
INFORMATION AND CONTROL 55, 89--101 (1982)

A Consistent Extension of the Lambda-Calculus as a
Base for Functional Programming Languages

K L A U S J. BERKLING

Institut fiir Informationssystemforschung,
Gesellschaft fiir Mathematik und Datenverarbeitung, 5205 St. A ugustin 1, West Germany

AND

ELFRIEDE F E H R ~<

Lehrstuhl fiir Informatik H, R WTH-Aachen, 5100 Aachen, West Germany

Church 's lambda-calculus is modified by introducing a new mechanism, the
lambda-bar operator # , which neutralizes the effect of one preceding lambda
binding. This operator can be used in such a way that renaming of bound variables
in any reduction sequence can be avoided, with the effect that efficient interpreters
with comparatively simple machine organization can be designed. It is shown that
any semantic model of the pure ~,-calculus also serves as a model of this modified
reduction calculus, which guarantees smooth semantic theories. The Berkling
Reduction Language (BRL) is a new functional programming language based upon
this modification.

1. INTRODUCTION

Functional (applicative) programming languages, such as LISP
(McCarthy et al., 1965), KRC (Turner, 1981), PCF (Plotkin, 1977) etc., are
in general based upon the lambda-calculus (Church, 1941). Although
operational and dcnotational semantics of the lambda-calculus are by now
well understood (Gordon, 1975), most of the existing implementations of the
lambda-calculus correspond to incomplete versions or inconsistent extensions
of the axioms of the lambda-calculus. The reason for this is mainly the fact
that the standard reduction of leftmost-outermost fl-redexes with preceding
tests on variable conflicts and appropriate renaming is highly inefficient,
when implemented on or simulated by a machine.

Interpreters of LISP and LISP-like languages as the one given in

* Correspondence should be sent to Dr. Elfriede Fehr.

89
0019-9958/82 $2.00

Copyright © 1982 by Academic Press, Inc.
All rights of reproduction in any form reserved.

90 B E R K L I N G AND F E H R

(McCarthy et al., 1965) use in general a dynamic binding mechanism, which
violates the semantics of the underlying lambda-calculus as shown in (Eick
and Fehr, 1983). Another well-known implementation of the lambda-calculus
is the SECD-machine (Landin, 1964), which supports the correct scope-rules
of the lambda-calculus but as shown in (McGowan, 1970) fails to reduce all
expressions having a normal form, because functional arguments cannot be
treated appropriately. Similar problems arise with implementation on a
cellular computer architecture as introduced in (Mag6, 1979), which are
suitable only for a restricted class of functional languages as, e.g., FP and
FFP (Backus, 1978), because objects of higher functional types cannot be
handled.

Other implementations such as the graph-machine introduced in
(Wadsworth, 1971) or the combinator reduction introduced in (Turner,
1979) make a radical change in the representation of lambda-expressions.
They work on labelled graphs or purely combinatory expressions, with the
effect that the original lambda-expressions get lost and intermediate results
can hardly be understood by the programmer. All these deficiencies can be
overcome by implementing a variant of the lambda-calculus, which
maintains the original structure and naming of an expression. This variant is
obtained by adding an unbinding mechanism lambda-bar (#) to the
language, which neutralizes the effect of one preceding lambda-binding. For
example, the variable x occurs free in the expression ;tx. # x but bound in the
expression 2x • 2x • #x.

The benefit of this extension is that fl-conversion can be performed without
renaming of variables by systematically using the lambda-bar mechanism.
As a result machine models of languages based upon this extension have an
uncomplicated machine structure and run very efficiently.

The corresponding formalism was first introduced in (De Bruijn, 1972).
De Bruijn uses an implementation of this mechanism in his AUTOMATH-
project (De Bruijn, 1980) and shows that it is very efficient for automatic
formula manipulation. In (Berkling, 1976a) the same mechanism was
introduced independently. Berkling developed in (Berkling, 1976b) a
reduction language BRL which is an extension of the lambda-calculus not
only by a certain set of base operations, such as conditionals, arithmetical,
Boolean, and list operations, but also by the unbinding mechanism lambda-
bar. A machine implementation of BRL was first simulated in P L / I
(Hommes, 1977) and then a hardware-model was built (Kluge, 1979), which
started operating in 1978 and has since shown a satisfactory performance. In
particular the machine supports different reduction strategies, such as a finite
number of call-by-value reductions followed by a call-by-name reduction.
Hence the efficiency of the BRL-machine can again be increased with more
efficient strategies.

