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i and.E.G: Pytkeiev, the space C(X) of the continuous real
pomtmse oanvergesnce has tightness o iff X" is Lindeldf
I convergence properties of C(X) (e.g. the

mpemes of X

 topology of pointwise convergence
topo!ogml games

1. Th» nelthm& peini e

In this paper by a space. we shall always mean a Tychonoff space.

n,(G Gmenhage 14]) -.et E be a tepolegical space, qe E The netghbour-
vint game Giylq, E) is defined as follows. It is played by two players, I and
the nth step (n € w) I choas @ neig bourkood iJ, of q and II selects a point
’?q.. € U,,. I wins if the sequence (g.: n€ o) cohverges to g, otheswise II wins.

efi '-iom ‘Let E be a tcpehagtca! space, q¢eE.

E is. sirictly Fréchetatq if A, < E, q € A, (n € w) implies the existence of a sequence
qn €A, With lim g, = q. E is stric: Iy Fréchet if it is stricldy Fréchet at cach point.

~Eis Fréchet ut q if ‘A< E, q €A implies limg, = ¢ for a surtable sequence {(qn)
with g, € A. E is Frechet if itis Frechet at each point.

E 1s sequentml 1f fer any nan-closed get A€ E theré is'a sequence {(q.) with

the axisténce of afsath £ {A"“" with g e I@
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By a ‘convergence property’ of a. tcpologwal a‘paee E we shallmean one of the
following properties:
(i) E is first-countable. : ‘
(i1) For any q € £. I1Gq(q, E) (I has a winning strategy in G,.,,(q, E), l.e. Eis
& W-spaze in the sense of [4]).
(iii) E is strictly Fréchet.
(iv) E isFréchet.
(v) E issequential.

(vi) {{(E) =

It is very easy to see that each property implies the next one. Oaly (v} (vi) is
not quite trivial; for its proof see (2, p. 871.

We prove now by examples that none of these implications is reversible.

(i) (i). Take the one-point compactification Of an uncountable discrete Space
[4, p. 341].

(vi)=3(v). Let N denote a countable discrete space, 8N its Stone-Cech com-
pactification, p € BN N. |f E is the subspace N u(y), then E is a suitable example
[2.p. 229].

Note that no compact Hausdorff space of thiskind is known [I].

(v)=(iv). A compact Hausdor{¥ example iS given in [2, 3.6.1].

(iv) B (iii). Example 1.4.17 in [2] is a .vitable space. We now give a compact
Hausdorff counter-example. Let X be the “iwo arrows space” [2, 3.10.C). Let E
be the quotient of X x X defi- »d by the equivalence relation, the only non-trivial
element of which is the diagona' 4.

E isFréchet [2, p. 134]; we prove it isnot strictly Fréchet.

L et 8§ denote the image of 4 by the quotient mapping and choose an enumeration
(ra:new) Of the rationals in the interval (0, 1). For n €  put

A, ={((a, 9), (b,0)):0<a, b<1,r,-2"<a<b<r)
Evidently A, cE,6e A, /new). If p, = ((@n, O, (b, 0)) € A, TOF n € w, then it iS easy
to find a subscquence (n,: k € =) with

n, < Qn,,, <bn, ., <bn, li'r‘n an, = li}rcn by, = x.

However, this means that lim, p,, = ((x, 0), (x, 1)) # & SO lim p, = & does not hold.

Before we proceed to the example for (iii) 3 (ii) we mention a result of P.L.
Sharma [8].

Theorem. 11} G.x(q, E) iff there are subsets A, < E, q € A, (n & w) such that for any
sequence qn € A,, im q, = q does not hold. (I1 1 Gp(q, E) means that 11 has a winning
strategy in G, i.e. q is not a w-point).

