stochastic
A processes
i { sl PR I N -

ata, citation and similar papers at core.ac.uk

Www.clsevier.conylocate/spa

Hydrodynamic limit for a nongradient system
in infinite volume

Anne Perrut

Université de Rouen, Site Colbert — UFR des Sciences, LAMS, UPRES-A 6085, F-76821
Mont-Saint-Aignan cedex, France

Received 2 November 1998; received in revised form 22 February 1999; accepted 7 May 1999

Abstract

The hydrodynamic limit of the symmetric generalized exclusion process on the torus [0, 1)
has previously been proved to be a nonlinear diffusive equation. We consider in this paper this
model in infinite volume. We prove that the H_; norm of the difference between the process
and the solution of the hydrodynamic equation goes to zero. (©) 1999 Elsevier Science B.V.
All rights reserved.
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1. Introduction

The interacting particle systems introduced by Spitzer at the beginning of the 1970s
may model the behavior of the molecules of a gas. The hint of the theory of hydro-
dynamic limits is to bound this microscopic dynamics to the macroscopic evolution of
the gas. For a large survey on hydrodynamic limits, one may refer to the books of
Spohn (1991), De Masi and Presutti (1989), or Kipnis and Landim (1999). In 1988,
Guo et al. (1988) introduced large deviations techniques to obtain rigorously this limit-
ing behavior for a large class of gradient systems, by controlling the entropy production.
They proved a law of large numbers for the empirical measure, that is the convergence
in probability of the density of particles at time ¢ in a small macroscopic neighborhood
to the solution p, of a PDE, namely the hydrodynamic equation.

This had been extended to a nongradient Ginzburg—Landau model by Varadhan
(1998). The generalized symmetric exclusion process, which is also nongradient, had
been studied in Kipnis et al. (1994, 1995), where the hydrodynamic limits had been
obtained, first on the finite torus and then in a finite box with reservoirs. Our purpose
is to extend the result presented in Kipnis et al. (1994) in a stronger version in infinite
volume: We would like to prove, by rescaling time and space, that the macroscopic
behavior of this model is governed by a nonlinear diffusive PDE. For this, we study
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the H_; norm of the difference of the process and the solution of this PDE, under reg-
ularity conditions on the diffusion coefficient. A proof based on H_; norm techniques
was made by Chang and Yau (1992) for the Ginzburg—Landau model, and by Landim
and Yau (1995): The authors extend the standard method to prove uniqueness of the
solution of a parabolic PDE to the stochastic context. Other papers treat the use of this
norm: For instance Yau (1994) and Landim and Vares (1996), where an exponential
estimate for the H_; norm of the difference of a reaction-diffusion process and the
solution of its hydrodynamic equation in infinite volume is obtained.

The main ingredients in our proof are an estimate of the relative entropy and of the
Dirichlet form, the replacement lemma and the study of time evolution of the H_;
norm. To obtain the estimate of entropy production, we follow the approach of Fritz
(1990) and Yau (1994) (one could refer to Landim and Mourragui (1997) too). This is
done in Section 2. Then, in Section 3, we have to prove that the so-called replacement
lemma holds. In fact, this lemma allows the replacement of the current (which is not
a gradient quantity) by a gradient plus a negligible term of the form LF(n) where L
is the generator of the process. This term LF(7) turns out to be irrelevant because its
time fluctuations are orthogonal to the ones of the gradient part. For an overview on
these techniques, see Kipnis et al. (1994) or Kipnis and Landim (1999). With these
results, we actually may study the time evolution of the H_; norm by deriving it. The
Gronwall lemma allows us to conclude. In the appendix, the reader will find some
tools on the H_; norm used throughout this paper.

We now describe the generalized symmetric simple exclusion process on Z, denoted
by (1:);>0: The particles jump to a nearest-neighbor site with a random rate, but at
most two particles per site are allowed. The space of configurations is 2 = {0,1,2}%.
The generator of the process is defined, for all cylinder function f, for all # € Z, by

(L £)(n) = N*(Lf)(n).

LA =5 3 Feeos L)~ £

xX€Z
[y|=1

where the jump rate is given by 7y y1 (1) = L{y)>0, yixty) <2y for y==1, and 77 is
the configuration obtained from # by letting one particle jump from x to y:
nx)y—1 if z=x,
mr(z)=q ny)+1 if z=y,

n(z) otherwise.

For an integer x, we define the current W, .. by

Wx,x+l(’7) = rx,x+l(’7) - rx+l,x(’1)'

We denote by 7, the translation operator defined on Z° by 7,n(y) =#n(x + y) and on
the space of functions by (7, f)() = f(z:n7). The system is said to be gradient if there
exists a function % such that Wy; =1,h — h. Here, the system is not gradient: Consider
the configuration # with two particles at site 0 and one at site 1. Then ) 7, Wy1(n)=1
which is inconsistent with > 7.(t1h — h)(1) =0.
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Let S¥(¢) be the semi-group associated to the generator and EnN be the expectation
with respect to the law of the Markov process with generator LV when it starts from
1. The process (#;):»0 is self-adjoint with respect to v, (¢ > 0), the product measure
on Z with marginals

ng

Z(p)

for k=0,1,2, where Z(p)=14 @+ ¢? is the normalization constant. We will denote by
v, the measure v, when v,[7(0)] = p is the mean occupation number per site. Notice
that p= (¢ +2¢?)/(1+ ¢+ ¢*) and 0<p <2. Fix once for all an invariant measure .

Before stating the main result of this paper, we have to define in details the H_,
norm on Z. As in [1], let Ky(.,.) be the kernel associated to (I — N>4)~!(.,.) where
A is the discrete Laplacian:

(AN =fr+ D+ fx = 1) =27 (x).

By its definition, K is perfectly adapted to our parabolic case. A calculation based on
Fourier transforms and valid only in dimension 1 shows that

Voln: n(x) =k} =

1—a
14+a

with a solution of N =+/a/(1 —a) such that 0 < a < 1 (see Landim and Vares (1996)).
As in Yau (1994), we consider Ky(.,.) the kernel Ky(.,.) multiplied by exp(—0(.)):

Ky(x,y) = ak= (1)

KN,O(-X’ y) = e_g(X/N)KN(x, y)e—(’(y/N)'

We define the H_; norm and the Hy norm of a configuration # by

1 1 v
Fllr=o5 D2 Koo yyn(y) and [ flo =D n()*e .
x, yEZ xXeZ

The properties of the kernel Ky are postponed at the end of the paper.

