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Abstract

The hydrodynamic limit of the symmetric generalized exclusion process on the torus [0; 1)
has previously been proved to be a nonlinear di�usive equation. We consider in this paper this
model in in�nite volume. We prove that the H−1 norm of the di�erence between the process
and the solution of the hydrodynamic equation goes to zero. c© 1999 Elsevier Science B.V.
All rights reserved.
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1. Introduction

The interacting particle systems introduced by Spitzer at the beginning of the 1970s
may model the behavior of the molecules of a gas. The hint of the theory of hydro-
dynamic limits is to bound this microscopic dynamics to the macroscopic evolution of
the gas. For a large survey on hydrodynamic limits, one may refer to the books of
Spohn (1991), De Masi and Presutti (1989), or Kipnis and Landim (1999). In 1988,
Guo et al. (1988) introduced large deviations techniques to obtain rigorously this limit-
ing behavior for a large class of gradient systems, by controlling the entropy production.
They proved a law of large numbers for the empirical measure, that is the convergence
in probability of the density of particles at time t in a small macroscopic neighborhood
to the solution �t of a PDE, namely the hydrodynamic equation.
This had been extended to a nongradient Ginzburg–Landau model by Varadhan

(1998). The generalized symmetric exclusion process, which is also nongradient, had
been studied in Kipnis et al. (1994, 1995), where the hydrodynamic limits had been
obtained, �rst on the �nite torus and then in a �nite box with reservoirs. Our purpose
is to extend the result presented in Kipnis et al. (1994) in a stronger version in in�nite
volume: We would like to prove, by rescaling time and space, that the macroscopic
behavior of this model is governed by a nonlinear di�usive PDE. For this, we study
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the H−1 norm of the di�erence of the process and the solution of this PDE, under reg-
ularity conditions on the di�usion coe�cient. A proof based on H−1 norm techniques
was made by Chang and Yau (1992) for the Ginzburg–Landau model, and by Landim
and Yau (1995): The authors extend the standard method to prove uniqueness of the
solution of a parabolic PDE to the stochastic context. Other papers treat the use of this
norm: For instance Yau (1994) and Landim and Vares (1996), where an exponential
estimate for the H−1 norm of the di�erence of a reaction-di�usion process and the
solution of its hydrodynamic equation in in�nite volume is obtained.
The main ingredients in our proof are an estimate of the relative entropy and of the

Dirichlet form, the replacement lemma and the study of time evolution of the H−1
norm. To obtain the estimate of entropy production, we follow the approach of Fritz
(1990) and Yau (1994) (one could refer to Landim and Mourragui (1997) too). This is
done in Section 2. Then, in Section 3, we have to prove that the so-called replacement
lemma holds. In fact, this lemma allows the replacement of the current (which is not
a gradient quantity) by a gradient plus a negligible term of the form LF(�) where L
is the generator of the process. This term LF(�) turns out to be irrelevant because its
time uctuations are orthogonal to the ones of the gradient part. For an overview on
these techniques, see Kipnis et al. (1994) or Kipnis and Landim (1999). With these
results, we actually may study the time evolution of the H−1 norm by deriving it. The
Gronwall lemma allows us to conclude. In the appendix, the reader will �nd some
tools on the H−1 norm used throughout this paper.
We now describe the generalized symmetric simple exclusion process on Z, denoted

by (�t)t¿0: The particles jump to a nearest-neighbor site with a random rate, but at
most two particles per site are allowed. The space of con�gurations is X= {0; 1; 2}Z.
The generator of the process is de�ned, for all cylinder function f, for all � ∈ X, by

(LNf)(�) = N 2(Lf)(�);

(Lf)(�) =
1
2

∑
x∈Z
|y|=1

rx; x+y(�)[f(�x; x+y)− f(�)];

where the jump rate is given by rx; x+y(�)= 5{�(x)¿0; �(x+y)¡ 2} for y=±1, and �x;y is
the con�guration obtained from � by letting one particle jump from x to y:

�x;y(z) =



�(x)− 1 if z = x;

�(y) + 1 if z = y;

�(z) otherwise:

For an integer x, we de�ne the current Wx; x+1 by

Wx; x+1(�) = rx; x+1(�)− rx+1; x(�):
We denote by �x the translation operator de�ned on X by �x�(y) = �(x + y) and on
the space of functions by (�xf)(�)=f(�x�). The system is said to be gradient if there
exists a function h such that W0;1 = �1h− h. Here, the system is not gradient: Consider
the con�guration � with two particles at site 0 and one at site 1. Then

∑
x �xW0;1(�)=1

which is inconsistent with
∑

x �x(�1h− h)(�) = 0.
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Let SN (t) be the semi-group associated to the generator and EN� be the expectation
with respect to the law of the Markov process with generator LN when it starts from
�. The process (�t)t¿0 is self-adjoint with respect to ��’ (’¿ 0), the product measure
on X with marginals

��’{�: �(x) = k}= ’k

Z(’)

for k=0; 1; 2, where Z(’)=1+’+’2 is the normalization constant. We will denote by
�� the measure ��’ when ��’[�(0)] = � is the mean occupation number per site. Notice
that �=(’+2’2)=(1+’+’2) and 06�62. Fix once for all an invariant measure ��.
Before stating the main result of this paper, we have to de�ne in details the H−1

norm on X. As in [1], let KN (: ; :) be the kernel associated to (I −N 2�)−1(: ; :) where
� is the discrete Laplacian:

(�f)(x) = f(x + 1) + f(x − 1)− 2f(x):
By its de�nition, KN is perfectly adapted to our parabolic case. A calculation based on
Fourier transforms and valid only in dimension 1 shows that

KN (x; y) =
1− a
1 + a

a|x−y| (1)

with a solution of N=
√
a=(1−a) such that 0¡a¡ 1 (see Landim and Vares (1996)).

As in Yau (1994), we consider KN;�(: ; :) the kernel KN (: ; :) multiplied by exp(−�(:)):
KN;�(x; y) = e−�(x=N )KN (x; y)e−�(y=N ):

We de�ne the H−1 norm and the H0 norm of a con�guration � by

‖ � ‖−1 = 1N
∑
x; y∈Z

�(x)KN;�(x; y)�(y) and ‖ � ‖0 = 1N
∑
x∈Z

�(x)2e−2�(x=N ):

The properties of the kernel KN are postponed at the end of the paper.
To obtain the hydrodynamic limit, we rescale time and space. We set that the distance

between two neighboring sites is 1=N and then accelerate the displacements of particles
by N 2, because they are symmetric. In the limit as N goes to in�nity, the process
satis�es the nonlinear parabolic di�erential equation

@t�= @xxd(�) = @x(D(�)@x�);

where d(�)=
∫ �
0 D(�) d�. Spohn (1991) proved that the di�usion coe�cient D is given

by the Green–Kubo formula which involves equilibrium expectation of the space–time
correlation of the current. Its variational formula is

D(�) =
1

2�(�)
inf
h
â(�; h);

where the in�mum is taken on the set of cylinder functions on X, 〈 : 〉� is the expec-
tation with respect to ��,

â(�; h) = 1
2 〈r0;1(�)(1− [�h(�0;1)− �h(�)])2〉�
+ 1

2 〈r1;0(�)(1− [�h(�1;0)− �h(�)])2〉�;
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�(�) = 〈�(0)2〉� − 〈�(0)〉2� and �h =
∑

x∈Z(�xh) (see Kipnis and Landim (1999) for
details). From Theorem 8:1 in the book [8], the unique classical solution �(t; x) of
this equation with initial condition �(0; :) = �0(:) is of class C2 when the di�usion
coe�cient is continuous, di�erentiable, its derivative is a continuous Lipschitz function
and when the initial condition �0 is of class C3. It has been shown only in dimension
1 that D(:) is continuous (see Kipnis and Landim (1999)), and we are not able to
show more.
We state here the main theorem of this paper.

