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Church 's  lambda-calculus is modified by introducing a new mechanism, the 
lambda-bar operator # ,  which neutralizes the effect of one preceding lambda 
binding. This operator can be used in such a way that renaming of bound variables 
in any reduction sequence can be avoided, with the effect that efficient interpreters 
with comparatively simple machine organization can be designed. It is shown that 
any semantic model of the pure ~,-calculus also serves as a model of this modified 
reduction calculus, which guarantees smooth semantic theories. The Berkling 
Reduction Language (BRL) is a new functional programming language based upon 
this modification. 

1. INTRODUCTION 

Functional (applicative) programming languages, such as LISP 
(McCarthy et al., 1965), KRC (Turner, 1981), PCF (Plotkin, 1977) etc., are 
in general based upon the lambda-calculus (Church, 1941). Although 
operational and dcnotational semantics of the lambda-calculus are by now 
well understood (Gordon, 1975), most of the existing implementations of the 
lambda-calculus correspond to incomplete versions or inconsistent extensions 
of the axioms of the lambda-calculus. The reason for this is mainly the fact 
that the standard reduction of leftmost-outermost fl-redexes with preceding 
tests on variable conflicts and appropriate renaming is highly inefficient, 
when implemented on or simulated by a machine. 

Interpreters of LISP and LISP-like languages as the one given in 
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(McCarthy et al., 1965) use in general a dynamic binding mechanism, which 
violates the semantics of the underlying lambda-calculus as shown in (Eick 
and Fehr, 1983). Another well-known implementation of the lambda-calculus 
is the SECD-machine (Landin, 1964), which supports the correct scope-rules 
of the lambda-calculus but as shown in (McGowan, 1970) fails to reduce all 
expressions having a normal form, because functional arguments cannot be 
treated appropriately. Similar problems arise with implementation on a 
cellular computer architecture as introduced in (Mag6, 1979), which are 
suitable only for a restricted class of functional languages as, e.g., FP and 
FFP (Backus, 1978), because objects of higher functional types cannot be 
handled. 

Other implementations such as the graph-machine introduced in 
(Wadsworth, 1971) or the combinator reduction introduced in (Turner, 
1979) make a radical change in the representation of lambda-expressions. 
They work on labelled graphs or purely combinatory expressions, with the 
effect that the original lambda-expressions get lost and intermediate results 
can hardly be understood by the programmer. All these deficiencies can be 
overcome by implementing a variant of the lambda-calculus, which 
maintains the original structure and naming of an expression. This variant is 
obtained by adding an unbinding mechanism lambda-bar (#) to the 
language, which neutralizes the effect of one preceding lambda-binding. For 
example, the variable x occurs free in the expression ;tx. # x  but bound in the 
expression 2x • 2x • #x.  

The benefit of this extension is that fl-conversion can be performed without 
renaming of variables by systematically using the lambda-bar mechanism. 
As a result machine models of languages based upon this extension have an 
uncomplicated machine structure and run very efficiently. 

The corresponding formalism was first introduced in (De Bruijn, 1972). 
De Bruijn uses an implementation of this mechanism in his AUTOMATH- 
project (De Bruijn, 1980) and shows that it is very efficient for automatic 
formula manipulation. In (Berkling, 1976a) the same mechanism was 
introduced independently. Berkling developed in (Berkling, 1976b) a 
reduction language BRL which is an extension of the lambda-calculus not 
only by a certain set of base operations, such as conditionals, arithmetical, 
Boolean, and list operations, but also by the unbinding mechanism lambda- 
bar. A machine implementation of BRL was first simulated in P L / I  
(Hommes, 1977) and then a hardware-model was built (Kluge, 1979), which 
started operating in 1978 and has since shown a satisfactory performance. In 
particular the machine supports different reduction strategies, such as a finite 
number of call-by-value reductions followed by a call-by-name reduction. 
Hence the efficiency of the BRL-machine can again be increased with more 
efficient strategies. 

The semantic effect of the lambda-bar operation on the lambda-calculus 
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was until now not very clear, since there existed only the syntactical and 
operational descriptions of it. In this paper we want to give a denotational 
semantics to it and a proof that it consistently extends the lambda-calculus. 

2. A SHORT INTRODUCTION TO BRL 

As in most functional programming languages there is only one syntac- 
tical category, expressions, in the Berkling Reduction Language. In this 
paper we do not mention every feature o f  BRL but rather point out the 
different ways of forming new expressions from given ones. 

