SOME PROPERTIES OF C(X), I

3. GEIRLIIS and 2s. NAGY

Mathamatical Institute of the Hungarian Academy of Sctences, Budapest, Hungary

Recelved 1 April 1981
 Revised 10 Augunt 1981

By e refutiot AV Arhenpeltukil and E.G. Pytkeiev, the space $C(X)$ of the continuous real functions on X with the topology of pointwise convergence has tightness ω iff X^{n} is Lindelöf for every $n \in \omega$ In this paper we describe other convergence properties of $C(X)$ (e.g. the Frechet-Urysohn propetty) in terms of covering properties of \boldsymbol{X}.
In wome cuses the equivalences between these properties turn out to be depondent on the set theory we choose. Some open problems are also stated.

> AMS Subj. Class. Primary 54C40, Secondary 54D20, 54A35 spree of continuous functions topology of pointivise convergence Freche-Urysohn property \quad topological games

1. The nelghbourhood-point game

In this paper by a space we shall always mean a Tychonoff space.

Definition (G. Gruenhage [4]). Let E be a topological space, $q \in E$. The neighbour-hood-point game $G_{\mathrm{np}}(q, E)$ is defined as follows. It is played by two players, I and II. In the nth step $(n \in \omega)$ I chooses a neighbourhood U_{n} of q and II selects a point $q_{n} \in U_{n}$. I wins if the sequence $\left\langle q_{n}: n \in \omega\right\rangle$ converges to q, other wise II wins.

Definition. Let E be a topological space, $q \in E$.
Eisurictly Fréchet at q if $A_{n} \subset E, q \in \bar{A}_{n}(n \in w)$ implies the existence of a sequence $q_{n} \in A_{n}$ with $\lim q_{n}=q$. E is stricaly Fréchet if it is striclly Fréchet at each point.
E is Frechet at q if A e $E, q \in \bar{A}$ implies lim $q_{n}=q$ for a suitable sequence $\left\langle q_{n}\right.$) with $q_{n} \in A$. E is Fréchet is it is Fréchet at each point.
E is sequential if for any non-closed set $A \in E$ there is a sequence $\left\langle q_{n}\right\rangle$ with $q_{n} \in A, \lim q_{n}=q$ and $q \in A$.

Finally, the tightress of E is ω (denoted by $t(E)=\omega$) if $q \in E, A \subset E, q \in \bar{A}$ implies the existence of a set $M \in\left[A^{* * \omega}\right.$ with $q \in M$.

By a 'convergence property' of a topological space E we shall nean one of the following properties:
(i) E is first-countable.
(ii) For any $\boldsymbol{q} \in \boldsymbol{E} \boldsymbol{I} \uparrow \boldsymbol{G}_{\mathrm{np}}(\boldsymbol{q}, \mathrm{E})$ (I has a winning strategy in $\boldsymbol{G}_{\mathrm{np}}(\boldsymbol{q}, \boldsymbol{E})$, i.e. \boldsymbol{E} is a W.space in the sense of [4]).
(iii) \boldsymbol{E} is strictly Fréchet.
(iv) \boldsymbol{E} is Fréchet.
(v) \boldsymbol{E} is sequential.
(vi) $t(E)=\omega$.

It is very easy to see that each property implies the next one. Only $(\mathbf{v}) \Rightarrow(v i)$ is not quite trivial; for its proof see [2, p. 87].

We prove now by examples that none of these implications is reversible.
(ii) \Rightarrow (i). Take the one-point compactification of an uncountable discrete space [4, p. 341].
$(\mathbf{v i})=\boldsymbol{x}(\mathbf{v})$. Let \mathbb{N} denote a countable discrete space, $\boldsymbol{\beta} \mathbb{N}$ its Stone-Cech compactification, $\boldsymbol{p} \in \boldsymbol{\beta} \mathbb{N}-\mathbb{N}$. If \boldsymbol{E} is the subspace $\mathbb{N} u(y)$, then \boldsymbol{E} is a suitable example [2, p. 229].

Note that no compact Hausdorff space of this kind is known [1].
(v) \Rightarrow (iv). A compact Hausdorfif example is given in [2, 3.6.I].
(i\%) \rightarrow (iii). Example 1.4.17 in [2] is a uitable space. We now give a compact Hausdorff counter-example. Let X be the "iwo arrows space" $[2,3.10 . C]$. Let \boldsymbol{E} be the quotient of $X \times \boldsymbol{X}$ defred by the equivalence relation, the only non-trivial element of which is the diagona! $\dot{\boldsymbol{a}}$.
E is Fréchet [2, p. 134]; we prove it is not strictly Fréchet.
Let $\boldsymbol{\delta}$ denote the image of \boldsymbol{d} by the quotient mapping and choose an enumeration $\left\langle r_{n}: n \in \omega\right\rangle$ of the rationals in the interval $(\mathbf{0}, \mathbf{1})$. For $\boldsymbol{n} \in \omega$ put

$$
\mathrm{A},=\left\{((\mathrm{a}, 9),(b, 0)\rangle: 0<a, b<1, r_{n}-2^{-n}<u<b<r_{n}\right\} .
$$