Theorem 1.1. Let (�N ) be a sequence of initial con�gurations. Then; under regularity
assumptions on D(:)

lim
N→∞

EN�N [ ‖ �t(:)− ut(:=N ) ‖2−1 ] = 0
when ut is the solution of the equation

@tu= @xxd(u) = @x(D(�)@x�)

with the initial condition u0(:) being of class C3 and satisfying

lim
N→∞

‖ �N (:)− u0(:=N ) ‖2−1 =0:

Remark. The initial distribution had been chosen deterministic, but we can extend the
result to any sequences of initial distributions �N .

Corollary 1.2. Let G be a continuous function on R with compact support and �N

a sequence of initial measures on X. Under the assumptions of Theorem 1:1; for all
�¿ 0 and t¿0;

lim
N→∞

�NSN (t)

{
�:

∣∣∣∣∣ 1N
∑
x∈Z

�(x)G(x=N )−
∫
G(r)ut(r) dr

∣∣∣∣∣¿�

}
= 0:

We shall now try to explain the strategy of the proof. To control the time evolution
of EN�N [ ‖ �t − ut ‖2−1 ], we derive it. Then we can perform one spatial integration
by parts, instead of two for a gradient system. So we obtain an expression involving
the currents multiplied by a factor N . To get rid of this factor N , we wish we could
perform another summation by parts, which will be possible once the replacement of
the current Wx; x+1(�) by a term proportional to a local average of �(x + 1) − �(x)
(which is a gradient) is done. More precisely, we denote by C0 the space of cylinder
functions on X with mean zero with respect to all canonical measures �l; K de�ned
in Section 3. For example, the currents Wx; x+1 belong to C0. By providing this space
with an inner product 〈〈: ; :〉〉�, we obtain a Hilbert space H� such that the gradient
�(1) − �(0) is orthogonal to the space LCo and these two spaces generate H�. Then
there exists a D depending on the density satisfying

W0;1 + D(�)[�(1)− �(0)] ∈ LC0;
where LC0 stands for the closure of LC0 in C0. Let f ∈ C0 such that 〈〈W0;1 +
D(�)[�(1) − �(0)] − Lf〉〉� is small. The �rst proof in Section 3 consists in showing
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that the term Lf may be introduced in our expression. In fact, the function f depends
on the density because the inner product does. Moreover, the rest of this section is
devoted to the proof of the replacement of W0;1 by D(�)(�(1)−�(0))+Lf. Indeed, we
�rst simplify the problem, using the entropy inequality. Then Feynman–Kac formula
reduces the problem to a static one. It is the place where we need the estimate on
the Dirichlet form proved in Section 2. And we use a series of lemmas to localize all
the terms. Afterwards, we project the new expression on the hyperplanes with a �xed
total number of particles, and an estimate on small perturbations of the generator in
�nite volume reduces the problem to the computation of a central limit variance, which
achieves the proof of the replacement lemma. Once this done, we can prove Theorem
1:1 (Section 4): We perform a second summation by parts and calculations involving
the properties of the kernel KN allow us to conclude with Gronwall lemma.

2. Entropy estimate

We study here the most useful objects in the proof of the hydrodynamic limits: The
entropy and the Dirichlet form of a measure with respect to the reference measure ��.
For each subset � of Z, denote by ��� the product measure on N� with the same

marginals as ��. We set: �n = {−n; : : : ; n} and Xn = {0; 1; 2}�n . We shall denote ��n�
simply by �n� . More generally, for a measure � on X, we denote by �n the restriction
of � on Xn :�n(�) = �{�: �(x) = �(x); ∀|x|6n} for all � ∈ Xn. For all n¿1, for all
measure � on Xn, we de�ne the relative entropy of � with respect to �n� by

Hn(�) = sup
f∈Cb(Xn)

{∫
f d�− Log

∫
ef d�n�

}
=
∫
Log

d�
d�n�

d�;

where Cb(Xn) is the set of bounded continuous functions on Xn. We also de�ne the
Dirichlet form of the measure �:

Dn(�) =−
∑
x∈�n

∫ √
d�
d�n�

(
Lx; x+1

√
d�
d�n�

)
d�n� ;

where Lx; x+1 is the generator of the process restricted to the sites x and x + 1, that is

Lx; x+1f(�) = 1
2 rx; x+1(�)[f(�

x; x+1)− f(�)] + 1
2 rx+1; x(�)[f(�

x+1; x)− f(�)]:
We are now able to de�ne the entropy of a measure � on X with respect to ��. Let
�: R→ R+ be a positive function, three times di�erentiable, such that: �(a)= |a| when
|a|¿ 1. The entropy of � with respect to the reference measure �� is de�ned by

H(�) =
1
N

∑
n¿1

Hn(�n) e−�(n=N )

and the Dirichlet form is

D(�) =
1
N

∑
n¿1

Dn(�n) e−�(n=N ):

We state now a �rst result concerning a bound of the entropy and the time integral of
the Dirichlet form.
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Theorem 2.1. There exists a positive and �nite constant C depending only on the
function � and on the parameterization � such that; for all sequence of initial measures
�N on X;

H(SN (t)�N ) +
N 2

2

∫ t

0
D(SN (s)�N ) ds6CN: (2)

This theorem provides a bound for the time integral of the Dirichlet form, that is∫ t

0
D(SN (s)�N ) ds6

C
N
:

Proof. It follows the one of Fritz (1990) for the Ginzburg–Landau model.
We consider a sequence of initial measures �N . For each con�guration �, we denote

by �� the measure on X which only charges �:

Hn(�n�) =
∫
Log

d�n�
d�n�

d�n� = Log
1

�n� (�)
=
∑
x∈�n

Log
1 + ’+ ’2

’�(x)
6c(’)n:

Moreover, �N (�)=
∑

� �N (�)��, therefore, Hn[�
n
N ]6

∑
� �N (�)H [�

n
�]6c(’)n. We then

deduce, for N large enough,

H(�nN )6
c(’)
N

∑
n

n e−�(n=N )6C0N; (3)

where C0 is a positive constant. (We used
∑

n ne
−n=N ∼ N 2, when N is large.)

Once this done, we have to consider the process on large �nite volumes, i.e. on
volumes of length M for some M =M (N )/N . In this context, we prove a bound for
the entropy and for the time integral of the Dirichlet form, uniformly in M . Indeed,
we follow the approach of Landim and Mourragui (1997). Up to this point, it will be
easy to deduce Theorem 2.1, by letting M go to in�nity (see the end of this section).
We �x a positive integer M , large compared to N and consider the restriction of

the process on XM = {0; 1; 2}�M . Its generator LM is given by

N 2LM = N 2
∑

x; x+1∈�M
Lx; x+1:

More generally, the generator Ln (16n6M) will be the restriction of L on �n. The
semi-group of the process with generator LM , accelerated by N 2 will be denoted by
SM; N (t). Consider a measure � on XM and let �(t) = SM; N (t)� be the law of the
process at time t, starting from �. The density of �(t) with respect to �M� will be
denoted by f(t) and the one of �n(t) with respect to �n� by fn(t) for n6M .
Let R :R+ → R+ be a continuous positive function with support contained in [0;

(M − N )=N ]. The entropy of a measure � on XM and the Dirichlet form are de�ned
by

HM; R(�) =
1
N

M∑
n=1

Hn(�n)R(n=N );

DM; R(�) =
1
N

M∑
n=1

Dn(�n)R(n=N ):
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Fix an integer 16n6M − N . For two subsets 
 and � of Z, such that 
⊂�, for
a function g with support included in �, 〈g〉
 indicates that we integrate g over the
coordinates {�(x); x ∈ 
} with respect to ��� . When 
 = �n+1\�n, we simply denote
〈g〉
 by 〈g〉n+1. Since �n+1� is a product measure, fn(t) = 〈fn+1(t)〉n+1.
To estimate the entropy production, we shall compute the time derivative of the

entropy. As in Landim and Mourragui (1997), we have

@tfn(t) = N 2〈Ln+1fn+1(t)〉n+1
because Ln+1 is self-adjoint with respect to �n+1� . As a consequence,

@tHn[fn(t)] = @t

∫
fn(t)Logfn(t) d�n�

=N 2
∫
Ln+1fn+1(t)Logfn(t) d�n+1� +

∫
@tfn(t) d�n� :