To obtain the hydrodynamic limit, we rescale time and space. We set that the distance
between two neighboring sites is 1/N and then accelerate the displacements of particles
by N2, because they are symmetric. In the limit as N goes to infinity, the process
satisfies the nonlinear parabolic differential equation

0ip = Oxxd(p) = 0:(D(p)0xp),

where d(p)= fop D(ar)da. Spohn (1991) proved that the diffusion coefficient D is given
by the Green—Kubo formula which involves equilibrium expectation of the space—time
correlation of the current. Its variational formula is

1
Diey= 2x(p)

where the infimum is taken on the set of cylinder functions on %, (.), is the expec-
tation with respect to v,

a(p,h) = 3 {roa(m)(1 = [Ta(n™) = Tu(m]?),
+ 3 (ro(m( = [Ta(n") = Ta(mD?)ps

inf a(p, ),
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2(p) = (n(0)?), — (n(0)>,2) and I', =) .,(tch) (see Kipnis and Landim (1999) for
details). From Theorem 8.1 in the book [8], the unique classical solution p(#,x) of
this equation with initial condition p(0,.) = po(.) is of class C?> when the diffusion
coefficient is continuous, differentiable, its derivative is a continuous Lipschitz function
and when the initial condition p is of class C3. It has been shown only in dimension
1 that D(.) is continuous (see Kipnis and Landim (1999)), and we are not able to
show more.
We state here the main theorem of this paper.

Theorem 1.1. Let (1) be a sequence of initial configurations. Then, under regularity
assumptions on D(.)

Jim BR[| () = w(/N) |2 1=0
when u, is the solution of the equation
Orut = Oxxd(u) = 0x(D(p)0xp)
with the initial condition uy(.) being of class C* and satisfying

im0 = (V) |24 =0,

Remark. The initial distribution had been chosen deterministic, but we can extend the
result to any sequences of initial distributions u".

Corollary 1.2. Let G be a continuous function on R with compact support and u"
a sequence of initial measures on Z. Under the assumptions of Theorem 1.1, for all

0>0and t=0,
>5} =0.

We shall now try to explain the strategy of the proof. To control the time evolution
of Ef;ﬁ,[ | m —u, ||*, 1, we derive it. Then we can perform one spatial integration
by parts, instead of two for a gradient system. So we obtain an expression involving
the currents multiplied by a factor N. To get rid of this factor N, we wish we could
perform another summation by parts, which will be possible once the replacement of
the current W, ,.1(n) by a term proportional to a local average of n(x + 1) — n(x)
(which is a gradient) is done. More precisely, we denote by %, the space of cylinder
functions on Z with mean zero with respect to all canonical measures v; ¢ defined
in Section 3. For example, the currents W, .., belong to %,. By providing this space
with an inner product ((.,.)),, we obtain a Hilbert space #, such that the gradient
n(1) — n(0) is orthogonal to the space L%, and these two spaces generate #,. Then
there exists a D depending on the density satisfying

Wo + D(p)[n(1) — n(0)] € L%,

where L%, stands for the closure of L%, in %,. Let f € %, such that ((Wy; +
D(p)[n(1) — n(0)] — Lf)), is small. The first proof in Section 3 consists in showing

S nGe) — [ Grmrar

xeZ

1
: N N .
th u's (t){n. ’N
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that the term L f may be introduced in our expression. In fact, the function f* depends
on the density because the inner product does. Moreover, the rest of this section is
devoted to the proof of the replacement of Wy; by D(p)(n(1)—n(0))+Lf. Indeed, we
first simplify the problem, using the entropy inequality. Then Feynman—Kac formula
reduces the problem to a static one. It is the place where we need the estimate on
the Dirichlet form proved in Section 2. And we use a series of lemmas to localize all
the terms. Afterwards, we project the new expression on the hyperplanes with a fixed
total number of particles, and an estimate on small perturbations of the generator in
finite volume reduces the problem to the computation of a central limit variance, which
achieves the proof of the replacement lemma. Once this done, we can prove Theorem
1.1 (Section 4): We perform a second summation by parts and calculations involving
the properties of the kernel Ky allow us to conclude with Gronwall lemma.

2. Entropy estimate

We study here the most useful objects in the proof of the hydrodynamic limits: The
entropy and the Dirichlet form of a measure with respect to the reference measure v,.

For each subset A of Z, denote by vffl the product measure on N* with the same
marginals as v,. We set: A, ={—n,...,n} and Z, = {0, 1,2}4. We shall denote va"
simply by v;. More generally, for a measure u on Z', we denote by u" the restriction
of won & : (&)= p{n: n(x) = &x), V|x|<n} for all ¢ € &,. For all n>1, for all
measure 4 on 4, we define the relative entropy of /4 with respect to v;' by

H,(A)= sup {/fdxl — Log/ef dv;’} = /Log d):l dz,
FEC( ) dv)

where Cy(Z,) is the set of bounded continuous functions on %,. We also define the
Dirichlet form of the measure A:

w2 B

where L, .1 is the generator of the process restricted to the sites x and x + 1, that is

L1 f(1) = 31 et (LA — £+ Sre c LA — £

We are now able to define the entropy of a measure u on 2 with respect to v,. Let
0: R — R* be a positive function, three times differentiable, such that: 6(a)=|a| when
|a| > 1. The entropy of p with respect to the reference measure v, is defined by

1 n —u(n
A= > Ha(p")e ")

n=1
and the Dirichlet form is
) _ 1 ny .—0(n/N)
() =+ ;Dn(# )e :

We state now a first result concerning a bound of the entropy and the time integral of
the Dirichlet form.
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Theorem 2.1. There exists a positive and finite constant C depending only on the
Sfunction 0 and on the parameterization p such that, for all sequence of initial measures
uy on Z,

N? [
HSN(Huy) + - / D(S" (s)uy ) ds <CN. (2)
0
This theorem provides a bound for the time integral of the Dirichlet form, that is
t
C
/ DSV (s)uy)ds< —.
0 N
Proof. It follows the one of Fritz (1990) for the Ginzburg—Landau model.

We consider a sequence of initial measures uy. For each configuration #, we denote
by 6, the measure on 2" which only charges #:

doy 1 1+ ¢+ ¢?
H,(6") = / Log—! do; = Log—— = Log————— <c(o)n.
K dvr " va(n) x;:” )
Moreover, uy(17)=73_, iv(n)dy, therefore, H,[uy]1< >°, un(mH[5)] <c(@)n. We then
deduce, for N large enough,
c —0(n,
%(ums];”);ne WM < N, 3)

where Cj is a positive constant. (We used Y., ne™"¥ ~ N2, when N is large.)