(i) "simple expressions" in BRL are built up from variables and 
constants using arithmetical, logical, and list operations, as well as 
conditionals, e.g., 

(a) (3.1415 • ( radius ,  radius)), 

(b) 4 .3:3.7,  

(c) / f x  > 0 then 1 else i f  x =  0 then 0 else - 1 .  

(ii) "abstractions" can be produced from any expression e and iden- 
tifier x by writing: 

sub x in e 

which is a sugared version of the lambda-expression 

~x • e 

and denotes a function with formal parameter x, which substitutes a given 
argument at each free occurrence of x in e. For example, 

(a) sub radius in (3.1415 • ( radius ,  radius)), 

(b) sub r in sub h / n  (((3.1415,  ( r , r ) ) ,  h). 

(iii) "combinations" are made of two arbitrary expressions f and g, 
where one takes the function part and the other one takes the argument part. 
The corresponding BRL-expression just reads: 

apply f to g 

again a sugared version of the k-expression ( f  g). For example, 

(a) apply sub r in (3.1 , ( r*  r)) to 24.3. 

During an execution, the above expression will be reduced in the first step to 
(3.1 • (24.3 • 24.3)) and in the next step to its value 1830.319. To illustrate 
the effect of the unbinding mechanism #,  consider the k-expression: 

643155/I-3-7 
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(Xx. Xy. x y). Because y occurs free in the argument and bound in the 
function body, a renaming, say (Xx • Xz • x y), h~ts to be performed before fl- 
reduction can reduce the term to ,~z • y. 

The corresponding expression in BRL reads: 

apply sub x in sub y in x to y. 

After one step of reduction it turns into sub y in #y .  The formal rule 
corresponding to/]-reduction will be presented in the next section, 

(iv) "recursive expressions" are introduced explicitly into BRL 
although one could use the expression corresponding to the Y-operator of the 
X-calculus. For any expression e and variable f we can build the BRL 
expression: 

rec f : e 

which corresponds to an equation f =  e or to the X-expression (Y Xf. e). 
Consider the definition of the factorial as an example: 

(a) reefac  : sub n in i f  ( n =  1) then 1 

else (n * apply fac to (n = 1)). 

(v) Other concepts of BRL are convenient operations for tree 
manipulations, for pattern matching and some facilities to save function 
definitions. They will not be presented in this paper, but can be looked at in 
(Hommes and Schlfitter, 1979). 

A very nice feature of the BRL-machine is that when working at a 
termiflal, program development runs interactively and long subexpressions 
are automatically reduced to one symbol, which can be easily expanded 
using the cursor. 

3. SYNTAX AND CONVERSION RULES OF THE 

REDUCTION-CALCULUS 

In this section we want to give a formal description of the lambda-calculus 
modification which is the support for BRL. In order to ease an immediate 
comparison with the X-notation we shall use pure X-terms rather than BRL- 
expressions. 

DEFINITION 1 (Syntax). Let X be a denumerable set of variables. The set 
~- of reduction terms is given inductively by: 



EXTENSIONS OF THE LAMBDA-CALCULUS 93 

(i) # " x  ~ g- for all x ~ x, n ~ N, n >/ O, 

(ii) (t~ t2) ~ g- for all t l ,  t2 ~ ~ ,  

(iii) 2x • t ~ g- for all x E X, t C g' .  

In (i) the symbol  # "  can be read as the n-fold application of # ,  which 
reduces to the identity in the case of  n = 0. As indicated in the Introduction, 
B-conversion will systematical ly make use of the unbinding operation # 
( lambda-bar) .  This principle is formalized by the metaconstructor  H 
(protector),  which augments the number  of  unbindings (protections) of  a 
particular variable by one. 

DEFINITION 2 (//). Let x ¢ Z, n C IN, and t C g-. The reduction term 
H # " x t  is given by induction on the structure of t: 

(i) l I # n x # ~ y = # m * l y  if x = y a n d m ) n ,  

--- # '~y otherwise; 

(ii) g # n x ( t l  t2) = (H#~xt l  H # ~ x h ) ;  

(iii) H#~xf ly  • t = fiy . H#~+ ~xt if x = y, 

= 2y • H # " x t  if x 4: y. 

Now the substitution operator  $s~t, which substitutes s for v in t, can be 
defined without using the notions of  free and bound occurrences of  
variables. 