Evidently $A, \subset E, \delta \in \bar{A}_{:}(n \in \omega)$. If $p_{n}=\left\langle\left(a_{n}, 0\right),\left(b_{n}, 0\right)\right) \in \mathrm{A}$, for $n \in \omega$, then it is easy to find a subsequence $\left\langle n_{k}: k \in \dot{w}\right\rangle$ with

$$
a_{n_{k}}<a_{n_{k+3}}<b_{n_{i+1}}<b_{n_{k}}, \quad \lim _{k} a_{n_{k}}=\lim _{k} b_{n_{k}}=x
$$

However, this means that $\lim _{k} p_{n_{k}}=((x, 0),(x, 1)) \neq \boldsymbol{\delta}$ so $\lim p_{n}=\boldsymbol{\delta}$ does not hold.
Before we proceed to the example for (iii) \Rightarrow (ii) we mention a result of P.L. Sharma [8].

Theorem. II $\uparrow G_{n p}(q, E)$ iff there are subsets $A_{n} \subset E, q \in \bar{A}_{n}(n \in \omega)$ such that for any sequence $q_{n} \in A_{n}, \lim q_{n}=q$ does not hold. (II $\uparrow G_{n p}(q, E)$ means that II has a winning strategy in G_{np}, i.e. q is not a w-point).

Hence, to get an example for (iii) \Rightarrow (ii) we have to produce an undecided game $G_{r p}(q, E)$. We present here an unpublished result of A. Hajnal and I. Juhász (1977).

Example. Let E te the one-point compactification of an Aronszajn-tree with the tree-topology (see [7] for the necessary notions and notations) and denote by q the compactifying point.

It is folklore that E is Fréchet. (Hint: a tree either contains infinitely many pairwise incomparable elements or can be covered with finitely many branches). Using now that any countable subspace of E is first-countable we get that E is strictly Fréchet. On the other hand player I has no WS in $G_{n p}(q, E)$, either. Assume that S is a strategy of I. We may assume without loss of generality that each move of I has the form $U(F)$ where F is a finite subset of $E-\{q\}$ and $U(F)=\{x \in E: x \triangleleft y$ does not hold for any $y \in F\}$. Using now that each level of an Aronszajn-tree is countable we get a limit ordinal $\alpha<\omega_{1}$ such that if player II picks points always below the ath level, then the finite sets F determining tine responses $U(F)$ of player I according to the strategy S are also below the α th level.

If now II selects any point x from the α th level and in any step he chooses a $q_{n} \triangleleft x$, then $\lim q_{n}=q$ does not hold.

2. The point-open game

Definition (F, Galvin [3], R. Telgársky [10]). Let x be a topological space. The point-open game $G_{\mathrm{po}}(X)$ is defined as follows. It i., played by two players, I and II. In the nth step $(n \in \omega)$ I chooses a finite subset F, of X and II selects an open set G_{n} in $X, F_{n} \subset G_{n}$. I wins if $\bigcup\left\{G_{n}: n \in \omega\right\}=X$, otherwise II wins.

Definition. A family of subsets \mathscr{A} of a set X is said to be an ω-cover of X if for any finite subset F of X there is an $A \in \mathscr{A}$ with $F \subset A$.

Definition. If $\left\langle A_{n}: n \in \omega\right\rangle$ is a sequence of subsets of a set X,

$$
\underline{\operatorname{Lim}} A_{n}=\left\{x \in X: \exists n_{0} \in \omega \forall n \geqslant n_{0} x \in A_{n}\right\}
$$

If \mathscr{A} is a family of subsets of a set X, then $L(\mathscr{A})$ denotes the smallest family of subsets of X containing \mathscr{A} and closed under Lim.

Consider now the following list of properties of a topologicai space X.
(α) X is countable.
($\boldsymbol{\beta}) I \uparrow G_{\mathrm{po}}(X)$.
(γ) If \mathscr{G} is an open ω-cover of X, then there is a sequence $G_{n} \in \mathscr{G}$ with $\operatorname{Lim} G_{n}=$ \boldsymbol{X}.
(δ) If \mathscr{G} is an open ω-cover of X, then $X \in L(\mathscr{G})$.
(e) Any open ω-cover of X contains a countable ω-subcover.

We prove now that any of these properties implies the next one. Here $(\alpha) \Rightarrow(\beta)$ and $(\gamma) \Rightarrow(\delta)$ are trivial.
$(\delta) \Rightarrow(\varepsilon)$ Let \mathscr{S} be an open ω-cover of X and let denote the family of those $A \subset X$ for which there is a countable $\mathscr{G}_{0} \subset \mathscr{G}$ such that $\mathscr{G}_{0}(n)(A)$ $\left(=\left\{G \cap A: G \subseteq \mathscr{G}_{0}\right\}\right)$ is an ω-cover of the subspace A. It is easily seen that $\mathscr{S} \subset \mathscr{A}$ and $\mathscr{A}=L(\mathscr{A})$, hence $X \in L(\mathscr{G}) \subset L(\mathscr{A})=s \mathscr{A}$.