The semantic effect of the lambda-bar operation on the lambda-calculus

EXTENSIONS OF THE LAMBDA-CALCULUS 91

was until now not very clear, since there existed only the syntactical and
operational descriptions of it. In this paper we want to give a denotational
semantics to it and a proof that it consistently extends the lambda-calculus.

2. A SHORT INTRODUCTION TO BRL

As in most functional programming languages there is only one syntac-
tical category, expressions, in the Berkling Reduction Language. In this
paper we do not mention every feature o f BRL but rather point out the
different ways of forming new expressions from given ones.

(i) "simple expressions" in BRL are built up from variables and
constants using arithmetical, logical, and list operations, as well as
conditionals, e.g.,

(a) (3.1415 • (radius , radius)),

(b) 4 .3:3.7,

(c) / f x > 0 then 1 else i f x = 0 then 0 else - 1 .

(ii) "abstractions" can be produced from any expression e and iden-
tifier x by writing:

sub x in e

which is a sugared version of the lambda-expression

~x • e

and denotes a function with formal parameter x, which substitutes a given
argument at each free occurrence of x in e. For example,

(a) sub radius in (3.1415 • (radius , radius)),

(b) sub r in sub h / n (((3.1415, (r , r)) , h).

(iii) "combinations" are made of two arbitrary expressions f and g,
where one takes the function part and the other one takes the argument part.
The corresponding BRL-expression just reads:

apply f to g

again a sugared version of the k-expression (f g). For example,

(a) apply sub r in (3.1 , (r* r)) to 24.3.

During an execution, the above expression will be reduced in the first step to
(3.1 • (24.3 • 24.3)) and in the next step to its value 1830.319. To illustrate
the effect of the unbinding mechanism #, consider the k-expression:

643155/I-3-7

92 BERKLING AND FEHR

(Xx. Xy. x y). Because y occurs free in the argument and bound in the
function body, a renaming, say (Xx • Xz • x y), h~ts to be performed before fl-
reduction can reduce the term to ,~z • y.

The corresponding expression in BRL reads:

apply sub x in sub y in x to y.

After one step of reduction it turns into sub y in #y . The formal rule
corresponding to/]-reduction will be presented in the next section,

(iv) "recursive expressions" are introduced explicitly into BRL
although one could use the expression corresponding to the Y-operator of the
X-calculus. For any expression e and variable f we can build the BRL
expression:

rec f : e

which corresponds to an equation f = e or to the X-expression (Y Xf. e).
Consider the definition of the factorial as an example:

(a) reefac : sub n in i f (n = 1) then 1

else (n * apply fac to (n = 1)).

(v) Other concepts of BRL are convenient operations for tree
manipulations, for pattern matching and some facilities to save function
definitions. They will not be presented in this paper, but can be looked at in
(Hommes and Schlfitter, 1979).

A very nice feature of the BRL-machine is that when working at a
termiflal, program development runs interactively and long subexpressions
are automatically reduced to one symbol, which can be easily expanded
using the cursor.

3. SYNTAX AND CONVERSION RULES OF THE

REDUCTION-CALCULUS

In this section we want to give a formal description of the lambda-calculus
modification which is the support for BRL. In order to ease an immediate
comparison with the X-notation we shall use pure X-terms rather than BRL-
expressions.

DEFINITION 1 (Syntax). Let X be a denumerable set of variables. The set
~- of reduction terms is given inductively by:

EXTENSIONS OF THE LAMBDA-CALCULUS 93

(i) # " x ~ g- for all x ~ x, n ~ N, n >/ O,

(ii) (t~ t2) ~ g- for all t l , t2 ~ ~ ,

(iii) 2x • t ~ g- for all x E X, t C g' .

In (i) the symbol # " can be read as the n-fold application of # , which
reduces to the identity in the case of n = 0. As indicated in the Introduction,
B-conversion will systematical ly make use of the unbinding operation #
(lambda-bar) . This principle is formalized by the metaconstructor H
(protector), which augments the number of unbindings (protections) of a
particular variable by one.