But the second term is null. Besides, Ln+1 = Ln + Ln;n+1 + L−n−1;−n, thus

@tHn[fn(t)] =N 2
∫
fn+1(t)LnLogfn(t) d�n+1�

+N 2
∫
fn+1(t)Ln;n+1Logfn(t) d�n+1�

+N 2
∫
fn+1(t)L−n−1;−nLogfn(t) d�n+1� :

By a classical computation which can be found in the proofs using this relative en-
tropy method (see Fritz (1990) for example), the �rst term is bounded above by
−N 2Dn(f(t)). And we denote the two last terms by I1 and I2, respectively. Now, we
will simply write fn instead of fn(t):

I1 =
N 2

2

∫
rn;n+1(�)fn+1(�)Log

fn(�n;n+1)
fn(�)

d�n+1� (�)

+
N 2

2

∫
rn+1; n(�)fn+1(�)Log

fn(�n+1; n)
fn(�)

d�n+1� (�):

We make a change of variables in the second term. The rate rn+1; n(�) insures that
�(n + 1)¿ 0 and �(n)¡ 2, so we are allowed to set � = �n+1; n. Moreover, we have:
rn+1; n(�n;n+1) = rn;n+1(�). Therefore

I1 =
N 2

2

∫
rn;n+1(�)[fn+1(�)− fn+1(�n;n+1)]Logfn(�

n;n+1)
fn(�)

d�n+1� (�)

=
N 2

2

∫
5{�(n)¿0}¡ 5{�(n+1)¡ 2}[fn+1(�)− fn+1(�n;n+1)]¿n+1

×Logfn(�− en)
fn(�)

d�n� (�);

where en is the con�guration with only one particle at site n: en(n) = 1 and en(x) = 0
if x 6= n. In this integral, we can add 5An and 5Bn the indicator functions of the sets
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An and Bn de�ned by

An = {�: 〈5{�(n+1)¡ 2}fn+1(�)〉n+1¿〈5{�(n+1)¡ 2}fn+1(�n;n+1)〉n+1
and fn(�− en)¿fn(�)};

Bn = {�: 〈5{�(n+1)¡ 2}fn+1(�n;n+1)〉n+1¿〈5{�(n+1)¡ 2}fn+1(�)〉n+1
and fn(�)¿fn(�− en)}

since outside of these sets, I1 is nonpositive. So we rewrite I1 as

I16
N 2

2

∫
rn;n+1(�)5An(�)[fn+1(�)− fn+1(�n;n+1)]Log

fn(�− en)
fn(�)

d�n+1� (�)

+
N 2

2

∫
rn;n+1(�)5Bn(�)[fn+1(�)− fn+1(�n;n+1)]Log

fn(�− en)
fn(�)

d�n+1� (�)

6
AN 2

4

∫
rn;n+1(�)[

√
fn+1(�)−

√
fn+1(�n;n+1)]2 d�n+1� (�)

+
N 2

4A

∫
rn;n+1(�)(5An(�) + 5Bn(�))2[

√
fn+1(�) +

√
fn+1(�n;n+1)]2

×
(
Log

fn(�n;n+1)
fn(�)

)2
d�n+1� (�): (4)

To obtain the last inequality, we used

ab6
A
2
a2 +

1
2A
b2 for all a; b ∈ R and A¿ 0: (5)

We may remove the square of (5An(�)+5Bn(�)) because the term containing the product
5An(�)5Bn(�) vanishes. We choose A= �N . Since (

√
a+

√
b)262(a+b) for all positive

real numbers a and b, the second line of the last expression is, after a change of
variables,

6
N
2�

∫
5{�(n)¿0}5{fn(�−en)¿fn(�)}fn(�)

(
Log

fn(�− en)
fn(�)

)2
d�n� (�)

+
N
2�

∫
5{�(n)¡ 2}5{fn(�+en)¿fn(�)}fn(�)

(
Log

fn(�+ en)
fn(�)

)2
d�n� (�):

Using the elementary inequality

x
(
Log

y
x

)2
= 4

[√
x Log

√
y
x

]2
64(

√
x −√

y)2 when y¿x¿ 0;

we obtain that the last integral is

6
2N
�

∫
5{�(n)¿0}[

√
fn(�)−

√
fn(�− en)]2 d�n� (�)

+
2N
�

∫
5{�(n)¡ 2}[

√
fn(�)−

√
fn(�+ en)]2 d�n� (�)
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6
4N
�

∫
[2fn(�) + 5{�(n)¿0}fn(�− en) + 5{�(n)¡ 2}fn(�+ en)] d�n� (�)

6
8N
�
+
4N’
�
+
4N
�’
:=
C(’)N
�

:

Notice that C(’) is a positive constant depending only on ’. Coming back to inequality
(4), we have

I16
C(’)N
�

+
�N 3

4

∫
rn;n+1(�)[

√
fn+1(�)−

√
fn+1(�n;n+1)]2 d�n+1� (�):

Since �� is a product measure, fn+1(�) = 〈fm(�)〉{n+2;:::;m} for all m¿n+ 2, then

I16
C(’)N
�

+
�N 2

4

n+N+1∑
m=n+2

∫
rn;n+1(�)[

√
〈fm(�)〉{n+2;:::;m}

−
√
〈fm(�n;n+1)〉{n+2;:::;m}]2 d�n+1� (�):

By Schwarz inequality, (
√∫

f−
√∫

g)2 =
∫
f+

∫
g− 2

√∫
fg6

∫
(
√
f−√

g)2. So
it comes

I16
C(’)N
�

+
�N 2

4

n+N+1∑
m=n+2

∫
rn;n+1(�)〈[

√
fm(�)

−
√
fm(�n;n+1)]2〉{n+2;:::;m} d�n+1� (�)

=
C(’)N
�

+
�N 2

4

n+N+1∑
m=n+2

∫
rn;n+1(�)[

√
fm(�)−

√
fm(�n;n+1)]2 d�n+N+1� (�):

The same calculation for I2 allows us to conclude

@tHn[fn(t)]6
C(’)N
�

− N 2Dn(fn(t))

+
�N 2

4

n+N+1∑
m=n+2

∫
[(Ln;n+1 + L−n−1;−n)

√
fm(t)]

√
fm(t) d��: (6)

This last integral is a part of the Dirichlet form of fm. By summation over n, it will
be compensated by the Dirichlet form with a negative sign ahead. We choose R(n=N )
equal to exp(−�(n=N )) for all n6M − N − 1, we set R(n=N ) = 0 if n¿M − N and
interpolate linearly in between. A computation involving the continuity of � shows, for
M¿N 2, that

M−N∑
n=1

n+N+1∑
m=n+2

∫
[(Ln;n+1 + L−n−1;−n)

√
fm(t)]

√
fm(t) d�� e−�(n=N )

6C(�)
M∑
m=1

∫
(Lm
√
fm)

√
fm d�� e−�(m=N )
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6C=N + C(�)
M−N∑
m=1

∫
(Lm
√
fm)

√
fm d��R(m=N )

6C=N + C(�)NDM; R(f(t)):

Let us multiply both sides of (6) by R(n=N ) and sum over 16n6M − N :
d
dt
HM; R(f(t))6− N 2DM; R(f(t)) + K1N + K2�N 2DM; R(f(t));

where K1 depends on R and � and K2 depends only on R. Choosing � small enough,
we obtain

d
dt
HM; R(f(t))6− N 2

2
DM; R(f(t)) + K3N:

Following the proof in [9], and letting M go to in�nity, we conclude

H(SN (t)�N ) +
N 2

2

∫ t

0
dsD(SN (s)�N )6CN;

where C is a positive constant. To obtain this �nal inequality, it su�ces to argue of
the convexity and the lower semi-continuity of the entropy and of the Dirichlet form
(refer to Landim and Mourragui, 1997).