For the proof of $(\beta) \Rightarrow(\gamma)$ we need a modification of the point-open game, the strict point-open game $G_{\mathrm{po}}^{\mathbf{s}}(X)$. Its rules are the same as those of the original game, i.e. in the nth step I chooses a finite set $F_{n} \subset X$ and II an open set $G_{n}, F_{n} \subset G_{n}=X$, but I wins if $\operatorname{Lim} G_{n}=X$.

Theorem 1. $I \uparrow G_{p o}(X)$ iff $I \uparrow G_{p o}^{s}(X)$.
Proof. To prove the non-trivial part, assume S is a WS of I in $G_{p o}(X)$. We shall say that a sequence $\left\langle\left\langle F_{i}, G_{i}\right\rangle: i<\omega\right\rangle$ is compatible with S if F_{i} is finite, G_{i} is open, $F_{i} \subset G_{i}$ for $i<\omega$ and for any $k<\omega, F_{k} \supset G\left(\left\langle G_{i}: i<k\right\rangle\right)$. Evidently if $\left\langle\left\langle F_{k}, G_{i}\right\rangle: i<\omega\right\rangle$ is compatible with S, then $\left\langle\left\langle F_{i}, G_{i}\right\rangle: i<\omega\right\rangle$ is a win for I. We now give a WS for I in $G_{\mathrm{po}}^{\mathrm{s}}(X)$. Assume it is I's turn after the moves $\left\langle\left\langle F_{i}, G_{i}\right\rangle: i<n\right\rangle$. Choose a subsequence $\left\langle i_{i}: j \leqslant k\right\rangle$ with $0 \leqslant i_{0}<\cdots<i_{k}<n$ and put $F\left(i_{0}, \cdots, i_{k}\right)=S\left(\left\langle G_{i j} ; j \leqslant k\right\rangle\right)$. Finally, let F_{n} be the union of all such finite sets. It is easily seen that if $\left\langle\left\langle F_{i}, G_{i}\right\rangle: i<\omega\right\rangle$ is a game we get, by using this strategy and $0 \leqslant i_{0}<i_{1}<\cdots<i_{n}<\cdots$ is any infinite subsequence, then also the game $\left\langle\left\langle F_{i_{k}}, G_{i_{k}}\right\rangle: k<\omega\right)$ is compatible with S and hence a win for I; consequently $\backslash\left\{\left\{\vec{S}_{i_{k}}: k<\omega\right\}=X\right.$. This means just that $\operatorname{Lim} G_{n}=X$.

Problem. Are the games $G_{p o}$ and $G_{p o}^{s}$ equivalent also for player II? ${ }^{1}$
We are now ready to prove the implication $(\beta) \Rightarrow(\gamma)$. Indeed, if \mathscr{G} is an open ω-cover witnessing that (γ) does not hold, then II has a WS in $G_{p o}^{8}(X)$; in the nth step he simply chooses a $G_{n} \in \mathscr{G}$ with $F_{n} \subset G_{n}$.

Note that exactly as in the proof of Sharma's theorem in Section 1, it can be shown that II has a WS in $G_{\mathrm{po}}^{\mathrm{s}}(X)$ iff (γ) does not hold.

We now fommulate the main theorem of the paper.
Theorem 2. Lei X be a Tychonoff-space. If $E=C(X)$, then the following implications are valid.

Proof. (i) $\Leftrightarrow(\alpha)$ for X is regular and $C(X)$ is dense in it (cf. [2, 2.1.C]).
(ii) $\Leftrightarrow \beta$) Assume first that player I has a WS for $G_{\mathrm{op}}^{\mathrm{s}}(\mathrm{X})$; we descriie a WS Cf In the game $G_{\mathrm{np}}(0, C(X))$, where 0 denotes the identically zero functicn on X.

[^0](It is enough to prove only this because $C(X)$ is a topological group.) Let S be a fixed winning strategy of I for $G_{\mathrm{po}}^{\mathrm{s}}(\boldsymbol{X})$. Now the strategy of player I is the following: He mentally plays also another game on the 'board' X according to S. After a move $0^{\text { }}$. player II on the genuine board $C(X)$ he 'translates' this move to a move of I on the boarc X, responds to it according to S and then translates his own response to a move on the board $C(X)$.

Now, if the winning move of player I in the game on the board X is F_{n}, then let his move on the board $C(X)$ be

$$
U_{n}=U\left(F_{n}, 2^{-n}\right)=\left\{f \in C(X):|f(x)|<2^{-n} \text { for any } x \in F_{n}\right\}
$$

If II's response is $f_{n} \in U_{n}$, then let the move of the imaginary player II on the board X be

$$
G_{n}=\left\{x \in X:\left|f_{n}(x)\right|<2^{-n}\right\}
$$

As $f_{n} \in U\left(F_{n}, 2^{\sim n}\right), G_{n}$ is open and $F_{n} \subset G_{n}$, hence this is a correct move.
Using that S is a winning strategy of I in the game $G_{\mathrm{po}}^{\mathrm{s}}(X), \operatorname{Lim} G_{n}=X$; hence for any $x \in X$ there is an $n_{0} \in \omega$ such that for $n \geqslant n_{0,} x \in G_{n}$. Consequently $\left|f_{n}(x)\right|<$ 2^{-n} for $n \geqslant n_{0}$ and su the sequence $\left\langle f_{n}: n \in \omega\right\rangle$ converges to 0 .