DEFINITION 2 (//). Let x ¢ Z, n C IN, and t C g-. The reduction term
H # " x t is given by induction on the structure of t:

(i) l I # n x # ~ y = # m * l y if x = y a n d m) n ,

--- # '~y otherwise;

(ii) g # n x (t l t2) = (H#~xt l H # ~ x h) ;

(iii) H#~xf ly • t = fiy . H#~+ ~xt if x = y,

= 2y • H # " x t if x 4: y.

Now the substitution operator $s~t, which substitutes s for v in t, can be
defined without using the notions of free and bound occurrences of
variables.

DEFINITION 3 ($). Let v be # n x for some n C IN, x ~ Z and let s, t C 8-.
The reduction term $~t is inductively defined by:

$v#m. = = = (i) s Y S if V #my, i.e. m n and x = y ,

= # m - l y if x = y and r e > n ,

= # my otherwise;

(ii) SsV(/1 t2) = ($sVtl $sVt2);
#v (iii) $~2y . t = 2y . $ny, t if x = y,

= 2 y . $~yst if x=/=y.

Observe that by 3(i) occurrences of # ~ x with m > n are t ransformed into
m - I x . This is due to the fact that in the reduction calculus substitution of s
for x in t is performed as value of the redex (Zx. t s), hence one protection
of x in t becomes superfluous. The only reduction rule in this calculus
corresponds to the fl-conversion rule of the 2-calculus, but as clashes of
variables cannot occur, all redexes can be reduced without a prior renaming.

94 BERKLING AND FEHR

DEFINITION 4 (~'). Again, let x ~ z , and let t and s be
reduction terms. Then the binary relation ~ is defined as follows:

6'

arbitrary

O,x. t s) - - ~ $s x t.

A detailed description of the reduction calculus can be found in (Berkling,
1976a) where another simplification which uses only one variable is
presented too.

4. DENOTATIONAL SEMANTICS AND CONSISTENCY PROOF

In this section we show that the reduction calculus as introduced above
has a neat denotational semantics in any model of the 2-calculus, as for
example the Pe)-model (Scott, 1976), Doo (Scott, 1972), or any other. For
the rest of this paper let ~," be such a model and let ~0 denote the retraction
from ~ " onto [J ~ J f] with right inverse (0 -1, where [J~r'~ fe '] denotes the
set of continuous functions from ~ " to Jz". As a first step we shall model the
effect of the protection operator H on environments.

DEFINITION 5 (-Fin,x). Let x G X and n ~ N. The operator 1I,, x on an
environment p, i.e., a mapping from Z to ~ / , is given by

H, x (p) (#ky)=p(#~+lx) if x = y and k>/n

= p(#ky) otherwise.

Another useful definition serves to modify an environment such that one
protection of a variable x is neglected; and a new value m is given to
unprotected occurrences of X~

DEFINITION 6 (p[x~m]). F o r x E x , m E ~ " and an environment p let
p[x = m] be a new environment given by

p [x # m] (# k y) = p (# k y) if x4=y,

= m if X = y ' a n d / 4 = 0 ,

= (#k Ix) otherwise.

The next lemma shows how the environment transforming operators 11,, x
and [y~m] commute.

~LEMMA 7, Let n, k ~ N, x~ y ~)~, m C ~ ' a n d p be an environment.
Then the following holds: ' :

Hn,x(p)[y#m] =Hn+i,x(p[y#m]) i f x=. y,

= H, ,x (p [y~m]) i f x4=y.

EXTENSIONS OF THE LAMBDA-CALCULUS

Proof L e t z C z a n d k E N .

95

Case 1 (x = y) .

H.,x(P)[x#m](#kz)
= [In,x(p)(#kz) if X 4= Z,

= m if x = z and k = 0 ,

= II.,x(p)(# k- ix) if x = z and k > 0 by Definition 6,

=p(#kz) if x g: z,

= m if x = z and k = 0 ,

=p(#kx) if x = z and k > 0 and k - i / > n ,

= p (# k - ix) otherwise by Definition 5,

H. + ,.x(.P[X#m])(#kz)

=p[x#m](#k+lx) if x = z and k) n + 1,

=p[x#m](#kz) if Xg=Z or k < n + 1, by Definition 5,

=p(#kx) if x = z and k) n + l ,

= p(#kz) if x4=z,

= m if x = z and k = 0 ,

= p (# k - l x) if X = Z an k > 0 and k < n + l

by Definition 6.