Once this done, we have to consider the process on large finite volumes, i.e. on
volumes of length M for some M =M(N)>N. In this context, we prove a bound for
the entropy and for the time integral of the Dirichlet form, uniformly in M. Indeed,
we follow the approach of Landim and Mourragui (1997). Up to this point, it will be
easy to deduce Theorem 2.1, by letting M go to infinity (see the end of this section).

We fix a positive integer M, large compared to N and consider the restriction of
the process on 2y = {0,1,2}%_ Its generator Ly, is given by

N2Ly = N? Z Lyt
X, Xx+1E Ay
More generally, the generator L, (1<n<M) will be the restriction of L on A,. The
semi-group of the process with generator L, accelerated by N? will be denoted by
SMN(1). Consider a measure pu on %y and let u(t) = S V(¢)u be the law of the
process at time ¢, starting from p. The density of u(¢) with respect to v})” will be
denoted by f(¢) and the one of p"(#) with respect to v} by f,(¢) for n<M.

Let R:RT — R"™ be a continuous positive function with support contained in [0,
(M — N)/N]. The entropy of a measure y on %), and the Dirichlet form are defined
by

1 M
Hu (1) = 5 > Ha(KR(1/N),
n=1

1 M
Dy r(1) =5 > DuliYR(/N ).
n=1
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Fix an integer | <n<M — N. For two subsets Q and A of Z, such that Q C A, for
a function g with support included in A, (g ) g)q indicates that we integrate g over the
coordinates {n(x), x € Q} with respect to v . When Q = A,11\4,, we simply denote

(g)o by (g)nt1. Since vp’“r1 is a product measure, f,(¢) = (fn+1(¢))n1-
To estimate the entropy production, we shall compute the time derivative of the
entropy. As in Landim and Mourragui (1997), we have

atfn(t) = N2 <Ln+1fn+l(t)>n+l

because L, is self-adjoint with respect to v”+1 As a consequence,
QL) =2, [ fio)Log fo)dy]

¥ [ Lo fra@Log fiay " + [ afi0ay.

But the second term is null. Besides, L,+1 =L, + L, y+1 + L_,—1_p, thus

HLf(1)] = N / Jrer(OL,Log fo(t) dy+!
+N2 / fn+l (t)Ln,n+1L0g fn(t) dv/:hLl

N2 / Srr(OL 1 —yLog fu()dy .

By a classical computation which can be found in the proofs using this relative en-
tropy method (see Fritz (1990) for example), the first term is bounded above by
—N2D,(f(t)). And we denote the two last terms by /; and I, respectively. Now, we
will simply write f, instead of f,(¢):

Salg™"th)
Ja(n)

2 n+1l,n
2 [t o pLog

We make a change of variables in the second term. The rate r,; ,(1) insures that
n(n+1) >0 and 5(n) < 2, so we are allowed to set £ = """, Moreover, we have:
rn+1,n(én’n+l) = rn,nJrl(é)' Therefore

N? .
=" [ maafiLog ayton)

a1 ).

n,n+1
-V / Fune (DU oa (D) = fuir G "“)]Logf”(f”( O an
N2
= /]1{11(n)>0} < Lgymsty < L1 (n) = L (1] > i1
fl’l(rl ) n
xLog=——— 0 dv) (1),

where e, is the configuration with only one particle at site n: e,(n) =1 and e,(x) =0
if x # n. In this integral, we can add 1,, and 1, the indicator functions of the sets
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A, and B, defined by
An = {0 (Lyuiny <23 Soe1 D) net = (Wyniny < 23 Sarn ("))
and (1 — ex) = fu(1)}
By ={n: (Lynr1y < 23 Lo 07" Nt = Mgty < 2y St (D)1

and f,(n) = fu(n —en)}

since outside of these sets, /; is nonpositive. So we rewrite /; as

Ja( —ey)
Sa(1)

Sn(n = en)
Sn(n)

NZ
L < 7 /rn,n+l(’7)]1An(n)[fn+l(”) - fn+1(17n’n+l)]LOg dv n+1(11)

N2
+7/rn,n+1(17)113n('1)[fn+1('7)—fn+1(f7”’"+1)]L0g Ayt ()

AN?
4

\

/ P DIV Fon (1) — N/ TGP D dy )

2

+ L / Pt (DA, (1) + L, (D PIV Tt (1) + v S (o P

44
2
ﬁ(ﬂ"’"“)) 1
x [ Log=—= ) dv"*'(n). (4)
< Sn() .
To obtain the last inequality, we used
A 1
ab<§a2+ﬂb2 for all a,b € R and 4 > 0. (5)

We may remove the square of (14,(#)+13,(1)) because the term containing the product
14, ()l (1) vanishes. We choose 4=¢N. Since (v/a++/b)> <2(a+b) for all positive
real numbers a and b, the second line of the last expression is, after a change of
variables,

N fn(n n) n
<£/ﬂ{n(ﬂ)>0}]l{fn(n—en)an(n)}fn(”) (Log 0 dv, (i)

N fui+e)Y
~ |1 1 “(n) [ LogZ2 50 ) qyncy,
+28/ {n(n) < 2} {ﬁ:(ﬂ+en)>ﬁ('1)}f(’7)( o v, (1)

Using the elementary inequality
5 2
x (Log X) =4 [\/)_cLog, / Z} <4(vx —/y)* when y=x >0,
X x

we obtain that the last integral is

2N
<2 [ -0 VAD — VAl e)F ayin)

2
+7N / Lyny < 23 [V 1) =/ Sl + e)F dVy ()
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4N
< 7 / [2fn('7) + ll{r((n)>0}fn(17 - en) + ]1{17(11) < Z}fn(n + en)] dVg('?)

8N 4Np 4N  C(@)N
BV ANe AN C(eN

X

e cp ¢
Notice that C(¢) is a positive constant depending only on ¢. Coming back to inequality
(4), we have

Cle)N

L <

3
+ % /rn,n+l(77)[\/fn+l(’7) — \/fn+l(nn,n+l)]2 dV;H_l(l’l),

,,,,,

C N 2n+N+l
i< SON N / Fanit D ) 2

m=n+2

By Schwarz inequality, (\/ [ / — \/E)Zfo+fg—2 [ f9< [(V/T - V3 So

it comes

C N 2n+N+1
Il<%+84 /rnn+1(’7) \/fm(”/)

m=n+2

C 2n+N+l
= S o / a1 DIV T 1) — /TGP v (),

m=n+2

The same calculation for [, allows us to conclude

()N

0:H, [fu()] < N2Dn(fn(t))

N2 n+N+1
/ (Lot + Lnro I IO vy (6)

m=n+2

This last integral is a part of the Dirichlet form of f,. By summation over n, it will
be compensated by the Dirichlet form with a negative sign ahead. We choose R(n/N)
equal to exp(—0(n/N)) for all n<M — N — 1, we set R(n/N)=0 if n>=M — N and
interpolate linearly in between. A computation involving the continuity of 6 shows, for
M >=N?, that

M—N n+N+1

Z Z /[(Ln,n+1 + L*"*I,fn)m]\/mdvp e—9(l7/N)

n=1 m=n+2

M
<C0)Y / L/ L)V Fn dy e )
m=1
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M—N
<CIN +C(0) Y / Lo/ fu)\ frn AV R(m/N )
m=1

< C/N + C(O)NDu, r(f(2)).