Hence, to get an example for (iil) (ii} we have to prodice an undecxdcd -gamé
Go(q, E). We present here an unpublished result of A, Hajnal and I. Juhdsz (1977).
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.t E be the. cme«pmnt compacnﬁcation of an Aronszajn-tree with the

ee i3 for the necessary notxons and notanons) and denote by q

inl',It.‘f ST R e SRR

tha* E is Fréchet (Hint ‘a tree elther contains mﬁmtely many
1) ;elemems or can be covered wnh ﬁmtely many branf-hes)

does not hold ,ot any y eF} Usmg now that each level of an Aronszam tree is
i geta llmlt ordmal a <w1 such that if nlayer II pncks points always

3{ g ﬁow II selects any pomt X from the ath level and in any step he chooses a
qn <x, then lxm q,. =¢ does not hold.

2. The point-open game

Definition (F. Galvin [3], R. Telgarsky [10]). Let x be a topological space.' The
point-open game Gpo(X) is defined as follows. It i.. played by two players, I and II.
In the nth step (n € w) I chooses a finite subset F, of X and II seiects an open set
G, in X, F, © G,. 1 wins if LU{G,:n € w} = X, otherwise II wins.

De’ﬁiiiﬁon. A family bf subsets of of a set X is said to be an w-cover of X if for
any finite subset F of X there is an A € of with Fc A,

Definition. If (A, : n € @) is a sequence of subsets of a set X,
LimA,={xeX:3ncw Vn= nox€A,}

If of is a family of subsets of a set X, then L(sf) denotes the smallest family of
subsets of X containing & and closed under Lim.

Consider now the following list of properties of a topologicai space X.

(a) X is countable.

(B) 11 Gpo(X).

(y) If 9is an open w-cover of X, then there is a sequence G, € ¥ with Lim G, =
X '

(8) If ¢ is an open w-cover of X, then X ¢ L(%).

{¢) Any open w-cover of X contains a countable w-subcover.

We prove now that any of these properties implies the next one. Here (@)= (8)
and (v)=>(8) are trivial.
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(8)>(g) Let ¢ be an open w-cover of X and let of denote thie family of thcsei

AcX fo which there is a buu!alub{vp uow-(g -such uhuﬁ : go{l 1,{:1}?

(={GNA:Ge %) is an w-cover of the subspace A. It is easxly seen that Yo
an¢ of = L(sf), hence X e L(¥)c L(sf)=od. b 3%

£3 ) & : N
For the proof of (8)=>(y) we need a medaﬁcanene.%*

strict point-open game Gy (X). Its rules are the same as: those of the ongmai game,'
i.e. in the nth step I chooses a finite set F, = X and Il an openset G,, F, < G, =X,

but I wins if Lim G X.

Theorem 1. ITGpo(x) iﬁITG;o(X).

Proof. To prove the non-trivial part, assume S is 3 WS of I in Gpo(X). We shall
say that a sequence ((F,, G,): i <w) is compatible with § if F; is finite, G; is open,
F,c G, for i <w and for any k <w, F;, = S({G;: i <k)). Evidently if ((F,, G): i <w)
is compatible with S, then ((F;, G,): i <w) is a win for I. We now give a WS for I
in Gpo(X). Assume it is I’s turn after the moves {(F,, G;): i <n). Choose a sub-
sequence (i;: j< k) with 0<iy<-:-<ix < 2 and put F(io, * - -, i) = S{G,: j<k)).
Finally, let F, be the unior of all such finite se's. It is easily seen that if (F}, G;): i <w)
is a game we get, by using this strategy and 0<ip<i; <- - -<i, <- - - is any infinite
subsequence, then also the game ((F,,, G, ): k <w) is compatible with § and hence
a win for I; consequently ! _J{G, : k <w}=X. This means just that Lim G, = X.

Problem. Are the games Gy, and Gp, equivaicnt also for player 7!