DEFINITION 3 ($). Let v be # n x  for some n C IN, x ~ Z and let s, t C 8-. 
The reduction term $~t is inductively defined by: 

$v#m. = = = (i) s Y S if V #my, i.e. m n and x = y ,  

= # m - l y  if x = y  and r e > n ,  

= # my otherwise; 

(ii)  SsV(/1 t2) = ($sVtl $sVt2); 
#v (iii) $~2y . t = 2y . $ny, t if x =  y, 

= 2 y .  $~yst if x=/=y. 

Observe that  by 3(i) occurrences of  # ~ x  with m > n are t ransformed into 
# m - I x .  This is due to the fact that in the reduction calculus substitution of s 
for x in t is performed as value of the redex (Zx.  t s), hence one protection 
of x in t becomes superfluous. The only reduction rule in this calculus 
corresponds to the fl-conversion rule of  the 2-calculus, but as clashes of  
variables cannot  occur, all redexes can be reduced without a prior renaming. 
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DEFINITION 4 (~'). Again, let x ~ z ,  and let t and s be 
reduction terms. Then the binary relation ~ is defined as follows: 

6' 

arbitrary 

O,x. t s) - - ~  $s x t. 

A detailed description of the reduction calculus can be found in (Berkling, 
1976a) where another simplification which uses only one variable is 
presented too. 

4. DENOTATIONAL SEMANTICS AND CONSISTENCY PROOF 

In this section we show that the reduction calculus as introduced above 
has a neat denotational semantics in any model of the 2-calculus, as for 
example the Pe)-model (Scott, 1976), Doo (Scott, 1972), or any other. For 
the rest of this paper let ~," be such a model and let ~0 denote the retraction 
from ~ "  onto [ J ~ J f ]  with right inverse (0 -1, where [J~r'~ fe ' ]  denotes the 
set of continuous functions from ~ "  to Jz". As a first step we shall model the 
effect of the protection operator H on environments. 

DEFINITION 5 (-Fin,x). Let x G X and n ~ N. The operator 1I,, x on an 
environment p, i.e., a mapping from Z to ~ / ,  is given by 

H, x ( p ) (#ky )=p(#~+lx )  if x = y  and k>/n  

= p(#ky) otherwise. 

Another useful definition serves to modify an environment such that one 
protection of a variable x is neglected; and a new value m is given to 
unprotected occurrences of X~ . . . .  

DEFINITION 6 (p[x~m]). F o r  x E x ,  m E ~ "  and an environment p let 
p[x = m] be a new environment given by 

p [ x # m ] ( # k y ) = p ( # k y )  if x4=y, 

= m  if X = y ' a n d  / 4 = 0 ,  

= (#k Ix ) otherwise. 

The next lemma shows how the environment transforming operators 11,, x 
and [y~m]  commute. 

~LEMMA 7, Let n, k ~ N, x~ y ~ )~, m C ~ ' a n d  p be an environment. 
Then the following holds: ' : 

Hn,x(p)[y#m] =Hn+i,x(p[y#m]) i f  x=. y, 

= H, ,x (p [y~m])  i f  x4=y. 
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Case 1 ( x = y ) .  

H.,x(P)[x#m](#kz) 
= [In,x(p)(#kz) if X 4= Z, 

= m  if x = z  and k = 0 ,  

= II.,x(p)(# k- ix) if x = z and k > 0 by Definition 6, 

=p(#kz)  if x g: z, 

= m  if x = z  and k = 0 ,  

=p(#kx)  if x = z  and k > 0  and k - i / > n ,  

= p ( # k -  ix) otherwise by Definition 5, 

H. + ,.x(.P[X#m ])(#kz ) 

=p[x#m](#k+lx)  if x = z  and k ) n +  1, 

=p[x#m](#kz )  if Xg=Z or k < n +  1, by Definition 5, 

=p(#kx)  if x = z  and k ) n + l ,  

= p(#kz)  if x4=z, 

= m  if x = z  and k = 0 ,  

= p ( # k - l x )  if X = Z  an k > 0  and k < n + l  

by Definition 6. 

It is easy to check that the left-hand side and the right-hand side are equal 
in each subcase. 

Case 2 (x ¢ y). 

II. ,xO )[ y # m  ](#kz) 

= II..x(p)(#kz) if y 4= z, 

= m  if y = z  

= i f  y = z 

= p (#k+ lx )  if y 4 : z  

= p(#kz) if y g: z 

= m  if y = z  

= p ( # k - l y )  if y = z 

and k -- 0, 

and k > 0 

and k~>n and x = z ,  

and (x4=z or k < n ) ,  

and k = 0, 

and k > 0 

by Definition 6, 

by Definition 5, 
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f ir . ,x (ply#m])(#~z)  

=p[y#m](#k+'z )  if X = Z  and k ) / n ,  

=p[y#m](#kz )  if X C Z  or k <n byDefinit ion5, 

=p(#k+lZ) if X = Z  and k>/n and y4:z ,  

=p(#kZ) if y C z  and (xq :z  or k < n ) ,  

---m if y = z  and k = 0 ,  

= p(#k- ly )  if y -- Z and k > 0 by Definition 6. 