Let us multiply both sides of (6) by R(n/N) and sum over | <n<M — N:

d

3 R(F (D)< = N*Du r(f (1)) + KiN + K2eN*Dag (£ (1)),

where K| depends on R and ¢ and K, depends only on R. Choosing ¢ small enough,

we obtain

2

S H DS — 5 Dua70) + KN

Following the proof in [9], and letting M go to infinity, we conclude

2 t
A )+ /O ds 7(8V (s)un ) <CN,

where C is a positive constant. To obtain this final inequality, it suffices to argue of
the convexity and the lower semi-continuity of the entropy and of the Dirichlet form
(refer to Landim and Mourragui, 1997).

3. Replacement lemma

In order to estimate Ef;’N[ | 7. —u; ||*, 1, we shall derive this expectation in time and
a term containing the current Wy, will appear. In this section, we prove that we can
replace the current by a gradient plus a negligible term. Before stating the so-called
replacement lemma, we will modify slightly the H_; norm, with a view to removing
the diagonal terms that are difficult to treat, and the terms which are far from 0. This
is possible thanks to the functions e~ C/N) and e~ 0/N),

Fix two positive real numbers /# and é with 4 large and é small. Let H be a smooth
function on R? satisfying

1 if |a|<h, |b|<hand |a—b| >0,

H(a,b)=
(@5) {0 if la| >h+0or |b| >h+Jor|a—b|</2.

Notice that H can be chosen uniformly bounded by 1. We set

¢N(x’ y) = H(X/N’ y/N)KN,()(x’ y)

An easy calculation shows that

(R :% Z(’?t(x) — (/N )Py (x, ¥)1(y) = u(¥/N)) + ™ (i, ue),

where #V satisfies |V (1,,u,)| < C(0)(e™" + ). From now on, we will study the sum

S0 = 3 D200 — wlN D 1)) — (/N
X,y
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Let us derive it in time. For this, we compute (J; + L )S;(s). Recall that u, is solution
of the PDE 0,u = %(’)xxd(u). Thus,

1
(05 +LY)Si(s) = Y D 0ud(u)/N )y (x, )(15(¥) — us(y/N))

N Y (Wam1a(00) = Wasir (1) b (x 9)(15(v) = ts(9/N)).
Xy
Because d is supposed to be regular, so is the solution u,. And, by a Taylor expansion,

[Ad(CNDIE) = 35 @O + 5 ox(1). ™
Moreover, ¢y (x, y) <N e 0/N)e=00/N) (see Lemma 5.1), and

N?Ad(u)(x/N) = N*[Vd(us)(x/N ) — Vd(us)((x = 1)/N)],
where the discrete derivative is defined for all function f by

Vi) =fx+1)— fx).
Therefore by summation by parts,

1
(05 + LY)S1(s) = on(1) — N D N Ad(ug) (/N ) (x, »)(ns(y) — us(y/N)

Xy

+ Y Wt MONIGN + 1, 3) = (6 )I(1() = us(y/N)

X,y

= on(1) + Y [Wexs1(15) + Ve (u) (/N )]

Xy

[INVn (., )I)s(y) — us(y/N)).-

We have to replace the current W, ., by a gradient to perform another summation by
parts. This is the content of the following lemma. We set

Vi) = Woa(n) + D(n'(0)[n'(1) = 1'(0)].
As usual, 5/(x) stands for the mean number of particles in a box of size / (I € N\{0}),
centered at x: #/(x) = (2] + 1)~! nglﬂ(x + »).

Lemma 3.1 (Replacement lemma).

lim lim E

N
N
e—~0N—oco

|3 N Vb 0 3) — N | <0
R

In fact, we shall show that we may decompose the current as a sum of a gradient
and a term L/ that turns out to be negligible: We will prove that

Viln) — LF(n) = Wo1(n) + D(n'(0))(n'(1) = n'(0)) — LF ()

is small for each function F that belongs to a set &, whose definition may be mostly
guessed from the paper schedule at the end of the introduction. For all / € N\{0} and
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0<K<2(2]+ 1), denote by v; x the canonical measures on A; given by

vik()=w |- Z nx)=K

xX€EA;

Let # be the set of functions F:[0,2] x Z — R such that
(i) For all p € [0,2], F(p,.) are cylinder, with common finite support A;,, of length
2sr + 1. Besides,

E,, ([F(p,)]=0 forall 0K <2(2sp + 1),

(it) for all y € Z, F(.,n) is a smooth function. For a function F in % and a positive
integer /, define the cylinder function F; by Fy(n) = F(1'(0), ).
The proof of Lemma 3.1 is contained in the statement of the two following lemmas.

Lemma 3.2.

N
EY,

/0 N G LFay ()N V(.. ))(1:() — us(¥/N)) ds] = on(1),
Xy

We set Vi(11) = Woi (1) + D(n'(0))(n' (1) — n'(0)) — LFi(1).

Lemma 3.3.

inf lim lim EY
FEF e—0N—oo

/0 Y w e )NV oy (., y)E)(1s(r) - us(y/N))dS] <0.
Xy

Proof of Lemma 3.2. For notational simplicity, we set: &N(x, V)=NVon(.,y)(x). We
consider the following martingale:

t
M) = Gt tt) — Golitos o) — / (0 + N2L)Gy(no ) ds,
0

where G; is nearly the function in the statement of the lemma:
1 ~
Gillleur) = 23 > TFav (1) by (6 )(1() = ta(y/N)).
X,y

We have

1 ~ C
Gl 1) = 313 32 wFox (P by o ) () — o y/N ) < S

Xy

because <;3N(x, y)<C/N, where C and C(F) are constants. Then Gy(no,u) goes to 0
when N goes to infinity.