3. Replacement lemma

In order to estimate EN�N [ ‖ �t−ut ‖2−1 ], we shall derive this expectation in time and
a term containing the current W0;1 will appear. In this section, we prove that we can
replace the current by a gradient plus a negligible term. Before stating the so-called
replacement lemma, we will modify slightly the H−1 norm, with a view to removing
the diagonal terms that are di�cult to treat, and the terms which are far from 0. This
is possible thanks to the functions e−�(x=N ) and e−�(y=N ).
Fix two positive real numbers h and � with h large and � small. Let H be a smooth

function on R2 satisfying

H (a; b) =

{
1 if |a|6h; |b|6h and |a− b|¿�;

0 if |a|¿h+ � or |b|¿h+ � or |a− b|6�=2:
Notice that H can be chosen uniformly bounded by 1. We set

�N (x; y) = H (x=N; y=N )KN;�(x; y):

An easy calculation shows that

‖ �t − ut ‖2−1 =
1
N

∑
x; y

(�t(x)− ut(x=N ))�N (x; y)(�t(y)− ut(y=N )) + rN (�t ; ut);

where rN satis�es |rN (�t; ut)|6C(�)(e−h + �). From now on, we will study the sum

S1(t) =
1
N

∑
x; y

(�t(x)− ut(x=N ))�N (x; y)(�t(y)− ut(y=N )):
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Let us derive it in time. For this, we compute (@s+LN )S1(s). Recall that ut is solution
of the PDE @tu= 1

2@xxd(u). Thus,

(@s + LN )S1(s) =− 1
N

∑
x; y

@xxd(ut)(x=N )�N (x; y)(�s(y)− us(y=N ))

+N
∑
x; y

(Wx−1; x(�s)−Wx; x+1(�s))�N (x; y)(�s(y)− us(y=N )):

Because d is supposed to be regular, so is the solution ut . And, by a Taylor expansion,

[�d(us(:=N ))](x) =
1
N 2
[@xxd(ut(:))](x=N ) +

1
N 2
oN (1): (7)

Moreover, �N (x; y)6N−1e−�(x=N )e−�(y=N ) (see Lemma 5.1), and

N 2�d(us)(x=N ) = N 2[∇d(us)(x=N )−∇d(us)((x − 1)=N )];
where the discrete derivative is de�ned for all function f by

∇f(x) = f(x + 1)− f(x):
Therefore by summation by parts,

(@s + LN )S1(s) = oN (1)− 1
N

∑
x; y

N 2�d(us)(x=N )�N (x; y)(�s(y)− us(y=N ))

+
∑
x; y

Wx; x+1(�s)N [�N (x + 1; y)− �N (x; y)](�s(y)− us(y=N ))

= oN (1) +
∑
x; y

[Wx; x+1(�s) +∇d(us)(x=N )]

[N∇�N (: ; y)](x)(�s(y)− us(y=N )):
We have to replace the current Wx; x+1 by a gradient to perform another summation by
parts. This is the content of the following lemma. We set

Vl(�) =W0;1(�) + D(�l(0))[�l(1)− �l(0)]:
As usual, �l(x) stands for the mean number of particles in a box of size l (l ∈ N\{0}),
centered at x: �l(x) = (2l+ 1)−1

∑
|y|6l �(x + y):

Lemma 3.1 (Replacement lemma).

lim
�→0

lim
N→∞

EN�N

[∫ t

0

∑
x; y

�xV�N (�s)N∇�N (: ; y)(x)(�s(y)− us(y=N )) ds
]
60:

In fact, we shall show that we may decompose the current as a sum of a gradient
and a term Lf that turns out to be negligible: We will prove that

Vl(�)− LF(�) =W0;1(�) + D(�l(0))(�l(1)− �l(0))− LF(�)
is small for each function F that belongs to a set F, whose de�nition may be mostly
guessed from the paper schedule at the end of the introduction. For all l ∈ N\{0} and
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06K62(2l+ 1), denote by �l; K the canonical measures on �l given by

�l; K (:) = ��


:
∣∣∣∣∣∣
∑
x∈�l

�(x) = K


 :

Let F be the set of functions F : [0; 2]×X → R such that
(i) For all � ∈ [0; 2], F(�; :) are cylinder, with common �nite support �sF , of length

2sF + 1. Besides,

E�sF ; K [F(�; :)] = 0 for all 06K62(2sF + 1);

(ii) for all � ∈ X, F(: ; �) is a smooth function. For a function F in F and a positive
integer l, de�ne the cylinder function Fl by Fl(�) = F(�l(0); �).
The proof of Lemma 3.1 is contained in the statement of the two following lemmas.

Lemma 3.2.

EN�N

[∫ t

0

∑
x; y

�xLF�N (�s)N∇�N (: ; y)(x)(�s(y)− us(y=N )) ds
]
= oN (1):

We set VF;l(�) =W0;1(�) + D(�l(0))(�l(1)− �l(0))− LFl(�).

Lemma 3.3.

inf
F∈F

lim
�→0

lim
N→∞

EN�N

[∫ t

0

∑
x; y

�xVF;�N (�s)N∇�N (: ; y)(x)(�s(y)− us(y=N )) ds
]
60:

Proof of Lemma 3.2. For notational simplicity, we set: �̃N (x; y)=N∇�N (: ; y)(x). We
consider the following martingale:

M (t) = Gt(�t; ut)− G0(�0; u0)−
∫ t

0
(@s + N 2L)Gs(�s; us) ds;

where Gt is nearly the function in the statement of the lemma:

Gt(�t; ut) =
1
N 2
∑
x; y

�xF�N (�t)�̃N (x; y)(�t(y)− ut(y=N )):

We have

G0(�0; u0) =
1
N 2
∑
x; y

�xF�N (�N )�̃N (x; y)(�
N (y)− u0(y=N ))6C(F)N

because �̃N (x; y)6C=N , where C and C(F) are constants. Then G0(�0; u0) goes to 0
when N goes to in�nity.
Moreover, the function H is present in �̃N (x; y) and it vanishes when |x−y|6�N=2.

For N large enough, �N=2¿sF then the generator acts separately on each term �xF�N (�t)
and (�t(y) − ut(y=N )). Finally, recall (7) to replace the term @sus by N 2�us and
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so we obtain

M (t) =
1
N 2
∑
x; y

�xF�N (�t)�̃N (x; y)(�t(y)− ut(y=N ))

−
∫ t

0
ds
∑
x; y

L�xF�N (�s)�̃N (x; y)(�s(y)− us(y=N ))

−
∫ t

0
ds
∑
x; y

�xF�N (�s)�̃N (x; y)(L�s(y)− 1
2�d(us(y=N ))) + oN (1):

The �rst term of the martingale is of order N−1 because �̃N is uniformly bounded
by a constant times N−1 (Lemma 5.2). The third term may be decomposed in two
integrals∫ t

0
ds
∑
x; y

�xF�N (�s)�̃N (x; y)L�s(y) and

∫ t

0
ds
∑
x; y

�xF�N (�s)�̃N (x; y)
1
2�d(us(y=N )):

This last one is equal to

1
2N 2

∫ t

0
ds
∑
x; y

N 2��̃N (x; :)(y)d(us(y=N ))

by summation by parts. Since N 2��̃N (x; :)(y) is bounded above by a constant times
N−1e−�(x=N )e−�(x=N ) (see Lemma 5.2), this expression is of order N−1. It remains to
control the other part of the third term of the martingale. Since L�s(y)=Wy−1;y(�s)−
Wy;y+1(�s), its expectation is equal to

EN�N

[∫ t

0
ds
1
N

∑
x; y

�xF�N (�s)N∇�̃N (x; :)(y)Wy;y+1(�s)
]
:

But this sum depends on � only through {�(x); x ∈ �hN+sF} or simplier through the
coordinates in �(h+1)N for N large enough. So we are allowed to take the conditional
expectation with respect to the �-�eld generated by this set. Let us denote by ft;(h+1)N
the density with respect to �� of the law of the process at time t, projected on this set.
Then

EN�N

[∫ t

0
ds
1
N

∑
x; y

�xF�N (�s)N∇�̃N (x; :)(y)Wy;y+1(�s)
]

=
∫ t

0
ds
∫
1
N

∑
x; y

�xF�N (�)N∇�̃N (x; :)(y)Wy;y+1(�)fs;(h+1)N (�) d��(�)