Again it is easy to verify that both sides of the equation of the lemma are 
equal in all subcases. [[ 

Now we can elegantly formulate the denotational semantics of the 
reduction terms. 

DEFINITION 8 (Semantics [[ D. The semantics of a term t with respect to 
an environment p : Z ~  in the model ~ "  is given inductively by: 

(i) [~v]] p = p(v) for each v = #nx, n E N, x ~ Z, 

(ii) [T(t 1 t2) ~ p = ~o(~tl~ p)(~t2~ p) for t~, t2 ~ g-, 

(iii) I2x.  t~p=(o-a(mv --} ~t~p~x#m D for x E  X, t E  g-. 

This definition exhibits the fact that our reduction calculus is semanticly a 
clean extension of the 2-calculus, because terms without occurrences of # 
obtain exactly the usual 2-semantics. Before proving that this semantic 
definition is compatible with the //'-reduction, we have to show in three 
lemmas, how he protection operator fir and the substitution operator $ 
behave on the semantic level. 

LEMMA 9. Let n C N, x E  z, t E g-, and p be an environment. The 
following equation holds: 

Proof. 

(i) 

~fir # ° x  t~ p = nt~ &,x(p) .  

Induction on the structure of t: 

Vt # " x # M  p = ~#~+M p 

= ~#ky~ p 

= I1 ,Jp) (#ky)  

= I#*A nn,x(p) 

if x = y  and k~>n, 

otherwise by Definition 2, 

by Definition 8(i) 
and 5, 

by Definition 8(i). 
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(ii) By Definition 2(ii) / /  distributes to both components  of  the 
combination,  thus the induction hypothesis is applicable. 

(iii) ~H #~x 23;. tl p 

= F~Y' n # " + l x  t~P 

= I'~Y" n # " x t ~ p  

if x = y ,  

if x ~ y  

by Definition 2(iii) 

= ~o-~(m ~ I I I#  "+ ix t~ p[y#m]) 

=~0-1(m ~ -, ~l I#"x t lp[y#m])  

= ~o-' (m ~ ~t I / / , +  ~.x(p[y#ml)) 

= ~ - ' ( m  ~ ~t~ IZn.x6o[y#m])) 

= ~ l(m ~ ~t~ n . , x ( p ) [ y # m ] )  

= F~Y" tl n . ,x(P)  

if x = y, 

if x :# y 

by Definition 8(iii) 

if x = y ,  

if x#:y  

by induction hypothesis, 

by L e m m a  7, 

by Definition 8(iii). | 

LEMMA 10. 

Proof. 

Let x, m and p be as above. The following equation holds: 

Ho,x(p [x#m ]) = p. 

IZo.x(p [x#m D(#ky) = p [x#m ](# k + 'y) 

=p[x#m](#ky)  

if x = y, 

if x ¢ y  

by Definition 5, 

=p(#ky) by Definition 6. | 

In our next l emma we shall use a generalization of Definition 6, namely, 
the change of an environment on a protected variable. 
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DEFINITION 11 (plY#m]). Let v = # n x ,  n E  ~, x E Z ,  m E J "  and p be 
an environment. For k C N and y E Z let p[v#m](#ky) be given by 

p[v#m](#ky) = m if x = y  and k = n, 

= p ( # k - l y )  if x = y  and k > n ,  

= p(#ky) otherwise. 

Observe that Definition 11 is consistent with Definition 6, i.e., 
p[#°x #m] = p[x#m]. 

LEMMA 12. Again let v = # " x  for some n ~ •, x ~ Z and let s, t C ~U, 
and p be an environment. The following equation holds: 

~$~t] p = ~tl[v#~s ~ p]. 

ProoJ: 

(i) 

Induction on the structure of t: 

o m I s , #  y ]  p = Is] p 

= l # m - M  p 

= p [v#I s~  o ] ( # m y )  

if v = #my, 

if x = y  and r e > n ,  

otherwise by Definition 3, 

by Definition 11 and 8(i 

by Definition 80). 

(ii) immediate by induction hypothesis. 

(iii) Case 1 ( x = y ) .  