Moreover, the function H is present in (i;N(x, ») and it vanishes when |x — y| <JN/2.
For N large enough, dN/2 > sy then the generator acts separately on each term 7, F,y(7;)
and (17,(y) — u,(y/N)). Finally, recall (7) to replace the term 0J,u, by N2Au, and



A. Perrut | Stochastic Processes and their Applications 84 (1999) 227-253 239

SO we obtain

1 N
M(0)= 15 > wFav(1)y (6 y)0() = u(9/N)

X,y

[ a5 3 L Fa G0~ (/)
Xy

0

- / ds 3" Fav (1) (e )Lne(y) — LAd(uy(y/N))) + on(1).
X,y

0

The first term of the martingale is of order N~! because qBN is uniformly bounded
by a constant times N~' (Lemma 5.2). The third term may be decomposed in two
integrals

/0 ds Z TXF;:N(’/IS)(;Z;N(XB y)Lns(y) and

| 53wy Ad v ),
Xy

0

This last one is equal to

1
eyl ds SV Y M)
by summation by parts. Since NZAQBN(x,.)( y) is bounded above by a constant times
N~ le=0&/N)e=0/N) (see Lemma 5.2), this expression is of order N~'. It remains to
control the other part of the third term of the martingale. Since Ly (y) = Wy_1,(ns) —
W, y+1(1s), its expectation is equal to

t 1 -
|4 S e E N T W )] .
Xy

But this sum depends on 5 only through {#(x), x € Ay, } or simplier through the
coordinates in A1)y for N large enough. So we are allowed to take the conditional
expectation with respect to the o-field generated by this set. Let us denote by f 1)
the density with respect to v, of the law of the process at time ¢, projected on this set.
Then

N
EY,

/ ds 5 T F Ny )(y)WyHl(ns)]

Xy

t 1 i
:/O ds/ﬁZTngN(n)qusN(x")(y)W%y‘H(n)f.v,(h+1)N(77)de(7])
Xy

1 ~ _
— / e S B E ANy (5 DWWy 310D g (1) ), 0
X,y
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where ft,(h DN =¢! fot [fsn+1)n ds. By convexity of the Dirichlet form, using Theorem
2.1, we obtain

- 1 /!
D tyn ] < ;/ Dty f syl ds
0

| 1 (h+2)N

t
S ;/0 N Z Dgyyn [ snryv]ds

n=(h+1)N

(h+2)N

|
< eH(h+2)?/ = Z Dol fs.n]e= ") ds
0 itV

1 t
< ef’“”); / Z(S" (5)3,v ) ds
0

< c(h,p)N~.

Then we may take the supremum in (8) on the set . of all probability densities f on
%(thl)N with D(h+1)N[f] <CN~! and bound it above by

1 .
sup [ S EN NV (e W1 (D ) ) Q)
Xy

fes

Let us notice that, by a change of variables, for all function g,

/g(”)WO,l(’?)de(n):%/FO,I(”)[Q(WOJ)*g(’?)] dv,(17)

1
-3 / Fo(mlg(n™®) — g(m)] (). (10)

Because of the term V¢, (x,.)(»), we have |x — y| =N, then t,Foy (i** 1) =1 Fon (17)
and as a consequence of (10)

/ o (D (7). (1) dyy ()

1
=5 /ry,y+1(n)[ergN(ny’y“)f(n”“) — T Foy (1) £ ()] dv,(17)

- % /ry+1,y('7)[Tfo:N(’7y+l’y)f(nerl’y) — T Fen () f ()] dvp(”)

1
=3 [ o ORI 07 = FOndy

Using (5), we obtain
/TszN Wy,y+lfdvp

A . 1
< Zly,y+1(f) + EC(F) + C(F)(]l{xGerAsF} + ﬂ{x:yfﬁN} + ]l{x:y+aN+1})a
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where C(F) is a positive constant depending on F and /,,,,1(f) stands for the piece
of the Dirichlet form of the function f, concerning the jumps between y and y + 1,
ie.

1
L) =3 [ ra VT = /7@ dy )

1
b [ e OO = T dyn

After having chosen 4 = N, we deduce that (9) is of order N~!.
Collecting all these results, recalling that M(¢) is a mean-zero martingale, we deduce
that the second term in the definition of M (¢) is a oy(1) like the others. [

To prove Lemma 3.3, we shall first reduce the dynamic problem to a static one,
using Theorem 2.1. We would like to estimate the expectation

N
E,x

/O > Ve (1) )1s(y) — us<y/N>>ds] . (11)
X,y

We will cut the sum into two parts. Again, we notice that it depends only on {n(x), x €
Apnsspren bs 1€ 0n {n(x),x € Agyr)v} for N large enough. As in the last proof, we
consider f 1w and for all y > 0, we have

N
EnJV

/0 Z Tx VF,;:N("S)J)N(xa y)"’v(y) dS‘|
X,y
- / S Ve (6 MO s (1) ()
Xy

- N -
—;D(hﬂw[ft,(hmzv] + ;D<h+1>N[fz,(h+1>N]

C
+_7
b

< sup l/ZfoF,uN(n)qu(x,y)n(y)f(n)dvp(n)— %D(thl)N[f]

fegr

where % is the set of all densities on Z'(11)v. Moreover, the other part of (11) is
equal to

N
EY,

/0 S (1) by (e, 9) (1 (y/N)) ds
X,y

! ~ N
:/ [ E T VEon Oy Y (—us(Y/N)) f o1y AV, — ;D(thl)N [fs,(thl)N]‘| ds
0

Xy

"N
+/ ;D(h-kl)N[fs,(h-&-l)N]ds
0

t
</ sup
0 fey”

N t
+;e0(h+2> / 1SV (5)0,71ds
0

>t Vrav (D y)—us(y/N)) £ (1) dy () — %D(M)N[f]] ds

Xy
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1

and this last term is bounded by a constant times y~'. Since y is arbitrary, then it is

enough to prove for all y > 0,

inf lim lim [ ds sup VerVF,gN(n)rﬁN(x,y)(n(y)—us(y/N))f(n)dvp(n)
Yy

FeF ¢e—0N—o0 0 revs’

N
—;D(h+1)N[f]‘| < 0.

So we have to localize the function Vr v: Roughly speaking, we would like to replace
it by Vp; for a fixed integer / (that is to reduce the problem on a small macroscopic
box to the same problem on a large microscopic box). First of all, we treat the current,
because it is the easiest, and we replace it by its spatial average.

Lemma 3.4. There exists a positive constant C such that, for all n € &

1

5i 1 2o Warnn | @y »)0n(y) = us(/N)

|z] <1

§:= Z Tx WO,I(’]) -
Xy

< CPN—L.

Proof. It suffices to perform a summation by parts and then to use the following

equality:
x+z
fa+2)= f@)=20fx) — fx= DI+ DY (x+z—a)Af(a).