It is easy to check that the left-hand side and the right-hand side are equal
in each subcase.

Case 2 (x ¢ y).

II. ,xO)[y # m](#kz)

= II..x(p)(#kz) if y 4= z,

= m if y = z

= i f y = z

= p (#k+ lx) if y 4 : z

= p(#kz) if y g: z

= m if y = z

= p (# k - l y) if y = z

and k -- 0,

and k > 0

and k~>n and x = z ,

and (x4=z or k < n) ,

and k = 0,

and k > 0

by Definition 6,

by Definition 5,

96 BERKLING AND FEHR

f ir . ,x (ply#m])(#~z)

=p[y#m](#k+'z) if X = Z and k) / n ,

=p[y#m](#kz) if X C Z or k <n byDefinit ion5,

=p(#k+lZ) if X = Z and k>/n and y4:z ,

=p(#kZ) if y C z and (xq :z or k < n) ,

---m if y = z and k = 0 ,

= p(#k- ly) if y -- Z and k > 0 by Definition 6.

Again it is easy to verify that both sides of the equation of the lemma are
equal in all subcases. [[

Now we can elegantly formulate the denotational semantics of the
reduction terms.

DEFINITION 8 (Semantics [[D. The semantics of a term t with respect to
an environment p : Z ~ in the model ~ " is given inductively by:

(i) [~v]] p = p(v) for each v = #nx, n E N, x ~ Z,

(ii) [T(t 1 t2) ~ p = ~o(~tl~ p)(~t2~ p) for t~, t2 ~ g-,

(iii) I2x. t~p=(o-a(mv --} ~t~p~x#m D for x E X, t E g-.

This definition exhibits the fact that our reduction calculus is semanticly a
clean extension of the 2-calculus, because terms without occurrences of #
obtain exactly the usual 2-semantics. Before proving that this semantic
definition is compatible with the //'-reduction, we have to show in three
lemmas, how he protection operator fir and the substitution operator $
behave on the semantic level.

LEMMA 9. Let n C N, x E z, t E g-, and p be an environment. The
following equation holds:

Proof.

(i)

~fir # ° x t~ p = nt~ &,x(p) .

Induction on the structure of t:

Vt # " x # M p = ~#~+M p

= ~#ky~ p

= I1 ,Jp) (#ky)

= I#*A nn,x(p)

if x = y and k~>n,

otherwise by Definition 2,

by Definition 8(i)
and 5,

by Definition 8(i).

EXTENSIONS OF THE LAMBDA-CALCULUS 97

(ii) By Definition 2(ii) / / distributes to both components of the
combination, thus the induction hypothesis is applicable.

(iii) ~H #~x 23;. tl p

= F~Y' n # " + l x t~P

= I'~Y" n # " x t ~ p

if x = y ,

if x ~ y

by Definition 2(iii)

= ~o-~(m ~ I I I# "+ ix t~ p[y#m])

=~0-1(m ~ -, ~l I#"x t lp[y#m])

= ~o-' (m ~ ~t I / / , + ~.x(p[y#ml))

= ~ - ' (m ~ ~t~ IZn.x6o[y#m]))

= ~ l(m ~ ~t~ n . , x (p) [y # m])

= F~Y" tl n . ,x(P)

if x = y,

if x :# y

by Definition 8(iii)

if x = y ,

if x#:y

by induction hypothesis,

by L e m m a 7,

by Definition 8(iii). |

LEMMA 10.

Proof.

Let x, m and p be as above. The following equation holds:

Ho,x(p [x#m]) = p.

IZo.x(p [x#m D(#ky) = p [x#m](# k + 'y)

=p[x#m](#ky)

if x = y,

if x ¢ y

by Definition 5,

=p(#ky) by Definition 6. |

In our next l emma we shall use a generalization of Definition 6, namely,
the change of an environment on a protected variable.

9 8 B E R K L I N G A N D F E H R

DEFINITION 11 (plY#m]). Let v = # n x , n E ~, x E Z , m E J " and p be
an environment. For k C N and y E Z let p[v#m](#ky) be given by

p[v#m](#ky) = m if x = y and k = n,

= p (# k - l y) if x = y and k > n ,

= p(#ky) otherwise.

Observe that Definition 11 is consistent with Definition 6, i.e.,
p[#°x #m] = p[x#m].