The proof of the other half of the proposition is sircilar. If S is a WS for I on the board $C(X)$ (in the game $G_{\mathrm{np}}(0, C(X))$), our scheme for the translations is as follows. If the winning move of I on the board $C(X)$ is $U\left(F_{n}, \varepsilon\right)$, then his move on the board X is to be F_{n}. If II's response is the open set $G_{n}, F_{n} \subset G_{n}$, choose any $f_{n} \in C(X)$ with $f_{n}\left|F_{n} \equiv 0, f_{n}\right|\left(X-G_{n}\right) \equiv 1$. As X is Tychonoff, there exists such a function f_{n}; interpret it as II's response on the board $C(X)$. This is a conrect move because $f_{n} \in U\left(F_{n}, \varepsilon\right)$.

Using now that S is a winning strategy for I on the board $C(X), f_{n} \rightarrow 0$. Consequently for any $x \in X$ there is an $n_{0} \in \omega$ such that $f_{n}(x)<1$ for $n \geqslant n_{0}$ but then $x \in G_{n}$ for $n \geqslant n_{0}$, i.e. $\operatorname{Lim} G_{n}=X$.

To prove (iii) \Leftrightarrow (iv) $\Leftrightarrow(\gamma)$ we prove (iii) \Rightarrow (iv) $\Rightarrow(\gamma) \Rightarrow$ (iii).
(iv) $\Rightarrow(\gamma)$. Let \mathscr{G} be an open ω-cover of X and put

$$
\Phi=\{f \in C(X): \exists G \in \mathscr{G}\{x \in X:|f(x)|<1\} \subset G\}
$$

Note that $0 \in \Phi$ (the closure taken in $C(X)$). Indeed, if $U(F, \varepsilon)$ is a basic neighbourhood of 0 in $C(X)$, choose a $\mathcal{U} \in \mathscr{G}$ with $F \subset G$ and an $f \in C(X), 0 \leqslant f \leqslant 1$ with $f|F \equiv 0, f|(X-G) \equiv 1$. Evidently then $f \in U(F, \varepsilon) \cap \Phi$. Now, as $\subset(X)$ is assumed to be Fréchet, there is a sequence $f_{n} \in \Phi$ with $f_{n} \rightarrow 0$. Choose a set $G_{n} \in \mathscr{G}$ with $\left\{x \in X:\left|f_{n}(x)\right|<1\right\} \subset G_{n}$; then $\operatorname{Lim} G_{n}=X$.
The proof of $(\gamma) \Rightarrow$ (iii) will be carried oui via a new property for X.
(γ^{\prime}) If $\left\langle\mathscr{\varphi}_{n}: n \in \omega\right\rangle$ is a sequence of open ω-covers of X, then there is a equence $G_{n} \in \mathscr{G}_{n}$ with $\operatorname{Lim} G_{n}=X$.
$(\gamma) \Rightarrow(\gamma)$. Let $\left\langle\Phi_{n}: n \in \omega\right\rangle$ be a sequence of open σ-covers of X. As we can suppose that \mathscr{G}_{n+1} is a refinement of \mathscr{G}_{n} for each $n \in \omega$, it is enough to piove that there is an infinite subsequence $\left\langle n_{k}: k \in \omega\right\rangle$ and a sequence $G_{k} \in \mathscr{G}_{n_{k}}$ wish Lim $G_{k}=X$.

If X is finite, then this is certainly true, Choose now a sequence $\left(x_{n}: n \in \omega\right)$, $i_{n} \in X, x_{n} \neq x_{m}$ if $n \neq m$ and put

$$
\mathscr{U}_{n}=\left\{G-\left\{x_{n}\right\}: G \subseteq \mathscr{S}_{n}\right\}, \quad \mathscr{U}=\bigcup\left\{\mathscr{U}_{n}: n \in \omega\right\} .
$$

Evidently U is an open ω-cover of X hence there is a sequence $U_{k} \in थ, \operatorname{Lim} U_{k}=$ X. For any $k \in \omega$ there is an $n_{k} \in \omega$ and a set G_{k} with $U_{k} \in G_{k} \in \mathbb{G}_{n_{k}}$. Now if $n \in \omega$ and $\left\{x_{i}: i \leqslant n\right\} \subset U_{k}$, then $n_{k}>n$ so $\left\{n_{k}: k \in \omega\right\}$ is infinite.
$\left(\gamma^{\prime}\right) \Rightarrow$ (iii). Let $\Phi_{n} \subset C(X), 0 \in \bar{\Phi}_{n}(n \in \omega)$. Put

$$
\mathscr{S}_{n}=\left\{\left\{x \in X:|f(x)|<2^{-n}\right\}: f \in \Phi_{n}\right\} \quad(n \in \omega) .
$$