When we sum over z such that |z| </, the first term of the r.h.s. of the last expression
vanishes. We then obtain

xX+z

1 o
S= 57 2 2 Wesn ()~ (N Y (2 = )ALy (. ))@)

lz]<l %y a=x
The properties of the kernel Ky (see appendix) permit to have the bound
Alpy(., »))@) S CN e MMl
and the conclusion of the proof becomes clear. [
We set V5 () = D™ (0)(r™ (1) — 1™ (0)) — D('(0))(n' (1) — 1'(0)).

Lemma 3.5. For all 6 > 0,

|—00 e—0N—00 fey’

lim lim lim sup { / D VR g »)(() = u(/N)) S () dy ()
X,y

—ONDn1w[f] } <0.
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Proof. Using the properties of q.’;N(.,.) just like in the proof of Lemma 3.2, it is easy
to deduce the proof from the Lemma 4.5 in Kipnis et al. (1994). Actually, the strategy
is roughly the same as in the proof of Lemma 3.2. More precisely, after a summation
by parts, the idea is to perform a change of variables like in (10) with #(1) — n(0)
instead of the current Wy ;, and an analogue of the computation which follows (10)
reduces the problem to the usual two blocks estimate. [

We now deal with the term LF.y(n). The idea is to replace first (LF.y)(n) by
(LF)(*™N(0),n7) where the generator acts only on the second coordinate. Then, we
introduce the spatial average of (LF)(n*V(0),57) and we may consider the restriction
of L on a box A which contains the support of 7. We obtain instead of LFy (1)

1
>t LaF )™ (0).n) = > (Lyeaty Y™ (0),1).

21 +1

21 +1
* lyl<? [yt

Now we perform the replacement of (L, 7,F)(n*™¥(0),n) by (L},JrAriF)(nSN(O),n),

i stands for the translation acting on the second coordinate:

(T F)(p,m) = f(ps 1)

the last point is the substitution of #*¥(0) by a local average. And we obtain the next
lemma. ”
<N, .
We set: Vi (n):LFsN(n)_l/(21F+1)ZU|<1F(LT§;F)(771(O),’7)9 with lp=I1—sp+1.

where 7

Lemma 3.6. For all 6 > 0,

inf_lim lim lim  sup { / S w2 0y e 0() = w(IN SO dvy ()
Xy

FEF |—00 e—0N—00 fes!

—ONDg1ywlf] } <0.

The proof of this lemma, as the previous one, is not so different from those of
Lemmas 5.2-5.4 in Kipnis et al. (1995). Then we omit it.
We just have seen that it is enough to study the following supremum:

sup { / D n Dy (6 )0(p) = us (/NS (1) () — iVD(hH)N[f]} ,

fes’ y Y

(12)
where ;! is given by
1 ! ’ ’
Wi =55 22 Wayni )+ D0 ()" (1) = 1 (0)
lyl<t

1
2lp +1

> (LEF)0'(0).n)

[y <l

with /’=1—1 and /p=1[—sp, so that WF’(r]) depends on 7 only through the coordinates
{n(=0),...,n(1)}. We will cut the sum in (12) into two pieces: One contains 7(y) and
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the other contains —u,(y/N). The first one is a little more difficult to treat, because
n(y) is integrated with respect to the density f. So we will take care of it first. The
other part of the proof being easier, we will not detail it. Precisely, we wish we could
estimate the term

o N
T =D by y) / T (). () dyy () — Zy DL
X,y
We define the density fy by

Sy = n(»)f(n),

y(f )

where the renormalization constant is given by Z,(/)= [ n(»)f (1) dv,(n). Notice that
Z,(f)<2. Clearly, we have

TP =20 ) [ W) £y dvy(n) — Y Dl f1
X,y 4V

As usual, we now project the new density f, on boxes of size 2/ + 1. For this, we
denote by f, . the conditional expectation of f', by the o-field generated by {n(x —1),
.»n(x+1)}. We obtain

\ N
I =D 20 )by () / T S y.o(n) dyp() — gyPwnl/1(13)
X,y
A simple calculation allows us to verify that, when |x — y| > 1,

xv+](fy)< XY-H(f)

y(f)
Moreover, L . 1(fy,x) <L 41(fy) for z=x —1[,...,x + [ — 1. Then we deduce
x+1—1 x+1—1
S 2N D L)< Y. Z(f) Y Laa(fy)
|x|,|y| <hN z=x—1 |x|,|y| <hN z=x—1[
|x—y|>1+1 [x—y|>1+1

x+I1—1

< Y 2Y L

|x|,|y|<AN  z=x—I
[x—y|>1+1

<4l > L1 (f)

x| (h+1)N,|y| <hN
lr—y|>1

< 8ANID 1 1)n (S )-
This inequality together with (13) gives, for N large enough

TP zy<f>{¢3N<x,y> [monsamanon
[x|,|y| <hN
|x—y| >N

h x+1—1
C°( Y “H(fyv)}

z=x—1
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Classically, we now project on the hyperplanes 2, ¢ = {n: Zi:_ nx) = K}
for all 0<K <2(2/+1). Recall that the conditional measure is given by v; x(.)=,(|
Zi:_ ;1(x) =K). We define a new density on these hyperplanes

FEE ) = AUV forall ne %k

[ A(©dvi k(&)
and we denote by c(x, f,K) the normalization coefficient
S K= [ (e Y ).

Since v, is translation invariant,

22141)

/ VVF[(VI)fofy,x(’/I) de(’?) = Z C(_x: fy,xaK)/ VVF[(’/I)(fofy,x)[’K(V])d\/[’[((l’]),
K=0
and in the same manner,
xtl—1 I—1 2Q21+1)
S Loa(f)=Y > cl=x frm KL E (e fy)" ),
z=x—1 z=—1 K=0
where IZI”ZIiI is the Dirichlet form restricted to the sites z and z + 1 with respect to the
measure v; g. Then, for N large enough
)
2(21+1)
< Y () D % frnK)
[xl.ly|<hN k=0
[x—y| >N
colh)
o 0
x lm(x,y) / WG fro) () dvr D) == le{;’il((r—xfy,x)’*’f)]
z=—1
co(h) <
z 0
< D Zy(f)sup sup [¢N(x,y) / Wi (ng(n) dvy k(1) —= le’;z’il(g)] :
K g Y —
[x],|y| <AN z=—1
[x—y| >N

where the last supremum is taken on the set of all densities g with respect to the

measure v, g. We set D; x(g) = Eé:# IZ{’Z’il(g) and we rewrite JIN’ I’F(f) as

Iy

S < o) Y0 Zy(f)sup sup [d;N(x’y)co(h)

|x[.|y| <hN
[x—y| >N

x / WL ng(n) dvix (n) —DI,K(m] .