= t
∫
1
N

∑
x; y

�xF�N (�)N∇�̃N (x; :)(y)Wy;y+1(�) �f t;(h+1)N (�) d��(�); (8)
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where �ft;(h+1)N = t
−1 ∫ t

0 fs;(h+1)N ds. By convexity of the Dirichlet form, using Theorem
2.1, we obtain

D(h+1)N [ �ft;(h+1)N ]6
1
t

∫ t

0
D(h+1)N [fs;(h+1)N ] ds

6
1
t

∫ t

0

1
N

(h+2)N∑
n=(h+1)N

D(h+1)N [fs;(h+1)N ] ds

6 e�(h+2)
1
t

∫ t

0

1
N

(h+2)N∑
n=(h+1)N

Dn[fs;n]e−�(n=N ) ds

6 e�(h+2)
1
t

∫ t

0
D(SN (s)��N ) ds

6 c(h; �)N−1:

Then we may take the supremum in (8) on the set S of all probability densities f on
X(h+1)N with D(h+1)N [f]6CN−1 and bound it above by

t sup
f∈S

∫
1
N

∑
x; y

�xF�N (�)N∇�̃N (x; :)(y)Wy;y+1(�)f(�) d��(�): (9)

Let us notice that, by a change of variables, for all function g,∫
g(�)W0;1(�) d��(�) =

1
2

∫
r0;1(�)[g(�0;1)− g(�)] d��(�)

− 1
2

∫
r1;0(�)[g(�1;0)− g(�)] d��(�): (10)

Because of the term ∇�̃N (x; :)(y), we have |x−y|¿�N , then �xF�N (�y;y+1)=�xF�N (�)
and as a consequence of (10)∫

�xF�N (�)Wy;y+1(�)f(�) d��(�)

=
1
2

∫
ry;y+1(�)[�xF�N (�y;y+1)f(�y;y+1)− �xF�N (�)f(�)] d��(�)

− 1
2

∫
ry+1;y(�)[�xF�N (�y+1;y)f(�y+1;y)− �xF�N (�)f(�)] d��(�)

=
1
2

∫
ry;y+1(�)�xF�N (�)[f(�y;y+1)− f(�)] d��(�):

Using (5), we obtain∫
�xF�NWy;y+1f d��

6
A
4
Iy;y+1(f) +

1
4A
C(F) + C(F)(5{x∈y+�sF } + 5{x=y−�N} + 5{x=y+�N+1});
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where C(F) is a positive constant depending on F and Iy;y+1(f) stands for the piece
of the Dirichlet form of the function f, concerning the jumps between y and y + 1,
i.e.

Iy;y+1(f) =
1
4

∫
ry;y+1(�)[

√
f(�y;y+1)−

√
f(�)]2 d��(�)

+
1
4

∫
ry+1;y(�)[

√
f(�y+1;y)−

√
f(�)]2 d��(�):

After having chosen A= N , we deduce that (9) is of order N−1.
Collecting all these results, recalling that M (t) is a mean-zero martingale, we deduce

that the second term in the de�nition of M (t) is a oN (1) like the others.

To prove Lemma 3.3, we shall �rst reduce the dynamic problem to a static one,
using Theorem 2.1. We would like to estimate the expectation

EN�N

[∫ t

0

∑
x; y

�xVF;�N (�s)�̃N (x; y)(�s(y)− us(y=N )) ds
]
: (11)

We will cut the sum into two parts. Again, we notice that it depends only on {�(x); x ∈
�hN+sF+�N}, i.e. on {�(x); x ∈ �(h+1)N} for N large enough. As in the last proof, we
consider fs;(h+1)N and for all ¿ 0, we have

EN�N

[∫ t

0

∑
x; y

�xVF;�N (�s)�̃N (x; y)�s(y) ds

]

=
∫ ∑

x; y

�xVF;�N (�)�̃N (x; y)�(y) �ft;(h+1)N (�) d��(�)

−N

D(h+1)N [ �ft;(h+1)N ] +

N

D(h+1)N [ �ft;(h+1)N ]

6 sup
f∈S′

[∫ ∑
x; y

�xVF;�N (�)�̃N (x; y)�(y)f(�) d��(�)−
N

D(h+1)N [f]

]
+
C

;

where S′ is the set of all densities on X(h+1)N . Moreover, the other part of (11) is
equal to

EN�N

[∫ t

0

∑
x; y

�xVF;�N (�s)�̃N (x; y)(−us(y=N )) ds
]

=
∫ t

0

[∑
x; y

�xVF;�N �̃N (x; y)(−us(y=N ))fs;(h+1)N d�� −
N

D(h+1)N [fs;(h+1)N ]

]
ds

+
∫ t

0

N

D(h+1)N [fs;(h+1)N ] ds

6
∫ t

0
sup
f∈S′

[∑
x; y

�xVF;�N (�)�̃N (x; y)(−us(y=N ))f(�) d��(�)−
N

D(h+1)N [f]

]
ds

+
N

e�(h+2)

∫ t

0
D[SN (s)��N ] ds
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and this last term is bounded by a constant times −1. Since  is arbitrary, then it is
enough to prove for all ¿ 0,

inf
F∈F

lim
�→0

lim
N→∞

∫ t

0
ds sup

f∈S′

[∫ ∑
x; y

�xVF;�N (�)�̃N (x; y)(�(y)− us(y=N ))f(�) d��(�)

−N

D(h+1)N [f]

]
60:

So we have to localize the function VF;�N : Roughly speaking, we would like to replace
it by VF;l for a �xed integer l (that is to reduce the problem on a small macroscopic
box to the same problem on a large microscopic box). First of all, we treat the current,
because it is the easiest, and we replace it by its spatial average.

Lemma 3.4. There exists a positive constant C such that; for all � ∈ X

S :=
∑
x; y

�x


W0;1(�)− 1

2l+ 1

∑
|z|6l

Wz; z+1(�)


 �̃N (x; y)(�s(y)− us(y=N ))

6 Cl3N−1:

Proof. It su�ces to perform a summation by parts and then to use the following
equality:

f(x + z)− f(z) = z[f(x)− f(x − 1)] +
x+z∑
a=x

(x + z − a)�f(a):

When we sum over z such that |z|6l, the �rst term of the r.h.s. of the last expression
vanishes. We then obtain

S =
1

2l+ 1

∑
|z|6l

∑
x; y

Wx; x+1(�)(�s(y)− us(y=N ))
x+z∑
a=x

(x + z − a)�[�̃N (: ; y)](a)

The properties of the kernel KN;� (see appendix) permit to have the bound

�[�̃N (: ; y)](a)6CN
−3e−�(a=N )e−�(y=N )

and the conclusion of the proof becomes clear.

We set V �N;lD (�) = D(��N (0))(��N (1)− ��N (0))− D(�l(0))(�l(1)− �l(0)).

Lemma 3.5. For all �¿ 0;

lim
l→∞

lim
�→0

lim
N→∞

sup
f∈S′

{∫ ∑
x; y

�xV
�N;l
D (�)�̃N (x; y)(�(y)− us(y=N ))f(�) d��(�)

−�ND(h+1)N [f]
}
60:
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Proof. Using the properties of �̃N (: ; :) just like in the proof of Lemma 3.2, it is easy
to deduce the proof from the Lemma 4:5 in Kipnis et al. (1994). Actually, the strategy
is roughly the same as in the proof of Lemma 3.2. More precisely, after a summation
by parts, the idea is to perform a change of variables like in (10) with �(1) − �(0)
instead of the current W0;1, and an analogue of the computation which follows (10)
reduces the problem to the usual two blocks estimate.
We now deal with the term LF�N (�). The idea is to replace �rst (LF�N )(�) by

(LF)(��N (0); �) where the generator acts only on the second coordinate. Then, we
introduce the spatial average of (LF)(��N (0); �) and we may consider the restriction
of L on a box � which contains the support of F . We obtain instead of LF�N (�)

1
2l+ 1

∑
|y|6l

�y(L�F)(��N (0); �) =
1

2l+ 1

∑
|y|6l

(Ly+��yF)(��N (0); �):

Now we perform the replacement of (Ly+��yF)(��N (0); �) by (Ly+��2yF)(�
�N (0); �),

where �2y stands for the translation acting on the second coordinate:

(�2yF)(�; �) = f(�; �y�)

the last point is the substitution of ��N (0) by a local average. And we obtain the next
lemma.
We set: Ṽ

�N;l
F (�)=LF�N (�)−1=(2lF+1)

∑
|y|6lF (L�

2
yF)(�

l(0); �), with lF=l−sF+1.