As $0 \in \bar{\Phi}_{n}, \Phi_{n} \subset C(X), \mathscr{G}_{n}$ is an open ω-cover of X for any $n \in \omega$. Choose a $G_{n} \in \mathscr{S}_{n}$ with $\operatorname{Lim} G_{n}=X$. If $G_{n}=\left\{x \in X:\left|f_{n}(x)\right|<2^{-r}\right\}$, where $f_{n} \in \Phi_{n}$, then $f_{n} \rightarrow 0$.
$(v) \Rightarrow(\delta)$. Assume $C(X)$ is sequential and let \mathscr{G} be an open ω-cover of X. Sut

$$
\Phi=\{f \in C(X): \exists L \in L(\mathscr{Y})\{x \in X:|f(x)|<1\} \subset L\} .
$$

Using that \mathscr{G} is an open ω-cover of X and $\mathscr{G} \subset L(\mathscr{G})$, we get that $\theta \in \Phi$. Moreover, Φ is sequentially closed because if $f_{n} \in \Phi$:nd $f_{n} \rightarrow f \in C(X)$, choose a set $L_{n} \in L(\mathscr{G})$ with $\left\{x \in X:\left|f_{n}(x)\right|<1\right\} \subset \dot{L}_{n}$.
if $L=\operatorname{Lim} L_{n}$, then $L \in L(\mathscr{G})$ and $\{x \in X:|f(x)|<1\} \subset L$. Consequently $\boldsymbol{O} \in \boldsymbol{D}$ so $X \in \mathcal{L}(\mathscr{G})$.

Problem. Is $(\delta) \Rightarrow(v)$ true?

We shall show in Section 3 that in a suitable model of ZFC the answer is yes.
For the proof of (vi) $\Leftrightarrow(\varepsilon)$ I remark that Arhargel'skiĭ and Pytkeiev proved [1, Theorem 4.1.2] that $t(C(X))=\omega$ iff X^{n} is Lindelöf for each $n \in \omega$. Cons quently the equivalence follows from the following Proposition.

Proposition. X^{n} is Lindelöf for each $n \in i \infty$ iff X satisfies (ε).
Proof. If X^{n} is Lindelöf for each $n \in \omega$ and \mathscr{G} is an open ω-cover of X, it is easily seen that

$$
\mathscr{G}^{n}=\left\{G^{n} ; G \in \mathscr{G}\right\}
$$

is an open cover of X^{n} for $n \in \omega$. If $\mathscr{G}_{n} \subset \mathbb{S}_{\mathscr{S}}$ is countable and \mathscr{G}_{n}^{n} covers X^{n} for each n, then $\mathscr{G}_{\omega}=\cup\left\{\mathscr{G}_{n}: r \in \omega\right\}$ is a countable ω-subcover of \mathscr{G}. Conversely, if X satisfies (ε) and \mathscr{U} is an open cover of X^{n}, put
$\mathscr{G}=\left\{G \subset X: G\right.$ is open in X, G^{n} can be covered
with finitely many sets of $\mathscr{Q}\}$.

It is immediate that \mathscr{G} is an open ω-cover of X and if $\mathscr{S}_{0} \subset \mathscr{G}$ is a countabie u-subcover, then \mathscr{G}_{0}^{n} is a cover of X^{n} and the assertion follows.

In the sequel we study the relations between the properties $(a)-(\varepsilon)$.
$(\beta) \Rightarrow(\alpha)$ Take the one-point compactification of an uncountable discrete space.
$(\gamma) \nRightarrow(\beta)$ For a subspace of the reals both $(\gamma) \Leftrightarrow(\beta)$ and $(\gamma) *(\beta)$ are consistent (see models 1 resp. 2 or 3 at the end af the paper).

If we do not restrict ourselves to the subspaces of the reals there is an example in ZFC for $(\gamma) \Rightarrow(\beta)$. Indeed, recently E. van Douwen and K. Telgársky gave an example for a P-space in which the point-open game is undecided [11]. Such a space necessarily satisfies (γ) because of the following lemma.

Lemma (F. Galvin). If X is a Lindelof P-space, then X satisfies (γ).

Proof. We have shown in the previous Proposition that a space Y satisfies (ε) iff \boldsymbol{Y}^{n} is Lindelöf for $n \in \omega$. As the product of finitely many Lirıdelöf P-space is again Lindelöf, X satisfies (e). Let now \mathscr{G} be an open ω-cover of X. We can assume that $\mathscr{9}$ is countable. Put for $x \in X$

$$
U_{x}=\lceil\{G \in \mathscr{G}: x \in G\} .
$$

$\left\{U_{x} ; x \in X\right\}$ is an open cover of the Lindelöf P-space X. Choose a countable succover $\left\{U_{x_{n}}: n \in \omega\right\}$ and let $G_{n} \in \mathscr{G}$ contain $\left\{x_{1}, \ldots, x_{n}\right\}$.
$(\delta) \neq(\gamma)$ This problem will be discussed in Section 3.
$(\varepsilon) \Rightarrow(\delta)$ Simple example is the closed interval [0,1 ; see Lemma 1 at the beginning of Section 3 and the Proposition.