We recognize that

sup <B/VVFlngl,K Dl,K(Q))
9
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is the variational formula for the largest eigenvalue of a small perturbation of the
generator, in a box of size 2/ + 1. Recall that Z; is the restriction of the generator to
Aj. Since the symmetric generalized exclusion process is ergodic on a finite box, L;
admits a positive spectral gap, denoted by o, (see Kipnis and Landim, 1999). Let /g
be the largest eigenvalue of L; + BW!. Then
2
g < ) b 7
YA
This bound is uniform in K. Since f vanishes when N goes to infinity, for N large
enough, we have (1 —2 || W} || fo;)~ 1 <1/2. Thus,

(=L)~"WE W)k

22

o(h)?

h
T <SS 2 |Gy s (L
xl.|y| <AN
|x—y|>0N

Iy
< )
D s (LT L Wk
[xLlyl<AN

because (;’;N(x, »)<N~'. This expression depends no more on the density f, moreover
Theorem 4.6 and Corollary 5.9 of Kipnis and Landim (1999) give that

Joi fim, i COLD™ Wi =0

Thus SUp g J]N ’ [’F( /) goes to zero uniformly in F when / goes to infinity. [

4. Proof of Theorem 1.1

At the beginning of Section 3, we started computing (s + LV )S;(s). We obtained
(0 +LM)Si(5)
=on(1)+ > W v11(1)+ Ve (u)/NIINV iy (-, )IE)(5() = 45(y/N)).

Xy

After the efforts previously made, we may introduce a gradient and perform a summa-
tion by parts:

(05 4+ LV)S(s)

1 .
=ov()+ DY (x)) = d(us(e/NDIN? Ay (-, y)E)5(y) — s(¥/N))

+ wlWoa(no) + DO () (1) = 1 (0))]

X,y

XNV ey (.. »)E)M(0) — us(y/N))
+3° w0 (1)) — d( 0)) — DO )@ (1) — 7V (0))]
X,y

XNV oy (-, y)X)(1s(y) — us(y/N)).
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We denote by /i(s), (s) and I5(s) these three sums. First of all, we bound above
I3(s): Since d is differentiable and [V (x + 1) — ™ (x)| <4(eN)~! for all x,

d(n (x +1)) = d( (x)) = DY )™ e+ 1) = (X))+—0N(1)

where oy(1) — 0 when N — oo. Then

L(s)< ZNV¢N( y)(x)on(1) = on(1)

because NV ¢y (., y)(x) is of order N~ e~ ¥/Ne=00/N) (see Lemma 5.2). Furthermore,
by the replacement lemma, (J; + LV)S;(s) may be rewritten as

(05 + LN)S1(5) = 7 n(5) + on(1)

1 ,
7 D O () = A NI A (- () = (),
%y
where 7 y(¢) is a quantity such that

t
lim hm Eyw [/ Fl;,N(s)ds] =0.
0

e—=0 N—
Again, we must replace the function #(y) by its average n*V(y):

(8 +LY)S1(5) = Fu(s) + on(1)
1 , .
5 2 L0 ) = duGN)IN Ay () = 1 (7))
1
5 2 L0 () = NIV Ay ) () = (/N ).
%Yy

After a summation by parts, the first sum in the last expression is equal to

1
&y 20 () = d(us(x/N )]

x N2 Ay (., p)(x) — DD NGy + )| 1),

|z|<£N

2Ne +

From the computations in Lemma 5.2, and because |¢y(x, y)|<N~!, we obtain

V(.34 2)0) ~ N Ady( )< <L

And finally, this first sum is bounded by a constant depending on 0 times &, which
will vanish when ¢ will go to zero. Thus we reduced the study to

(05 + LV)S1(s) <7 n(s) + on(1) + C(O)e

£ O 0 @) — NIV A I () — 1IN
%Y
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Recall ¢y (x, y) = e %Me=00NK, (x, y)H(x/N, y/N). We would like to simplify the
last expression, using (19) of Lemma 5.2 and the boundedness of H. So first we write

(05 + LV)S1 () <Fe n(s) + on(1) + C(O)e

o ST O () — (N DIV AT HCN, yN)I)

XKy (x, )e OGN () — ug(y/N))

0 O 0 () — dn NIV AR, y)e
Xy

X H(x/N, yIN)e™ "M (v) — us(y/N))

oy O 0 ) — (N INTTe S HCN, 1N )I)

X,y

XNVKy (., )@)e M@ () — uy(y/N))

1
5 2 [0 () = du /N DIV VI OH(N, y/N))x = 1)

X,y
XNVKy(., »)x — De MmN () — ug(y/N)).

We denote by Sii(s), Si2(s), Si3(s), Sia(s) these four lines. For the first one, since
Ky is a nonnegative self-adjoint operator in /*(Z), we may apply Schwarz inequality
to obtain, for all functions f and g,

1 o 2 1 2
v Z SRy g <3 112+, 1 1%

and then
04 -
S11(9) < 5 [0 ~d )N Ale™ " HN, y/N e M2 4 Hn Vg2

Now recall that e"%/N)H(./N, y/N) is a smooth function so that

2
N2A[e™ " MH (N, yN)I(x) = %[e—“‘””H(./N, YIN)ICx) + o (1)
1

< Coe—U(X/N)

because H, (0/dx))H and (0%/0x7)H had been chosen bounded. Then we obtain, for
all a > 0,

C()

Su)<—— [ d(") —d(us) |12, + || 0 () — us (/N |12,

Furthermore, for the sum S(s), 1 — H(x/N, y/N) vanishes except when x or y is large
or when |x — y| is small. Then we replace H by 1. And recall that Ky is the kernel
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associated to (/ — N?A)~'. It becomes

$1205)= 3 3 [0 () — (/N DN DK 1))
Xy

xe~ MM (y) —uy(yIN)) + Ce™" + 6)

= 5 ST 0 () — (N Ko ()~ (/)

1 ) ‘
—5 2 [0 () = /N () = (/N e

+C(e7"+9).

This last term which comes with a negative sign, will be very useful to control the
others. Again, we use (5) for the first line and, for the second one, we claim

[d (Y () = d(ug(/N DY () = us(e/N ) < Cald (0 (x)) = dus(x/N )P,
where C; is a constant depending on d. Indeed, d is a nondecreasing function and
|d (™ (x) = d(us (/N DI || D [loo 1™ (6) = us(/N))|
(recall that D is the differential of d). Then it becomes

S1205) < 2 1) — d(u) I+ 170~ w V) 12, +CGe ™ +)

_% ; [d(n™ (x)) — d(ug(x/N))]Pe 20N

5 || d(n™) — d(us) |2, + || 0 —us |2y =Ca |l d(n) — d(uy) 1§

+Ce7"+9).