Lemma 3.6. For all �¿ 0,

inf
F∈F

lim
l→∞

lim
�→0

lim
N→∞

sup
f∈S′

{∫ ∑
x; y

�xṼ
�N;l
F (�)�̃N (x; y)(�(y)− us(y=N ))f(�) d��(�)

−�ND(h+1)N [f]
}
60:

The proof of this lemma, as the previous one, is not so di�erent from those of
Lemmas 5.2–5.4 in Kipnis et al. (1995). Then we omit it.
We just have seen that it is enough to study the following supremum:

sup
f∈S′

{∫ ∑
x; y

�xW l
F (�)�̃N (x; y)(�(y)− us(y=N ))f(�) d��(�)−

N
2
D(h+1)N [f]

}
;

(12)

where Wl
F is given by

Wl
F (�) =

1
2l′ + 1

∑
|y|6l′

Wy;y+1(�) + D(�l
′
(0))(�l

′
(1)− �l′(0))

− 1
2lF + 1

∑
|y|6lF

(L�2yF)(�
l(0); �)

with l′=l−1 and lF=l−sF , so that Wl
F (�) depends on � only through the coordinates

{�(−l); : : : ; �(l)}. We will cut the sum in (12) into two pieces: One contains �(y) and
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the other contains −us(y=N ). The �rst one is a little more di�cult to treat, because
�(y) is integrated with respect to the density f. So we will take care of it �rst. The
other part of the proof being easier, we will not detail it. Precisely, we wish we could
estimate the term

JN; l; F1 (f) =
∑
x; y

�̃N (x; y)
∫
�xW l

F (�)�(y)f(�) d��(�)−
N
4
D(h+1)N [f]:

We de�ne the density fy by

fy(�) =
1

Zy(f)
�(y)f(�);

where the renormalization constant is given by Zy(f)=
∫
�(y)f(�) d��(�). Notice that

Zy(f)62. Clearly, we have

JN; l; F1 (f) =
∑
x; y

Zy(f)�̃N (x; y)
∫
�xW l

F (�)fy(�) d��(�)−
N
4
D(h+1)N [f]:

As usual, we now project the new density fy on boxes of size 2l + 1. For this, we
denote by fy; x the conditional expectation of fy by the �-�eld generated by {�(x− l);
: : : ; �(x + l)}. We obtain

JN; l; F1 (f) =
∑
x; y

Zy(f)�̃N (x; y)
∫
�xW l

F (�)fy; x(�) d��(�)−
N
4
D(h+1)N [f]: (13)

A simple calculation allows us to verify that, when |x − y|¿ 1,

Ix; x+1(fy)6
2

Zy(f)
Ix; x+1(f):

Moreover, Iz; z+1(fy; x)6Iz; z+1(fy) for z = x − l; : : : ; x + l− 1. Then we deduce
∑

|x|;|y|6hN
|x−y|¿l+1

Zy(f)
x+l−1∑
z=x−l

Iz; z+1(fy; x)6
∑

|x|;|y|6hN
|x−y|¿l+1

Zy(f)
x+l−1∑
z=x−l

Iz; z+1(fy)

6
∑

|x|;|y|6hN
|x−y|¿l+1

2
x+l−1∑
z=x−l

Iz; z+1(f)

6 4l
∑

|x|≤(h+1)N;|y|6hN
|x−y|¿1

Ix; x+1(f)

6 8hNlD(h+1)N (f):

This inequality together with (13) gives, for N large enough

JN; l; F1 (f)6
∑

|x|;|y|6hN
|x−y|¿�N

Zy(f)

{
�̃N (x; y)

∫
�xW l

F (�)fy; x(�) d��(�)

−c0(h)
l

x+l−1∑
z=x−l

Iz; z+1(fy; x)

}
:
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Classically, we now project on the hyperplanes Xl; K = {� : ∑l
x=−l �(x) = K}

for all 06K62(2l+1). Recall that the conditional measure is given by �l; K (:)= ��(· |∑l
x=−l �(x) = K). We de�ne a new density on these hyperplanes

fl; K (�) =
f(�)∫

f(�)d�l; K (�)
for all � ∈ Xl; K

and we denote by c(x; f; K) the normalization coe�cient

c(x; f; K) =
∫
5Xl; K (�)(�xf)(�) d��(�):

Since �� is translation invariant,∫
Wl
F (�)�−xfy; x(�) d��(�) =

2(2l+1)∑
K=0

c(−x; fy; x; K)
∫
Wl
F (�)(�−xfy; x)

l; K (�) d�l; K (�);

and in the same manner,

x+l−1∑
z=x−l

Iz; z+1(fy; x) =
l−1∑
z=−l

2(2l+1)∑
K=0

c(−x; fy; x; K)I l; Kz; z+1((�−xfy; x)l; K);

where I l; Kz; z+1 is the Dirichlet form restricted to the sites z and z+1 with respect to the
measure �l; K . Then, for N large enough

JN; l; F1 (f)

6
∑

|x|;|y|6hN
|x−y|¿�N

Zy(f)
2(2l+1)∑
K=0

c(−x; fy; x; K)

×
[
�̃N (x; y)

∫
Wl
F (�)(�−xfy; x)

l; K (�) d�l; K (�)−c0(h)l
l∑

z=−l
I l; Kz; z+1((�−xfy; x)

l; K)

]

6
∑

|x|;|y|6hN
|x−y|¿�N

Zy(f) sup
K
sup
g

[
�̃N (x; y)

∫
Wl
F (�)g(�) d�l; K (�)−

c0(h)
l

l∑
z=−l

I l; Kz; z+1(g)

]
;

where the last supremum is taken on the set of all densities g with respect to the
measure �l; K . We set Dl; K (g) =

∑l
z=−l I

l; K
z; z+1(g) and we rewrite J

N; l; F
1 (f) as

JN; l; F1 (f)6 (c0(h)=l)
∑

|x|;|y|6hN
|x−y|¿�N

Zy(f) sup
K
sup
g

[
�̃N (x; y)

l
c0(h)

×
∫
Wl
F (�)g(�) d�l; K (�)− Dl; K (g)

]
:

We recognize that

sup
g

(
�
∫
Wl
F g d�l; K − Dl; K (g)

)
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is the variational formula for the largest eigenvalue of a small perturbation of the
generator, in a box of size 2l+ 1. Recall that Ll is the restriction of the generator to
�l. Since the symmetric generalized exclusion process is ergodic on a �nite box, Ll
admits a positive spectral gap, denoted by �l (see Kipnis and Landim, 1999). Let ��
be the largest eigenvalue of Ll + �Wl

F . Then

��6
�2

1− 2 ‖ Wl
F ‖∞ ��l

〈(−Ll)−1Wl
F ;W

l
F 〉l; K :

This bound is uniform in K . Since � vanishes when N goes to in�nity, for N large
enough, we have (1− 2 ‖ Wl

F ‖∞ ��l)−161=2. Thus,

JN; l; F1 (f)6
c0(h)
l

∑
|x|;|y|6hN
|x−y|¿�N

Zy(f) sup
K

[
�̃N (x; y)

2 l
22

c0(h)2
〈(−Ll)−1Wl

F ;W
l
F 〉l; K

]

6
∑

|x|;|y|6hN
sup
K

l
N 2c0(h)

〈(−Ll)−1Wl
F ;W

l
F 〉l; K

because �̃N (x; y)6N
−1. This expression depends no more on the density f, moreover

Theorem 4:6 and Corollary 5:9 of Kipnis and Landim (1999) give that

inf
F∈F

lim
l→∞

sup
K→∞

(2l)〈(−Ll)−1Wl
F ;W

l
F 〉l; K = 0:

Thus supf∈S′ JN; l; F1 (f) goes to zero uniformly in F when l goes to in�nity.