3. Properties $(\boldsymbol{\beta}),(\gamma)$ and (δ)

In this section we study properties $(\boldsymbol{\beta}),(\gamma)$ and (δ).
Theorem 3. Any of the properties $(\alpha)-(\varepsilon)$ are hereditary to closed subspaces and continuous images.

Proof. Routine.
A certain converse holds for (γ) and (δ). We begin with a lemma.

Lemma 1. The interval $I=[0,1]$ does not satisfy (δ).
Proof. Let \mathscr{G} denote the family of open sets of I having Lebesgue-measure $\leqslant \frac{1}{2}$. Then $L(\mathscr{G}) \subset \mathscr{L}$, where \mathscr{L} is the family of measurable subsets of I having Lebesguemeasure $\leqslant \frac{1}{2}$, because $\mathscr{G} \subset \mathscr{L}$ and \mathscr{L} is closed under Lim.

As \mathscr{G} is an open ω-cover of I tad $I \in L(\mathscr{G}), I$ does not satisfy (δ).

Corollary, If X satisfies (δ), then X is zero-dimensional.

Proof. If ind $X \neq 0$, there is a point $x \in X$ and a neighbourhood U of x in X such that there is no clopen set V with $x \in V \subset U$. Choose a continuous real function f on X with $0 \leqslant f \leqslant 1, f(x)=0, f(X-U)=1$. Now $f^{\prime \prime} X=[0,1]$ because if $0<\varepsilon<1$, then $f^{-1}([0, \varepsilon)) \subset U$ is not closed and there is therefor a $y \in X$ with $f(\%)=\varepsilon$.

Theorem 4. Let X be Čech-complete. Then we have invee possibilities.
(a) If X is not Lindeloff, then $t(C(X))>\omega$.
(b) If X is Lindelöf and not scattered, then $t(C(X))=\omega$ and $C(X)$ is not sequential.
(c) If X is Lindelöf and scattered, then $C(X)$ satisfies (ii).

Proof. (c) If X is Lindelöf and scattered, then by a result of R. Telgárshy [10] X satisfies (β).
(b) As the product of countably many Lindelöf Česh-complete spaces is again Eindelöf [2, 3.9.F], X satisfies (ε). On the other hand, it is easy to see that a non-scattered Čech-complete space contains a compact subspace which cn be continuously mapped onto the Cantor-set, hence onto the closed interval I so, by 7heorem 3 and Lemma i, X does not satisfy (δ).

Cornliary. Let \bar{X} be a compact T_{2}-space. $C(X)$ is Fréchet iff X is scattered.

Theorem 5. The space X satisfies (γ) (resp. (8)) iff X satisfies (ε), and each of its continuous images on the real line satisfies (γ) (resp. (5)).

Proof. The necessity is obvious. Assume now that X satisfies (ε) but does not satisfy (γ). Let \mathscr{G} be an open ω-cover of X witnessing that X does not satisfy (γ). Using that X can be assumed to be zero-dimensional (see the argument of the corollary to Lemma 1) and satisfies (ε) we can suppose that \mathscr{G} is countable and consists of clopen sets. The members of \mathscr{G} and their complements define a coarser zero-dimensional topology on X; it has also a countable base. In general it is not a T_{0}-space but identifying the points with identical closures [2, 2.4.A] we get a cortinuous mapping $f: X \rightarrow M$ where M is a zero-dimensional separable metrizable space and hence homeomorphic to a subset of the real line. It is immediate that $f(X)=M$ does not satisfy (γ). The proof of the case for (δ) is perfectly analogous.

We shall now prove that (δ) is a very strict restriction for a subset of the real line; indeed (δ) implies property $\mathrm{C}^{\prime \prime}$:

A space X satisfies $C^{\prime \prime},[6]$, if for any sequence $\left\langle\mathscr{G}_{n} ; n \in \omega\right\rangle$ of open covers of X there is a sequence $G_{n} \in \mathscr{G}_{n}$ with $\bigcup\left\{G_{n}: n \in \omega\right\}=X$. Let $\phi=\left\langle\mathscr{G}_{n}: n \in \omega\right\rangle$ be a sequence of open covers of the space X. A set $A \subset X$ is said to be ϕ-small if for any $n \in \omega$ there are a $k \in \omega$ and sets $G_{i} \in \mathscr{G}_{n+i}(i<k)$ with $A \subset \bigcup\left\{G_{i}: i<k\right\}$.

Let now (*) be the following property:
(*) If $\phi=\left\langle\mathscr{G}_{n}: n \in \omega\right\rangle$ is a sequence of open covers of X, then X is the union of countably many ϕ-small sets.