LEMMA 12. Again let v = # " x for some n ~ •, x ~ Z and let s, t C ~U,
and p be an environment. The following equation holds:

~$~t] p = ~tl[v#~s ~ p].

ProoJ:

(i)

Induction on the structure of t:

o m I s , # y] p = Is] p

= l # m - M p

= p [v#I s~ o] (# m y)

if v = #my,

if x = y and r e > n ,

otherwise by Definition 3,

by Definition 11 and 8(i

by Definition 80).

(ii) immediate by induction hypothesis.

(iii) Case 1 (x = y) .

~s~;ty • t~ p
#v = ~S~,~x • tl p = ~ 2 x . $ ~ t ~ p

= ~o-~(m ~ I*,~x,t~ p[x#m])

= q~-l(m ~ ~t] p[x#m][# v #~Ilxs] p[x#m]])

= ~0-l(m ~ It~ p[x#m][# v #Is] IIo,x(p[x#m])]) by Lemma 9,

= 9 - ' (m ~-~ ~t~ p[x#m][# v #Is] p]) by Lemma 10;

I2x . t~ p[v #~s] p]

= q~-l(m ~ ~t~ ply #~s] p] Ix#m]) by Definition 8(iii).

by definition 3(iii),

by Definition 8(iii),

by induction hypothesis,

EXTENSIONS OF THE LAMBDA-CALCULUS 99

It remains to show, that the two environments p~ :=p[x#m][# v #~s] p] and
P2 :=p[v #~s~ p][x#m] are equal.

pl (#kz)=~s~p if x = z and k = n + 1,

=p[x#m](#k-~z) if x = z and k > n + l ,

= p[x#m](#kz) otherwise by Definition 11,

=~s]]p if x = z and k = n + l ,

=p (#~-2z) if x = z and k > n + 1,

= p(#kz) if x ~ z ,

= m if x = z and k = 0 ,

= p(#~- ~x) otherwise by Definition 6,

p2(#kz)=p[v#~s~p](#kZ) if x4:z ,

= m if x = z and k = 0 ,

=p[v #~s~ p] (#k - lx) otherwise by Definition 6,

=p(#kz) if x 4= z,

= m if x = z and k = 0 ,

=ls~]p if x = z and k - l=n ,

=p(#~-2z) if x = z and k - l = n ,

= p(#k- XZ) otherwise.

So Pl and P2 are equal in all subcases.

Case 2 (x 4= y).

~s~,~y . tHp

= ~ & . sh~+q p

= ~0-1(m ~-+ ~$~tyst~ p ly#m])

= ~o-l(m ~-~ It~ p[y#m][v #IHysl p[y#m]])

= ~o-iCm ~ It~ p[y-#ml[v #~s~//o,v(p[y#m])])

= 9-1(m ~-~ ~t~ p[y:#m] Iv #~s~ p])

~;ty. t~ ply #~s] p]
= ~o-l(m ~ It~ ply #~s~ p][y#m])

by Definition 3(iii),

by Definition 8(iii),

by induction hypothesis,

by Lemma 9,

by Lemma 10,

by Definition 8(iii).

100 BERKLING AND FEHR

It is easy to verify that the environments p[y~m][v #~s] p] and p[v #~s~ p]
[y-#m] are equal due to the fact that x=gy. [

We can now prove our main theorem which ensures the consistency of the
fl'-conversion with the laws of the),-calculus.

THEOREM 13. For all s, t C g- and x ~ X the following equation holds:

~()~x . t s)~ p = ~$~ t] p,

i.e., fl'-reduetion preserves meaning.

Proof

~(~x . t s)~ p

= ~o(~x. t~ p) (M p)

= ~(~o-~(m ~ ~t] plx-~m]))(~s] p)

= ~tD p[x #~s~ p]

= ~s~t~ p

by definition 8(ii),

by Definition 8(iii),

because (p- 1 is the right inverse of ~0,

b y L e m m a 12. l

Now we can make a last observation, which guarantees that fl '-conversion
is also complete.

THEOREM 14. Let t E g-. I f t has a normal-form t', then t ~ t'.