~s~;ty • t~ p 
#v = ~S~,~x • tl p = ~ 2 x .  $ ~ t ~  p 

= ~o-~(m ~ I*,~x,t~ p[x#m]) 

= q~-l(m ~ ~t] p[x#m][# v #~Ilxs] p[x#m]]) 

= ~0-l(m ~ It~ p[x#m][# v #Is] IIo,x(p[x#m])]) by Lemma 9, 

= 9 - ' ( m  ~-~ ~t~ p[x#m][# v #Is] p]) by Lemma 10; 

I2x . t~ p[v #~s] p] 

= q~-l(m ~ ~t~ ply #~s] p] Ix#m]) by Definition 8(iii). 

by definition 3(iii), 

by Definition 8(iii), 

by induction hypothesis, 
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It remains to show, that the two environments p~ :=p[x#m][# v #~s] p] and 
P2 :=p[v #~s~ p][x#m] are equal. 

pl (#kz)=~s~p if x = z  and k = n +  1, 

=p[x#m](#k-~z)  if x = z  and k > n + l ,  

= p[x#m](#kz)  otherwise by Definition 11, 

=~s]]p if x = z  and k = n + l ,  

=p (#~-2z )  if x = z and k > n + 1, 

= p(#kz) if x ~ z ,  

= m  if x = z  and k = 0 ,  

= p(#~-  ~x) otherwise by Definition 6, 

p2(#kz)=p[v#~s~p](#kZ) if x4:z ,  

= m  if x = z  and k = 0 ,  

=p[v #~s~ p] (#k - lx )  otherwise by Definition 6, 

=p(#kz)  if x 4= z, 

= m  if x = z  and k = 0 ,  

=ls~]p if x = z  and k -  l=n ,  

=p(#~-2z )  if x = z  and k - l = n ,  

= p(#k-  XZ) otherwise. 

So Pl and P2 are equal in all subcases. 

Case 2 (x 4= y). 

~s~,~y . tHp 

= ~ & .  sh~+q p 

= ~0-1(m ~-+ ~$~tyst~ p ly#m])  

= ~o-l(m ~-~ It~ p[y#m][v #IHysl  p[y#m]]) 

= ~o-iCm ~ It~ p[y-#ml[v #~s~//o,v(p[y#m])]) 

= 9-1( m ~-~ ~t~ p[y:#m] Iv #~s~ p]) 

~;ty. t~ ply #~s] p] 
= ~o-l(m ~ It~ ply #~s~ p][y#m]) 

by Definition 3(iii), 

by Definition 8(iii), 

by induction hypothesis, 

by Lemma 9, 

by Lemma 10, 

by Definition 8(iii). 
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It is easy to verify that the environments p[y~m][v #~s] p] and p[v #~s~ p] 
[y-#m] are equal due to the fact that x=gy. [ 

We can now prove our main theorem which ensures the consistency of the 
fl'-conversion with the laws of the ),-calculus. 

THEOREM 13. For all s, t C g- and x ~ X the following equation holds: 

~()~x . t s)~ p = ~$~ t] p, 

i.e., fl'-reduetion preserves meaning. 

Proof 

~(~x . t s)~ p 

= ~o(~x. t~ p ) ( M  p) 

= ~(~o-~(m ~ ~t] plx-~m]))(~s] p) 

= ~tD p[x #~s~ p] 

= ~s~t~ p 

by definition 8(ii), 

by Definition 8(iii), 

because (p- 1 is the right inverse of ~0, 

b y L e m m a  12. l 

Now we can make a last observation, which guarantees that fl '-conversion 
is also complete. 

THEOREM 14. Let t E g-. I f  t has a normal-form t', then t ~ t'. 

Sketch of  Proof Consider t as a term of Church's 2-calculus and let u be 
a normal form of t, which is derived from t by outside-in reductions, Any fl- 
reduction during this sequence has a corresponding fl'-reduction in a 
sequence starting also from t. Furthermore, after each fi-reduction in the first 
sequence and fl'-reduction in the second sequence both corresponding terms 
have the same abstract syntax. Hence, the term corresponding to u is in 
normal-form and was reached from t by fl'-reductions. 

This concludes our treatment of the reduction calculus. 

CONCLUDING REMARKS 

The aim of functional programming is to design a clean system which 
includes transparent computer architecture, for a neatly defined language, 
and a profound metatheory to support program-verification. The BRL is a 
suggestion for such a language, where a transparent computer architecture 
already exists and this paper makes the full theory of 2-calculus available for 
a program verification system. 
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