Theorem 6. The property (δ) implies (*).
Froof. Assume X satisfies (δ) and $\phi=\left\langle\mathscr{G}_{n}: n \in \omega\right\rangle$ is a sequence of open covers of X. Using now that X must be a Lindelöf-space we can assume that \mathscr{G}_{n} is locally finite for any $n \in \omega$. For $n \in \omega$ put now

$$
\mathscr{H}_{n}=\left\{\left\{G_{i}: i<2 n+1\right\}: G_{i} \in \mathscr{G}_{n^{2}+i}\right\}, \quad \mathscr{H}=\bigcup\left\{\mathscr{X}_{n}: n \in \omega\right\}
$$

\mathscr{H} is then an open ω-cover of X. Put

$$
\begin{aligned}
& \mathscr{A}=\{A \subset X: \exists H \in \mathscr{H} A \subset H\}, \\
& \mathscr{B}=\left\{\bigcup\left\{S_{n}: n \in \omega\right\}: S_{n} \subset X \text { is } \phi \text {-small }\right\} .
\end{aligned}
$$

Evidently $\mathscr{H} \subset \mathscr{A} \cup \mathscr{B}$; we assert that $\mathscr{A} \cup \mathscr{B}$ in closed under Lim, hence $L(\mathscr{H}) \subset$ $\mathscr{A} \cup \mathscr{B}$. Indeed, let $T_{n} \in \mathscr{A} \cup \mathscr{B}(n \in \omega), T_{0}=\operatorname{Lim} T_{n}$. If for infinitely many $n ’$ $T_{n} \in \mathscr{B}$, then T is contained in the union of these T_{n} 's, hence $T \in \mathscr{B}$. So we can assume that $T_{n} \in \mathscr{A}$ for each $n \in \omega$. Consequently $T_{n} \subset H_{n} \in \mathscr{H}$ for a suitable H_{n}. For each $n \in \omega$ there is a $k(n) \in \omega$ with $H_{n} \in \mathscr{H}_{k(n)}$. If now the set $\{k(n): n \in \omega\}$ is infinite, then T is, evidently, the union of countably many ϕ-small ses. Otherwise for infinitely many indices $n k(n)=k$ is fixed, hence $T \subset \operatorname{Lim} K_{n}, K_{n} \in \mathscr{H}_{k}(n \in \omega)$. Using now that any of the systems $\mathscr{G}_{\boldsymbol{k}^{2}+i}(i \leqslant 2 k)$ is point-finite, it is not difficult to see that Γ can be covered with a member of \mathscr{H}_{k}.

As X satisfies $(\delta), X \in L(\mathscr{H}) \subset \mathscr{A} \cup \mathscr{B}$. If $X \in \in \mathcal{B}$, then $X \in \mathscr{A}$, hence a suitable member H of \mathscr{H} covers X; let $H \in \mathscr{H}_{n}$. Drop cut \mathscr{H}_{n}; repeat the above argument for $\mathscr{H}^{\prime}=\bigcup\left\{\mathscr{K}_{k}: n<k<\omega\right\}$. Then again a suitable member H^{\prime} of \mathscr{H}^{\prime} covers X; let $H^{\prime} \in \mathscr{H}_{n^{\prime}}$. Put $\mathscr{H}^{\prime \prime}=\bigcup\left\{\mathscr{H}_{k}: n^{\prime}<k<\omega\right\}$. Etc.

We get in this manner that X is indeed ϕ-small.
Corollary. Property (δ) implies property $\mathrm{C}^{\prime \prime}$.
Proof. Let $\phi=\left\langle\mathscr{G}_{n}: n \in \omega\right\rangle, X=\bigcup\left\{S_{n}: n \in \omega\right\}$, let S_{n} be ϕ-small. Choose an $n_{0} \in \omega$, $G_{i} \in \mathscr{G}_{i}, i<n_{0}$ with $S_{0} \subset \bigcup\left\{G_{i} i<n_{0}\right\}$. Then choose an $n_{1} \in \omega$ and for any i with $n_{0} \leqslant i<n_{1}$ a set $G_{i} \in \mathscr{G}_{i}$ with $S_{1} \subset \bigcup\left\{G_{i}: n_{0} \leqslant i<n_{1}\right\}$ etc.

We get thus a sequence $\left\{n_{k}: k<\omega\right\}$ and sets $G_{i} \in \mathscr{G}_{i}$ with $S_{k} \subset \bigcup\left\{G_{i}: n_{k} \leqslant i<n_{k+1}\right\}$. Now $X=\bigcup\left\{G_{i}: i<\omega\right\}$.

Note that property (*) is strictly stronger than $\mathrm{C}^{\prime \prime}$ even on the real line. Indeed, a standard example for an uncountable linear set satisfying $C^{\prime \prime}$ is a Lusin-set [9]. However, a Lusin-set does not have property (*).

Definition [9]. Let $X \subset \mathbb{R} ; X$ is said to be always fist category if for any perfect set $P \subset \mathbb{R}, P \cap X$ is first category in P.