Sketch of Proof Consider t as a term of Church's 2-calculus and let u be
a normal form of t, which is derived from t by outside-in reductions, Any fl-
reduction during this sequence has a corresponding fl'-reduction in a
sequence starting also from t. Furthermore, after each fi-reduction in the first
sequence and fl'-reduction in the second sequence both corresponding terms
have the same abstract syntax. Hence, the term corresponding to u is in
normal-form and was reached from t by fl'-reductions.

This concludes our treatment of the reduction calculus.

CONCLUDING REMARKS

The aim of functional programming is to design a clean system which
includes transparent computer architecture, for a neatly defined language,
and a profound metatheory to support program-verification. The BRL is a
suggestion for such a language, where a transparent computer architecture
already exists and this paper makes the full theory of 2-calculus available for
a program verification system.

EXTENSIONS OF THE LAMBDA-CALCULUS 101

REFERENCES

BACKUS, J. (1978), Can programming be liberated from the yon Neumann style? Comm.
ACM 21, 613-641.

BERKUNG, K. J. (1976a), "A Symmetric Complement to the Lambda-Calculus," Interner
Bericht, ISF-76-7, GMD, D-5205, St. Augustin-1.

BERKLXNC, K. J. (1976b), Reduction Languages for Reduction Machines, Interner Bericht,
ISF-76-8, GMD, D-5205, St. Augustin-1.

CHURCH, A. (1941), "The Calculi of Lambda-Conversion," Princeton Univ. Press, Princeton,
N.J.

DE BRUUN, N. G. (1972), Lambda-catculus notation with nameless dummies. A tool for
automatic formula manipulation with application to the Church-Rosser theorem, Indag.
Math. 34, 381-392.

DE BRUIJN', N. G. (1980), A Survey of the Project AUTOMATH, in "To H. B. Curry: Essays
on Combinatory Logic, Lambda Calculus, and Formalism" (J. P. Seldin and J. R.
Hindley, Eds.), pp. 579-606, Academic Press, London/New York.

E~CK, A., AND FEHR, E. (1983), Inconsistencies of Pure LISP, in "Theoretical Computer
Science, 6th Gl-Conference" (A, B. Cremers and H. P. Kriegel, Eds.), pp. 101-110,
Lecture Notes in Computer Science, No. 145, Springer-Verlag, Berlin.

GORDON, M. (1975), "Operational Reasoning and Denotational Semantics," Memo
AIM-264, Stanford Artificial Intelligence Laboratory, Stanford.

HOMMES, F. (1977), "The Internal Structure of the Reduction Machine," Interner Bericht,
ISF-77-3, GMD, D-5205, St. Augustin-1.

HOMMES, F., AND SCHL/)TTER, H. (1979), "Reduction Machine System," User's Guide,
GMD-ISF, D-5205, St. Augustin-1.

KLUGE, W. E. (1979), "The Architecture of a Reduction Language Machine Hardware
Model," Interner Bericht, ISF-79-3, GMD, St. Augustin-1.

LANDIN, P. J. (1964), The mechanical evaluation of expressions, Cornput. J. 6, 308-320.
McCaRThY, J., et aL (1965), "LISP 1.5 Programmer's Manual," MIT Press, Cambridge,

Mass.
McGowAN, C. L. (1970), "The Correctness of a Modified SECD-machine," in "Second

ACM-Symposium on Theory of Computing," pp. 149-157, Assoc. Comput. Mach., New
York.

MAGd, G. (1979), A network of microprocessors to execute reduction languages, Internat. J.
Comput. Inform. Sci. 8, 349-385.

PLOTKIN, G. D. (1977), LCF considered as a programming language, Theoret. Comput. Sci.
5, 223-255.

SCOTT, D. (1972), Continuous lattices, in "Proceedings, Dalhousie Conference," pp. 97-134,
Lecture Notes in Mathematics, Springer-Verlag, New York.

SCOTT, D. (1976), Data types as lattices, SIAM J. Comput. 5, 522-587.
TURNER, D. A. (1979), A new implementation technique for applicative languages, Software-

Practice and Experience 9, 31-49.
TURNER, D. A. (1981), The semantic elegance of applicative languages, "Functional

Programming Languages and Computer Architecture" (Arvind, J. Dennis, Eds.), pp.
85-92, Assoc. Comput. Mach, New York.

WAt~SWORTH, C. (1971), "Semantics and Pragmatics of the Lambda-Calculus," Ph.D. thesis,
Oxford Univ. Oxford.