We are now ready to prove the implication (8, (¥). Indeed, if ¢ is an open
w-cover witnessing that (y) does not hold, then II has a WS in G,,(X); in the nth
step he simply chooses a G, € ¢ with F, < G,.. ' |

Note that exactly as in the proof of Sharma’s theorem in Section 1, it can be
shown that II has a WS in Gp.(X) iff (y) does not hold. ‘

We now fornizulate the main theorem of the paper.

Theorem 2. Lei X be a Tychonoff-space. If E = C!{X), then the following implica-
ticns are valid.

E=C(X) (i) = (il) = (iii) & (iv) > (v) > (vi)
¢ ¢ v 8
X (@)= (B) =2 (¥} = (8)=> (e)

Proof. (i) < (@) R is regular and C(X) is dense in it (cf. [2, 2.1.C]).
(i) <> 2) Assume first that player I has a WS for G, (X); we descriive a WS cf
I in the game G,,(8, C(X)), where 0 denotes the identically zero functicn on X.

" F Galvin has shown that in some i dels of ZFC there is a subspace X of the reals such that II
has a winning strategy in G, (X)) but not in Gyo( X).
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(It is enough to prove only this because C(X) is a topological group.) Let S be a
fixed winning strategy of 1for Gpo(X). Now the strategy of player I is the following:
I-Ie mentally plays also another game on the ‘board’ X according to S. After a
n the genuine board C(X) he ‘translates this move to a move
.of: ; sponds to it aecnrdmg to § and then translates his own
reSponse to a move on the board C(X).

‘Now, if the wmmng move of player I in the game on the board X is F,, then
 let his move on the board C(X) be -

-U’(F 2‘")={feC(X) |f(x)|<27" for any x € F,}.

If II's response is f, € U,., then let the move of the imaginary player I1 on the
board X be ‘

G, ={reX:|fulx)] <27

As f,e U(F,, 2™"), G, is open and F, = G,, hence this is a correct move.

Using that S is a winning strategy of 1 in the game Gpo(X), Lim G, = X ; hence
for any x € X there is an no€ w such that for n = no, x € G,. Consequently | f, (x)| <
27" for n =ny and sv the sequence (f,: n € w) converges to 0.

The proof of the other half of the proposition is siruilar. If § is a WS for I on
the board C(X) (in the game G,(0, C(X))), our sckems for the translations is as
follows. If the winning move of I on the board C(X) is U(F,, €), then his move
on the board X is to be F,. If II's response is the npen set G,, F, < G,, choose
any f, € C(X) with f, | F, =0, f,|(X ~ G,)=1. As X is Tychonoff, there exists such
a function f,; interpret it as II's response on the board C(X). This is a coiract
move because f, € U(F,, ¢).

Using now that S is a winning strategy for I on the board C(X), f,~0. Con-
sequently for any x € X there is an no€ w such that f,(x)<1 for n=n, but then
x € G, for n =no, i.e. Lim G, = X.

To prove (iii) & (iv) & (y) we prove (iii) > (iv) = (y) = (iii).

(iv) = (y). Let ¥ be an open w-cover of X and put

d={feC(X):3Ge9{xeX:|f(x)|<1}=G}.

Note that 0 € @ (the closure taken in C(X)). Indeed, if U(F, ¢) is a basic neighbour-
hood of ® in C(X), choose a G € ¥ with F= G and an fe C(X), 0<f=<1 with
fIF=0, fl(X — G)=1. Evidently then fe U(F, )~ ®. Now, as C'(X) is assumed
to be Fréchet, there is a sequence f, € @ with f, »0. Choose a set G, € § with
{xreX:|f,(x)|<1}= G,; then Lim G, = X.

The proof of (y) => (iii) will be carried ou. via a new property for X.