Evidently a Lusin-set is not always first category However, if $X \subset \mathbb{R}$ satisfies (*), then it is always first category. Choose a perfect subset $P \subset \mathbb{R}$ and let μ be a
continucus Borel measure on P such that for G open in $P ; \mu(G) \neq 0$. Put now for $n \in \omega$

$$
\mathscr{S}_{n}=\left\{G \subset X: G \text { is open in } X, \mu\left(\overline{G \cap P},<2^{-n}\right\}\right.
$$

(closure in P). Evidently $\phi=\left\langle\mathscr{S}_{n}: n \in \omega\right\rangle$ is a sequence of open covers of X. If $A \subset X$ is ϕ-small, then A is nowhere dense in P, hence $X \cap P$ is first category in P.

In view of Theorem 5 it would be very important to know if there are non-trivial (i.e. uncountable) subspaces of the reals with property (δ) (or (γ)).

The answer depends on the set theory we choose.

Model 1. R. Laver constructed a model of ZFC [6] in witich every subset of the reals satisfying $C^{\prime \prime}$ is countable. In this model, by Theoren 5 , (δ) implies (γ). Hence

Theorem 7. It is consistent with ZFC to assume that for any space $X, C(X)$ is sequential iff it is Fréchet.

Problem. Is $(\delta) \Rightarrow(\gamma)$ true (in ZFC)? Is there a model of ZFC in which $(\delta) \Rightarrow(\gamma)$ does not hold?

Model 2. Assume MA $+2^{\omega}>\omega_{1}$ and take a subspace X of size ω_{1} of the reals. Ther. X does not satisfy (β) (by a result of R. Telgársky, a metrizable space satisfies (β) iff it is countatle) but it has the' property (γ). Indeed, let 9 be a countable open ω-cover of X. We construct now a partially ordered set P. Its elements are pairs $p=\langle F, \phi\rangle$ where $F \in[X]^{<\phi}$ and ϕ is a function from a finite subset of ω into 9. If $p=\left\langle F_{n} \phi\right\rangle, p^{\prime}=\left\langle F^{\prime}, s^{\prime}\right\rangle$ are members of P we put: $p^{\prime}<p$ iff $F \subset F^{\prime}, \phi \subset \phi^{\prime}$ and for any $n \in \operatorname{Dom} \phi^{\prime}-\operatorname{Dota} \phi, F \subset \phi^{\prime}(n)$ holds.

It is very ear f to check that P is indeed a partially ordered set, it is cce and $|P|=|X|=\omega_{1}<2^{\omega}$. Mcreover, if the dense sets we take into account are

$$
\begin{aligned}
& D_{x}=\{\langle F, \phi\rangle \in P: x \in F\} \quad(x \in X) \\
& D_{n}^{\prime}=\{\langle F, \phi\rangle \in P: n \in \operatorname{Dom} \phi\} \quad(n \in \omega)
\end{aligned}
$$

then a generic set over P gives rise to a sequence $G_{n} \in \mathscr{G}$ with $\operatorname{Lim} G_{n}=X$.

Model 3. Ass 1 ming $\mathrm{ZFC}+\mathrm{CH}$ a construction was given by F . Galvin of an uncountable subspace of the reals which satisfies property (γ).

Acknowledgement

> We express our gratitude to Prof. F. Galvin for his helpful interest.

References

[1] A.V. Arhangel'skii, Construction and classification of topological spaces and cardinal invariants, Uspehi Mat. Nauk. 33 (1978) 29-84 (in Russian).
[2] R. Engelking, General Topology (PWN, Warsaw, 1977).
[3] F. Galvin, Indeterminacy of point-open games, Bull. Acad. Polon. Sci. 26 (1978) 445-449.
[4] G. Gruenhage, Infinite games and generalizations of first countable spaces, Gen. Topology Appl. 6 (1976) 339-352.
[5] T.J. Jech, Lectures in Set Theory with Particular Emphasis on the Method of Forcing (SpringerVerlag, Berlin, 1971).
[6] R. Laver, On the consistency of Borel's conjecture, Acta Math. 137 (1976) 151-169.
[7] M.E. Rudin, Lectures on S at Theoretic Topology, AMS Regional Conf. Series in Math. 23 (1975).
[8] PL. Sharma, Some characterizations of W-spaces and w-spaces, Gen. Topology Appl. 9 (1978) 289-293.
[9] W. Sierpinski, Hypothése du Continu (New York, 1956).
[10] R. Telgarsky, Spaces defined by topological games, Fund. Math. 88 (1975) 193-223.
[11] R. Telgarsky, On point-open games and their generalizations, in: A. Császár, ed., Topology, Colloq. Math. Sce. János Bolyai 23 (North-Holland, Arnsterdam, 1980) 1167-1172.

[^0]: F. Galvin has hown that in some re dels of ZFC there is a subspace X of the reals such that II has a winning strategy in $G_{\mathrm{po}}^{*}(X)$ but not in $G_{\mathrm{po}}(X)$.