4. Proof of Theorem 1.1

At the beginning of Section 3, we started computing (@s + LN )S1(s). We obtained

(@s + LN )S1(s)

= oN (1) +
∑
x; y

[Wx; x+1(�s)+∇d(us)(x=N )][N∇�N (: ; y)](x)(�s(y)−us(y=N )):

After the e�orts previously made, we may introduce a gradient and perform a summa-
tion by parts:

(@s + LN )S1(s)

= oN (1) +
1
N

∑
x; y

[d(��Ns (x))− d(us(x=N ))]N 2��N (: ; y)(x)(�s(y)− us(y=N ))

+
∑
x; y

�x[W0;1(�s) + D(��Ns (0))(�
�N
s (1)− ��Ns (0))]

×N∇�N (: ; y)(x)(�s(y)− us(y=N ))
+
∑
x; y

�x[d(��Ns (1))− d(��Ns (0))− D(��Ns (0))(��Ns (1)− ��Ns (0))]

×N∇�N (: ; y)(x)(�s(y)− us(y=N )):
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We denote by I1(s), I2(s) and I3(s) these three sums. First of all, we bound above
I3(s): Since d is di�erentiable and |��Ns (x + 1)− ��Ns (x)|64(�N )−1 for all x,

d(��Ns (x + 1))− d(��Ns (x)) = D(��Ns (x))(��Ns (x + 1)− ��Ns (x)) +
1
N
oN (1);

where oN (1)→ 0 when N → ∞. Then

I3(s)6
C
N

∑
x; y

N∇�N (: ; y)(x)oN (1) = oN (1)

because N∇�N (: ; y)(x) is of order N−1e−�(x=N )e−�(y=N ) (see Lemma 5.2). Furthermore,
by the replacement lemma, (@s + LN )S1(s) may be rewritten as

(@s + LN )S1(s) = r̃�; N (s) + oN (1)

+
1
N

∑
x; y

[d(��Ns (x))− d(us(x))]N 2��N (: ; y)(x)(�s(y)− us(y));

where r̃�; N (t) is a quantity such that

lim
�→0

lim
N→∞

E�N
[∫ t

0
r̃�; N (s) ds

]
= 0:

Again, we must replace the function �(y) by its average ��N (y):

(@s + LN )S1(s) = r̃�; N (s) + oN (1)

+
1
N

∑
x; y

[d(��Ns (x))− d(us(x=N ))]N 2��N (: ; y)(x)(�s(y)− ��Ns (y))

+
1
N

∑
x; y

[d(��Ns (x))− d(us(x=N ))]N 2��N (: ; y)(x)(��Ns (y)− us(y=N )):

After a summation by parts, the �rst sum in the last expression is equal to

1
N

∑
x; y

[d(��Ns (x))− d(us(x=N ))]

× N 2��N (: ; y)(x)− 1
2N�+ 1

∑
|z|6�N

N 2��N (: ; y + z)(x)


 �s(y):

From the computations in Lemma 5.2, and because |�N (x; y)|6N−1, we obtain

|N 2��N (: ; y + z)(x)− N 2��N (: ; y)(x)|6 |z|
N 2
6
�
N
:

And �nally, this �rst sum is bounded by a constant depending on � times �, which
will vanish when � will go to zero. Thus we reduced the study to

(@s + LN )S1(s)6r̃�; N (s) + oN (1) + C(�)�

+
1
N

∑
x; y

[d(��Ns (x))− d(us(x=N ))]N 2��N (: ; y)(x)(��Ns (y)− us(y=N )):
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Recall �N (x; y) = e−�(x=N )e−�(y=N )KN (x; y)H (x=N; y=N ). We would like to simplify the
last expression, using (19) of Lemma 5.2 and the boundedness of H . So �rst we write

(@s + LN )S1(s)6r̃�; N (s) + oN (1) + C(�)�

+
1
N

∑
x; y

[d(��Ns (x))− d(us(x=N ))]N 2�[e−�(:=N )H (:=N; y=N )](x)

×KN (x; y)e−�(y=N )(��Ns (y)− us(y=N ))

+
1
N

∑
x; y

[d(��Ns (x))− d(us(x=N ))]N 2�KN (: ; y)(x)e−�(x=N )

×H (x=N; y=N )e−�(y=N )(��Ns (y)− us(y=N ))

+
1
N

∑
x; y

[d(��Ns (x))− d(us(x=N ))]N∇[e−�(:=N )H (:=N; y=N )](x)

×N∇KN (: ; y)(x)e−�(y=N )(��Ns (y)− us(y=N ))

+
1
N

∑
x; y

[d(��Ns (x))− d(us(x=N ))]N∇[e−�(:=N )H (:=N; y=N )](x− 1)

×N∇KN (: ; y)(x − 1)e−�(y=N )(��Ns (y)− us(y=N )):

We denote by S11(s), S12(s), S13(s), S14(s) these four lines. For the �rst one, since
KN is a nonnegative self-adjoint operator in l2(Z), we may apply Schwarz inequality
to obtain, for all functions f and g,

1
N

∑
x; y

f(x)KN;�(x; y)g(y)6
�
2
‖ f ‖2−1 +

1
2�

‖ g ‖2−1

and then

S11(s)6
�
2
‖[d(��Ns )−d(us)]N 2�[e−�(:=N )H (:=N; y=N )]e�(:=N )‖2−1+

1
2�

‖��Ns −us‖2−1:

Now recall that e−�(:=N )H (:=N; y=N ) is a smooth function so that

N 2�[e−�(:=N )H (:=N; y=N )](x) =
@2

@x21
[e−�(:=N )H (:=N; y=N )](x) + oN (1)

6C0e−�(x=N )

because H , (@=@x1)H and (@2=@x21)H had been chosen bounded. Then we obtain, for
all �¿ 0,

S11(s)6
�C(�)
2

‖ d(��Ns )− d(us) ‖2−1 +
1
2�

‖ ��Ns (x)− us(x=N ) ‖2−1 :

Furthermore, for the sum S12(s), 1−H (x=N; y=N ) vanishes except when x or y is large
or when |x − y| is small. Then we replace H by 1. And recall that KN is the kernel
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associated to (I − N 2�)−1. It becomes

S12(s) =
1
N

∑
x; y

[d(��Ns (x))− d(us(x=N ))]N 2�KN (: ; y)(x)

×e−�(x=N )e−�(y=N )(��Ns (y)− us(y=N )) + C(e−h + �)

=
1
N

∑
x; y

[d(��Ns (x))− d(us(x=N ))]KN;�(: ; y)(x)(��Ns (y)− us(y=N ))

− 1
N

∑
x

[d(��Ns (x))− d(us(x=N ))](��Ns (x)− us(x=N ))e−2�(x=N )

+C(e−h + �):

This last term which comes with a negative sign, will be very useful to control the
others. Again, we use (5) for the �rst line and, for the second one, we claim

[d(��Ns (x)− d(us(x=N ))](��Ns (x)− us(x=N ))6Cd[d(��Ns (x))− d(us(x=N ))]2;
where Cd is a constant depending on d. Indeed, d is a nondecreasing function and

|d(��N (x)− d(us(x=N ))|6 ‖ D ‖∞ |��N (x)− us(x=N )|
(recall that D is the di�erential of d). Then it becomes

S12(s)6
�
2
‖ d(��Ns )− d(us) ‖2−1 +

1
2�

‖ ��Ns (x)− us(x=N ) ‖2−1 +C(e−h + �)

−Cd
N

∑
x

[d(��Ns (x))− d(us(x=N ))]2e−2�(x=N )

6
�
2
‖ d(��Ns )− d(us) ‖2−1 +

1
2�

‖ ��Ns − us ‖2−1 −Cd ‖ d(��Ns )− d(us) ‖20
+C(e−h + �):

Now we take care of the third sum: We use (5):

S13(s)6
1
N

∑
x

([d(��Ns (x))− d(us(x=N ))]N∇(e−�(:=N )H (:=N; y=N ))(x))
(∑

y

N∇KN (: ; y)(x)e−�(y=N )(��Ns (y)− us(y=N ))
)