(v If (9,: n e w) is a sequence of open w-covers of X, then there is a requence
G, €%, with Lim G, = X,

{(y)=> (¥). Let (¥,: ncw) be a sequence of open w-covers of X. As we can
suppose: that 9, is a refinement of ¥, for each n e w, it is enough to prove that
there it an infinite saubsequence (ne: k e w) and a sequence Gy € %,, with Lim
G =X -
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If X is finite, then this is certainly trueﬁ Choose now a sequence (x;. new), :

LY 2
,,cA, AnFEXm A BFATH and pus

%, ={G -{x.}:G=%,}, U=\J{U.:necw}

ividently ¥ is an open w-cover of X hence there i a sequence L) g%‘-‘ im ' o=

. For any k € w there is an n; € w and a set G with: UgCGge@ ;Nowxfnﬁm
qdlr isnleU,thenn,>nso{n;: kew)iginfinite, - g

"}y (iii). Let @, < C(X), 0¢ P, (n€w). Put

ﬂ“

><

$={lxeX:|fx)|<2"):fed,} (nEw)

As 0e &,, d, < C(X), 9, is an open w-cover of X for any new. Choose a Gne‘ 9,
with Lim G, = X. If G, ={x € X: |f.(x)| <27}, where f, € ®,, then f, 0.
(vy> (8). Assume C(X) is sequential and let % be an open w-cover of X. fat

@d={feC(X):ALeL(¥){xcX: tf(x)|<1}cL}

{Jsing that ¥ is an open w-cover of X and QCL(Q), we get th ﬂle &. Mcreover,
< is sequentially closed because if f, & @ nd f, » fe C(X ), choose 'a set L,, E L( (9)
with {x e X: |f.(x)|<1}< L,.

if L=LimL,, then Le L(%) and {x € X:|,(x)]<1}<L. Consequently Qe 4 so
Xell¥).

Problem. Is (8) = (v) true?

We shall show in Section 3 that in a suitable model of ZFC the answer is yes.

For the proof of (vi) ¢>{¢) I remark that Arhangel'skii and Pytkeiev proved [1,
Theorem 4.1.2] that ((C(X))=w iff X" is Lindelof for each n e w. Cons. quently
the equivalence follows from the following Proposition.

Proposition. X" is Lindelof for each n € .0 iff X satisfies (¢).

Proof. If X" is Lindelof for each n € w ind ¥ is an open w-cover of X, it is easnly
seen that

9" ={G":Ge ¥}

is an open cover of X" for n € w. If ¥, < 4 is countable and ¥, covers X " for each
n, then 4, =\ _}{%,: » = w} is a countable w-subcover of %. Conversely, 1fX satisfies
{e) and ¥ is an open cover of X", put

9¥={G<X:Gisopenin X, G" can be covered
with finitely many sets of #}.

It is immediate that 4 is an open w-vover of X and if G, <= ¥ is a countable
a-subcover, then 4 is a cover of X" and the assertion follows.
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i't " Mnnmhbx dienrata space.

mlwv:v WATWA W AW OP

~X satlsﬁes (a) Let now % be an open w-cover of X, We can assume
that 9 is countable PutforxeX

F}{Ge@ xeG).

{UixeX } is an open cover of the Lindelof P-space X. Choose a countable suucover
{U.,: new} and let G, e ¥ contain {x1, ..., x,}.

(8) 3 (¥) This problem will be discussed in Section 3.
(e)=>(6) Simple example is the closed interval [0, 1]; see Lemma 1 at the
beginning of Section 3 and the Proposition.

3. Properties (), (v) and (5)
_ In _this s'ection we study properties (B), (v) and (8).

Thnorem 3. Any of the properties {(a)-(¢) are hereditary to closed subspaces nd
cammuous mmges

l’ti.'mfe Routme

A certain converse holds for (y) and (8). We begin with a lemma.
Lemma 1. The interval I =[0, 1] does not satisfy (8).
Proof. Let ¥ denote the family of open sets of I having Lebesgue-raeasure <i.
T":en L(‘&)f' &%, where £ is the family of measurable subsets of I having Lebesgue-
measure <3, because ¥< ¥ and & is closed under Lim.

