 3&. 

As X satisfies (S), XE L(R) c d u 3, If Xg B, then X E J& hence a suitable 
member H of %!’ covers X; 1et H G xR. Drop cut Zn ; repeat the above argument 
for $Y = U {3&k: it < k < 0). Then again a suitable member H’ of Z’ covers X ; let 
H’ E 9&t. Put Z’ = u (3&: n’ 4 k < 0). Etc. 

We get in this manner t1lat X is indeed #-small. 

Corollary. PIoperty (6) implies property C”. 

Proof. Let & = (%&,: rt 6 o), X = U {&: n E o}, let S, be &-small. Choose an no e ce), 
Gi E 3i, i (no with 5’0 c U {@ i < na}. Then choose an nl E o and for any i with 
n&<nl aset GiECYi withS1cU(Gi: no6i<nI}etc. 

%k get thus a sequence {nk : k < 01 and sets Gi E 54$ with Sk c U {G:: ?& s i < Q+I}. 
NowX=IJ(@ i<w). 

Note that property (*) is strictly stronger than C” even on the real line. Indeed, 
a standard example for an uncountable linear set satisfying C” is a Lusin-set C% 
However, a Lusin-set does not have property (*). 

Let X c I$; X is said to be al;vnys fi, SP caleg~ry if for any perfect 
n is first ~a~~~~~~ in 

ently a Lusin-set is ~t0t always first category, Mowevrrr, if X c R satisfies (*), 
oose a perfect subset i$C 



(&sure in P). Evide:ntly 4 = (9,: n E 0) iS it SqUetle. 6f OpMl il!ONti Of X Sf 
A c X is &-small, then A is nowhere dense in P: herape 8 ” P:,ipl.$rN_c; in P. 

In view of Theorem 5 it would be very important to li.saOW iM&@ #& r&+vial 
(i.e. uncountable) subspaces of the reals with property (8) (tir’(j#i %’ ’ ” ’ ^ 

The answer depends on the set theory we @OCEZ. : ,. 

Theorem 7. It is consistent with ZFC to assunw that for ariy qpactt X, t?(X) is 
sequential i’ it is Frkhet, 

Rd&na, Is (S) 3 (y) true (in ZFC)? Is there a model of ZFC in which (8) + (y) 
does not hold? 

Wdel2. Assume MA + 2” > 01 and take a subspace X of size ~1 of the reals. 
Theo; X does not sa?isfy 6) (by a result of R. Tel&rsky, a met@&e slpace s&sties 
(/3) iff it is countable) but it has the' property (7). InAeeb, iet 3 be a countable 
open o-cover of X, We construct now a partially ordered set F. H;ts &3nents are 
pairs p = (p;s 4) where F E [XluL’ and & is a function from a fi,nite subset (crf IX) into’ 
%* If p = (Et +), p’ = (F’, +‘Z are members of P we put: p’ < p ifi F c F’, 4 c #’ and 
for any n E Dam 4’ - Dtsnr: 4, K: c 4’(n) holds. 

It is very ear/ to clleck that P is indeed a partially ordered set, it is ccc and 
IPI = IX) = w 1 a: 2’. Mcpzover, 8 the deftrse sets we take into account are 

L&={(F,&EP:xEF~ (VEX), 

D:, =~[(F,#b)~i’%nEom#) (new), 

then a generic set over P gifts rise to a sequence G,, E 4$ with _Eim G, =X. 

Assrlming ZFC‘ 6 C5-T a construction was given by F. Galvin of an uncount- 
able sukgace of the reak which satisfies property (v). 
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