6

2N

∑
x

(d(��Ns (x))− d(us(x=N )))2(N∇(e−�(:=N )H (:=N; y=N ))(x))2

+
1
2N

∑
x

(∑
y

N∇KN (: ; y)(x)e−�(y=N )(��Ns (y)− us(y=N ))
)2
:

We set R�(y) = e−�(y=N )(��Ns (y)− us(y=N )) and rewrite the last sum as

1
2N

∑
x; y; z

N [KN (x + 1; y)− KN (x; y)]R�(y)N [KN (x + 1; z)− KN (x; z)]R�(z):
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By a summation by parts it is equal to

− 1
2N

∑
x; y; z

N 2�KN (: ; y)(x)R�(y)KN (x; z)R�(z): (14)

If we add and subtract (1=2N )
∑

x; y; z KN (x; y)R�(y)KN (x; z)R�(z), by de�nition of the
kernel KN , (14) becomes

− 1
2N

∑
x

(∑
y

KN (x; y)R�(y)

)2
+
1
2

‖ ��Ns − us ‖2−1 :

The �rst term is nonpositive so we may forget it. Moreover, we can get that

N∇[e−�(:=N )H (:=N; y=N )](x)6C(�)e−�(x=N )
and then

S13(s)6C(�) ‖ d(��Ns )− d(us) ‖20 +
1
2

‖ ��Ns − us ‖2−1 +C(e−h + �):
The same bound holds for S14(s). Gathering all these computations, we obtain

(@s + LN )S1(s)6 r̃�; N (s) + C(�)�+ oN (1)

+ �C̃(�) ‖ d(��Ns )− d(us) ‖2−1

+
3
2�

‖ ��Ns − us ‖2−1 −Cd ‖ d(��Ns )− d(us) ‖20 :
But the H−1 norm is smaller than the H0 norm, so for � small enough,

�C̃(�) ‖ d(��Ns )− d(us) ‖2−1 6Cd ‖ d(��Ns )− d(us) ‖20 :
And there exists a constant �, depending on � and d such that

(@s + LN )S1(s)6r̃�; N (s) + C(�)�+ oN (1) + C(e−h + �) + � ‖ ��Ns − us ‖2−1 :
Then

d
dt
EN�N [ ‖ �s − us ‖2−1 ] = EN�N [LN ‖ �s − us ‖2−1 +@t ‖ �− us ‖2−1|�=�s ]

6 �EN�N [ ‖ �s − us ‖2−1 ] + E�N [r̃�; N (s)] + oN (1):
Let us integrate this expression

EN�N [ ‖ �t − ut ‖2−1 ]6 ‖ �N − u0 ‖2−1 +
∫ t

0
�EN�N [ ‖ �s − us ‖2−1 ] ds

+ EN�N

[∫ t

0
r̃�; N (s) ds

]
+ oN (1) + C(�)�

6
∫ t

0
�EN�N [ ‖ �s − us ‖2−1 ] ds+ f(N; �);

where f goes to zero when N goes to in�nity and then � goes to zero. Finally, by
Gronwall’s lemma, we get

EN�N [ ‖ �s − us ‖2−1 ]6f(N; �)e�t :
And we conclude that

lim
�→0

lim
N→∞

EN�N [ ‖ �t − ut ‖2−1 ] = 0:
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Appendix

We present here some results concerning the kernel associated to the operator
(I − N 2�)−1. One may read the papers by Landim and Vares (1996) and Landim
and Yau (1995) for more details.
For a �xed integer N , we endow the space l2(Z) of functions with summable square

on Z, with the inner product

〈f; g〉= 1
N

∑
x

f(x)g(x):

And we de�ne the convolution of these functions by

(f ∗ g)(x) =
∑
y

f(y)g(x − y):

The kernel (I − N 2�)−1 is de�ned in the sense
(I − N 2�)−1f(x) = (KN ∗ f)(x)

for all function f on Z. From expression (1), we see that KN (x; y) =KN (x− y) is an
even function regular with a singularity at the origin. Moreover,

Lemma 5.1.

sup
x∈Z

KN (x)6KN (0)6N−1; sup
x∈Z

|N∇KN (x)|6N−1;

sup
x∈Z−{0}

|N 2�KN (x)|6N−1:

Proof. Since 0¡a¡ 1, from (1), KN (x)6KN (0) and

KN (0) =
1− a
1 + a

=
√
a

1 + a
N−16N−1:

Besides,

|N∇KN (x)|=
√
a|a|x+1| − a|x||6√

a(1− a)a|x| = aN−16N−1:

If x 6= 0,
N 2�KN (x) =

a
(1− a)2

1− a
1 + a

a|x|
(
a+

1
a
− 2
)
= KN (x):

But if x = 0, we have

N 2�KN (0) =− 2a
1 + a

=
1− a
1 + a

− 1 = KN (0)− 1:
We just veri�ed that

KN (x; y)− N 2�KN (: ; y)(x) = 5{x=y}:
Lemma 5.2. There exists a positive constant C such that, for all x and y in Z such
that |x − y|¿ 1,

�̃N (x; y) = N∇�N (: ; y)(x)6CN−1e−�(x=N )e−�(y=N ); (15)

N∇�̃N (: ; y)(x)6CN−1e−�(x=N )e−�(y=N ); (16)

N 2��̃N (: ; y)(x)6CN
−1e−�(x=N )e−�(y=N ): (17)
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Proof. We will use intensively the two following equalities easy to verify for two
functions f and g on Z:

∇(fg)(a) = (∇f(a))g(a+ 1) + f(a)∇g(a); (18)

�(f:g)(a) = (�f)(a)g(a) + f(a)(�g)(a)

+ (∇f)(a)(∇g)(a) + (∇f)(a− 1)(∇g)(a− 1): (19)

We look �rst at (15). Recall the de�nition of �N :

�N (x; y) = KN;�(x; y)H (x=N; y=N ) = e−�(x=N )e−�(y=N )KN (x; y)H (x=N; y=N ):

Then, applying (18), we obtain

�̃N (x; y) = e
−�(y=N )N [e−�((x+1)=N )H ((x + 1)=N; y=N )KN (x + 1; y)

−e−�(x=N )H (x=N; y=N )KN (x; y)]
= e−�(y=N )N [e−�((x+1)=N )H ((x+1)=N; y=N )−e−�(x=N )H (x=N; y=N )]KN (x; y)
+ e−�(y=N )e−�(x=N )H (x=N; y=N )N [∇KN (: ; y)](x):

But H had been chosen smooth and bounded by 1, so that we can perform a Taylor
expansion. We set

gy=N (x=N ) = e−�(x=N )H (x=N; y=N ):

Then gy=N is smooth and

|gy=N ((x + 1)=N )− gy=N ((x + 1)=N )|6 2
N
sup
x

∣∣∣∣ ddx1H (x=N; y=N )
∣∣∣∣6 1
N
C
(
d
dx1

H
)
:

Therefore, Lemma 5.1 implies

�̃N (x; y)6
C
N
e−�(x=N )e−�(y=N ):

Now we deal with (16).

N∇�̃N (: ; y)(x) = N 2��N (: ; y)(x + 1):
Using equality (19), we obtain

N 2��N (: ; y)(x) = e−�(y=N )N 2�(e−�(:=N )H (:=N; y=N ))(x)KN (x; y)

+e−�(y=N )e−�(x=N )H (x=N; y=N )N 2�KN (: ; y)(x)

+e−�(y=N )N∇(e−�(:=N )H (:=N; y=N ))(x)N∇KN (: ; y)(x)
+e−�(y=N )N∇(e−�(:=N )H (:=N; y=N ))(x − 1)N∇KN (: ; y)(x − 1):

A Taylor expansion gives

N 2�(e−�(:=N )H (:=N; y=N ))(x)6C(�; H)e−�(x=N )

and

N∇(e−�(:=N )H (:=N; y=N ))(x)6C(�; H)e−�(x=N )

and Lemma 5.1 allows us to conclude. Inequality (17) can be shown in the same
way.
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