’As @ is an open w-cover of I «ud I'¢ L(9), I does not satisfy (5).

Corollary. If X satisfies (8), then X is zero-dimensional.
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Proof. If ind X # 0, there is a point x€ X and a: nexgbbom'hood U’ of x in X such

that there is no Cl“vyv”ﬂ set VwithxeVal. f‘han 2 wﬂﬂﬂae‘d% '

on X with 0<f<1, f(x)=0, AX - U)=1. Now fX=[0, 1] because afo<s<1
then ([0, £))< U is not closed and there is therefore a y € X with f() =¢. -

Tkeorem 4. Let X be Cech-complete. Then we have isvee possabzlmes
:a) If X is not Lindelof, then t(C (X)) > w.
(b) ’f X is Lindelof and not scattered, then t{C(X}) = @ aud C(X Yis not sequemtal
(c) iIf X is Lindelof and scattered, then C(X) sctisfies (ii).

Proof. (c) If X is Lindelof and scattered, then by a result of R. Telgérsny [10] X
satisfies (3).

(b) As the product of countably many Lmdelof Ces h—complete spaces is agam
Lindelof [2, 3.9.F], X satisfies (¢). On the other hand, it is easy to see that a
aon-scattered Cech-complete space contains a compact subspace which c:n be
continuously mapped onto the Cantor-set, hence onto ihe closed mtervax I so, by
“heorem 3 and Lemma 1, X does not satisfy ().

Cornllary. Let X be a compact Tz-space. C(X) is Fréchet iff X is scatiered.

Theorem S. The space X satisfies (y) (vesp. (5)) iff X satisfies {¢), and each-of its
continuous images on the real line satisfies () (resp. (5)).

Proof. The necessity is obvious. Assume now that X satisfies (¢) but does not
satisfy (v). Let ¢ be an open w-cover of X witnessing that X does not satisfy (y).
Using that X can be assumed to be zero-dimensional (see the argument of the
corollary to Lemma 1) and satisfies (¢) we can suppose that ¥ is countable and
consists of clopen sets. The merabers of 9§ and their complements define a coarser
zero-dimensional topology on J.; it has also a countable base. In general it is not
a To-space but identifying the points with identical closures [2, 2.4.A] we get a
cor:linuous mapping f: X -+ M where M is a zero-dimensional separable memzable
space and hence homeomorphic to a subset of the real line. It is 1mmedlate that
f(X) =M does not satisfy (y). The proof of the case for () is perfectly analogous

We shall now prove that (§) is a very strict restriction for a subset of the real
line; indeed (6) implies property C":

A space X csatisfies C", [6], if for any sequence (¥, :n € w) of open covers of X
there is asequence G, € 4, with|_{G.: n ew}=X.Let ¢ ={¥, :n € w)beasequence
of open covers of the space X. A set A < X is said to be ¢-small if for any n e w
there are a k € w and sets G; € 4,.; (i <k) with A <\ J{G:: i <k}.

Let now (*) be the following property:

() If ¢ =(9,: new) is a sequence of open covers of X, then X is the union of
countably many ¢-small sets.
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- The property (3) implies (+).

: Pmof. Assume X satisfies (&) and ¢ = (9,: n € @) is a sequence of open covers of
X. Using now that X must be a Lmdelcf~space we can assume that 4, is locallv
‘ﬁmte for any n € w. For n € w put now

KG.: i<2n+1): Gie %y wh H=Uldnew)
%’ is then an open w-covér of X Put ;

d={AcX:3He¥Ac H},

B={USn: ncw}: S, = X is ¢-small}.