Now we take care of the third sum: We use (5):

1
S13() < 3 D ([0 () = dus /NN V(e " H (N, y/N))(x)

<Z NVEy (., »)@)e M0 (v) - us(y/N»)

y

< g 20 — dl (NPT N, )@

2
Yo (Z NVEy( ) M0 () — (/N ))) -

We set Rg(y) = e_“(y/N)(n N(y) — us(y/N)) and rewrite the last sum as

Z NIKn(x + 1, ) = Kn(x, »)JRo(yIN[Ky (x + 1,2) — Ky (x,2)]Ro(2).

xyz
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By a summation by parts it is equal to

2“/1N XXV:ZNZAKN(.,y)(x)R()(y)KN(x,z)RO(Z)_ (14)

If we add and subtract (1/2yN)
kernel Ky, (14) becomes

2
1 1 eN 2
Y Z (;KN(x,y)Rom) g Il w2

The first term is nonpositive so we may forget it. Moreover, we can get that
NV[e""™MH(/N, y/N)l(x)<C(0)e™ ")
and then
. 1 . _
Si3()<yC(0) || d(n™) — d(uy) 13 +27/ I —ug 12 +C(e™ + 6).

Ky (x, y)Ro(¥)Ky(x,2)Ry(z), by definition of the

X, Y, Z

The same bound holds for Sj4(s). Gathering all these computations, we obtain
(05 + LM)S1(s) < 7o w(s) + C(0)e + on(1)
+aC(0) || dni™) — d(uy) |17,

P Y s 2y G [ O — du) |3
But the H_; norm is smaller than the Hy, norm, so for o small enough,
aC(0) || d(n™) — d(us) |21 <Ca || d(n) = d(us) [ -
And there exists a constant 5, depending on 6 and d such that
(05 4+ LN)S1(5) <P n(s) + C(0)e + oy (1) + Ce™" +8) + B || nY —uy |12 .
Then

d
SENTI s s 1201 = BN oy = By 40— [Py

< BENL |1 ns — us 121 1+ Epe [P n ()] + o (1).

Let us integrate this expression

t
Enllm —u 2 1< I —uo |12, +/ BENL || ns —us |12, 1ds
0
t
+ EN U r;,N(s)ds} +on(1) + C(0)e
0

t
< [ BENUI = P Jds s
0
where f goes to zero when N goes to infinity and then & goes to zero. Finally, by
Gronwall’s lemma, we get
ENLI s —ug |2 1< F (N 2)e
And we conclude that

tim lim EN[ | n—w |2, 1=0. O
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Appendix

We present here some results concerning the kernel associated to the operator
(I — N?>A)~!. One may read the papers by Landim and Vares (1996) and Landim
and Yau (1995) for more details.

For a fixed integer N, we endow the space />(Z) of functions with summable square
on Z, with the inner product

(1.0) = 3 S0,

And we define the convolution of these functions by

(f*9)x)=>_ f(3)g(x = »).
y

The kernel (I — N2A)~! is defined in the sense
(I = N*A)~f(x) = (Ky = [)(x)

for all function f on Z. From expression (1), we see that Ky(x, y) =Ky(x — y) is an
even function regular with a singularity at the origin. Moreover,

Lemma 5.1.
sup Ky (x) <Ky (0)<N !, sup [NVKy(x)| <N,
xeZ x€eZ

sup  |N?AKy(x)| <N

xeZ—{0}
Proof. Since 0 <a < 1, from (1), Ky(x)<Ky(0) and
l—a va -1
Ky(0)= = N N7
n(0) l+a 1+4a
Besides,

INVKy(x)| = vala®! — a| <a(l — a)a™ =aN—' <N,
If x #£0,

a 1—a 1
N2AKy(x)= ——— Il - —2) =Ky(x).
N(x) (1_a)21_|_aa <a+a > N(x)
But if x =0, we have
2a 1—a
N2AKy(0) = — =—— —1=Ky(0)— L.
~(0) 42 11a ~(0)

We just verified that
KN(x’y)_NzAKN('ay)(x):]l{x:y}' U

Lemma 5.2. There exists a positive constant C such that, for all x and y in Z such
that |x — y| > 1,

&N(xa Y)=NVon(.,y)(x)< CN—le—H(x/N)e_g(y/N)’ (15)
NV (., y)(x)<CN e 0NN a6

NzAéN(.,y)(x)<CN—le—9(x/N)e—6(y/N). an
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Proof. We will use intensively the two following equalities easy to verify for two
functions f and g on Z:

V(fg)a)=(Vf(a)g(a+1)+ f(a)Vy(a), (18)
A(f.g)a) = (Af)a)g(a) + f(a)(Ag)(a)
+ (V/H@)(Vg)a) + (V[)a—1)(Vg)a—1). (19)

We look first at (15). Recall the definition of ¢y :
O (¥, y) = Kno(x, »)H /N, y/N) = e~ Me= 0Ny (x, y)H (x/N, y/N).
Then, applying (18), we obtain
Py (x, y) = CMIN[e NCEIMH ((x + 1)/N, y/N)Kn(x + 1, )
—e "NIH(x/N, y/N Ky (x, )]
= ¢ (OMIN[em DM H((x+1)/N, y/N)—e~ "“MH(x/N, y/N)IKy (x, y)
+ ¢ WM 0N H (x/N, y/NIN[VKN(., ¥)](x).

But H had been chosen smooth and bounded by 1, so that we can perform a Taylor
expansion. We set

gyw(x/N) = e "M H(x/N, y/N).

Then g,y is smooth and

2
193w (G + 1IN = gy (e + /NI 5 sup o

ddXIH(x/N,y/N)‘ <%C < d H) .
Therefore, Lemma 5.1 implies
b )< %efe(x/mefe(y/zv).
Now we deal with (16).
NV (., »)®) = N Ay (., y)x + 1),
Using equality (19), we obtain
N2AGN (., y)(x) = e VON2 A NH (N, y/N))EKN (3, )
+e 0N =0IN) F (x/N, y/NIN? AKy (., y)(x)
+e "OMNT (e "NMH( /N, y/N))(x)NVKy(., y)(x)
+e OMNT (e NMH( N, y/N))(x — DNVEKyN(., y)(x — 1).
A Taylor expansion gives
N2Ae "MH(N, y/N))(x) < C(0,H)e™ "N
and
NV (e " MH(/N, y/N))(x)<C(0, H)e "M

and Lemma 5.1 allows us to conclude. Inequality (17) can be shown in the same
way. [l
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