Evidently # < o U%; we assert that &/ U ® in closed under Lim, hence L(%)<
HUB. Indeed, let T,eLUB (new), p=Lim T,. If for infinitely many n’s
T.e®, then T is contamed in the union of these T,’s, hence T € ®. So we can
assume that T,. e« for each n e w. Consequentl) T, < H, € ¥ for a suitable H,.
For each n sw there is a k(n) € w with H, € #;(,). If now the set {k(n): new}is
infirite, then T is, evidently, the union of countably many ¢-small sets. Otherwise
for infinitely many indices n k(n) =k is fixed, hence T<Lim K,,, K, € ¥ (ncw).
Using now that any of the systems ¥2.; (i <2k) is point-tinite, it is not difficult to
see that 7" can be covered with a member of #;.

As X satisfies (8), XeL(¥)c o uB. If X£B, then X € o, hence a suitable
member H of ¥ covers X; tet H € ¥,. Drop cut ¥, ; repeat the above argument
for ¥ =|_J{#: n <k <w}. Then again a suitable member H' of ¥ covers X; let
H'e%,.Put ' =\J{¥#: n' <k <w}. Etc.

We get in this manner that X is indeed ¢-small.

Corollary. Property (5) implies property C".

Proof. Let ¢ =(9,: new), X =\J{S.: n e w}, let S, be ¢-small. Choose an no€ w,
G,€%, i <ng with So<\UJ{G: i <no}. Then choose an n, € w and for any i with
no<i<n, aset G;e 9 with §; <\ J{G:: no<i<n;}etc.
We get thus asequence {n;: k <w}andsets G; € G, with S, <\ {G:: ni <i<m}.
Now X =\ {G;: i <w}.

Note that property () is strictly stronger than C" even on the real line. Indeed,
a standard example for an uncountable linear set satisfying C" is a Lusin-set [9].
However, a Lusin-set does not have property ().

Definition [9]. Let X =R; X is said to be always fi'st category if for any perfect
set P<R, P X is first category in P.

Evidently a Lusin-set is not always first category. However, if X <R satisfies (¥),
then it is always first category. Choose a perfect subset P<R and let p be a
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continucus Borel measure on P such that for G op
neEw '

9, ~(G=X: Gisopenin X, n(G P/ <2}

(closure in P). Evidently ¢ =(%,:new) is a sequence of apen covers, of X i

Ac X is ¢-small, then A is nowhere dense in P, henoe.X 0.
In view of Theorem 5 it would be very important to kno

(i.e. uncountable) subspaces of the reals with propertyr(S) ‘~(or ;(y)): »
The answer depends on the set theory we: chao*'

Model 1. R. Laver constructed a model of ZFC [ij'lﬁ @'saéh"EQéry”:QQBset of the
reals satisfying C” is countable, In this modzl, by Theorem K (8) unphes (ﬁ Hence

Theorem 7. It is consistent with ZFC to assume that for an snace X C(X ) xs
sequential iff it is Fréchet.

Problem. Is (8) = () true (in ZFC)" Is there a model of ZFC m whxch (6) :} (y)
does not hold? ,

Modei 2. Assume MA +2” >w, and take a subspace X of size w, of the reals,
Ther: X does not satisfy (6) (by a result of R. Telgérsky, a metrizable space satisfies
(B) iff it is countatle) but it has the’ property (y). Indeed, let ¥ be a countable
open w-cover of X. We construct now a partially ordered set P. Its elements are
pairs p = (F, ¢) where Fe[X]™ and ¢ is a function from a finiie subset of w into
. If p=(F, ¢), p'=(F', 5"y are members of P we put: p'<piff Fc F’, d»C:qb and
for any n € Dom ¢' ~ Dot ¢, F < ¢'(n) holds.

It is very ea"; to check that P is indeed a partially ordered set it is ccc and
|P| = |X| = wy < 2", Mcreover, if the dense sets we take into sccount are

D,={(F,¢)eP:xeF} (xeX),
D.={F, ¢)eP:necDom¢) (new),

then a generic set over P gives rise to a sequence G, € ¥ with Lim G, = X.

Model 3. Assaming ZFC + CH a construction was given by F. Galvin of an uncount-
able subspace of the reals which satisfies property (y). '
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