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This work grew out of an attempt to carry over the methods of our study 
[ 1 ] of the restricted three body problem for high values of the Jacobian 
constant (also known as the lunar problem) from two to three dimensions. 
During this endeavor we found that the regularization of the Kepler problem 
by Kustaanheimo-Stiefel-Scheifele ([2, 31) was the obvious tool to be 
applied. Although Stiefel-Scheifele give an excellent presentation of the so 
called KS transformation in their monograph [3], we find that a different 
notation employing Pauli matrices and complex variables (i.e., a notation 
which in its essential features was proposed by Jost 141)’ is better suited for 
our purposes. This notation makes it obvious that the canonical version of 
the KS transformation is a canonical extension of a map 
n: R4\(O} = C4\{O} + R3\{O} w h ose restriction to S3 is the Hopf map. If z, 
w E C* are coordinates on the symplectic manifold {C4\(O}, dB}. where 
B = 2 Im (w, dz) (( , ) being the standard inner product of C’) and the group 
U(1) acts on C”\{O} via eis: (z, w) + (eisz, eiSw), then this action is exact 
symplectic (i.e., leaves B invariant). Correspondingly, it is “generated” by the 
Hamiltonian or “moment”: 2Z= 2 Re(w, z). (For the general notion of the 
“moment” of a Hamiltonian action of a Lie group on a symplectic manifold 
see, e.g., [5-l 11.) The relation Z = 0 is nothing but the “bilinear relation” 
associated with the KS transformation. Thus the KS transformation 
explicitly reduces out the U(l)-action on the submanifold (Z-‘(O))’ = 
z-‘(0)n (z, w: z # 0) of V\(O). I n other words it establishes an 
isomorphism between the symplectic spaces (IR3\(0)) x IR3 and 

‘According to a personal communication by Waldvogel, the same notation was originally 
employed by Kustaanheimo. 
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ON THE KEPLER PROBLEM 143 

(I-‘(O))‘/U( 1). Th is isomorphism then carries the Hamiltonian system of the 
Kepler problem (with fictitious time variable) into the one of four harmonic 
oscillators in resonance (compare [3,32, 331.) 

The final step in the regularization of the Kepler problem consists in 
lifting the restriction z # 0. In other words, the phase space of the regularized 
Kepler problem is I-‘(0)/U(l), w h ere I- ‘(0) is regarded as a submanifold of 

c4\vv 
At this point we draw the reader’s attention to the fact that I- ‘(0) plays a 

fundamental role in a completely different context: Penrose [ 121 identifies 
the compactilied manifold of null lines of Minkowski space with I- ‘(0)/C * 
(our notation), where C* is the group of nonzero complex numbers acting on 
C4 in an obvious way. Indeed, like a compactified surface of constant 
negative energy of the Kepler problem, Penrose’s manifold possesses the 
topological character S* x S3 (see [ 12, p. 354; 17, p. 629; 331. Penrose calls 
the points of Z-‘(O) “null-twisters.” Since the linear transformations leaving 
1 invariant comprise the group 0(2,2) = U(1) X SU(2,2), the group 
SU(2,2) plays a fundamental role in the theory of twistors (see also [ 13, 
pp. 58-731). It follows that the same group should also play a fundamental 
role in the Kepler problem. That this is indeed the case has already been 
demonstrated on the level of Lie algebras by Baumgarte [14]. Baumgarte, 
adopting some ideas presented by Barut [ 151 in his study of the quantum 
mechanical Kepler problem to classical mechanics, exhibits the Kepler 
Hamiltonian, as well as the Hamiltonian of four harmonic oscillators in 
resonance, as members of a “generator-set” of the Lie algebra 
so(4,2) z su(2,2) over their respective phase spaces and shows that the KS 
transformation carries the two representations of this Lie algebra into each 
other, thereby sending the oscillator Hamiltonian into the Kepler 
Hamiltonian. This feature of the KS transformations is now easily 
understood from the point of view of twistor theory. The group U(2,2) acts 
symplectically on G4\{0}, thereby leaving the “bilinear relation” I= 0 
invariant. Moreover, SU(2, 2) acts transitively on the phase space 
Z-‘(0)/U(l) so that the latter can be realized as a certain orbit of SU(2, 2) 
in the dual of the Lie algebra su(2, 2)” (equipped with the symplectic 
structure discovered for such orbits by Kirillov [7]. See also, e.g., 
[6,8, 10, 11, 161.) 

Another realization of our phase space is TtS3, that is to say, the 
cotangent bundle of the 3-sphere from which the zero section has been 
removed. 

Sternberg and Guillemin [ 16, p. 174-1781, using methods that differ 
considerably from ours, have previously exhibited TtS3 as a homogeneous 
symplectic space of the identity component SO,(4,2) of SO(4,2) which is 
doubly covered by SU(2,2). 

Since TtS3 is again six dimensional, we may ask about its relationship to 

409/93/l-10 
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the original six-dimensional phase space (F?‘\(O}) x R3 of the Kepler 
problem. We find that the original phase space is symplectically embedded 
into T’S’ as an open submanifold. In fact, the explicit formulae that we 
obtain via the KS transformation for this embedding map agree up to an 
automorphism of T+S3 precisely with those given by Moser in [ 171. Indeed, 
one verifies immediately that the embedding takes the Kepler flow on a 
surface of fixed negative energy into the geodesic flow on the unit (co-) 
tangent bundle of S3. 

If our only concern were with the Kepler problem, all that has been said 
so far would be of academic significance only. Since Z-‘(0)/U(l) is also the 
correct phase space for a wide class of perturbations of the Kepler problem, 
however, our constructions retain their value when such problems are under 
investigation. This class of perturbations consists of potentials that (besides 
being dependent on the positions vector) may also depend linearly on the 
momentum. The restricted three body problem for large values of the 
Jacobian constant belongs to this class. This problem is studied in some 
detail in Sections 5 and 6. 

In Section 4 we discuss common features of perturbations of the class just 
defined. We prepare the perturbation by bringing the dominant terms into 
normal form. Approaches to finding the normal form of a (resonant) 
Hamiltonian are discussed at many places in the literature (see, e.g., 
[6, 18, 19 1). We shortly discuss our own approach which in its final version 
was influenced by two sources: (1) Moser’s presentation in [ 181 and his 
personal lectures and (2) some written correspondence about this topic with 
Churchill (see also [ 19 J). 

Terminating the normal form at a certain order and discarding the 
remainder leaves us with an approximation to the original Hamiltonian 
whose flow-according to KMA theory (see [ 18,20, 21 I)--sheds some light 
on the flow of the original Hamiltonian. In the sequel this approximation will 
be referred to as “truncated Hamiltonian.” Since the harmonic oscillator 
Hamiltonian (which replaces the Kepler Hamiltonian), here denoted by J, is 
invariant under the subgroup U(2) x U(2) of the group U(2,2), and since the 
prepared perturbation is in involution with J and hence is U( 1) X U(l)- 
invariant, it defines a Hamiltonian system on the reduced space I-‘(O) n 
J-‘(1)/U(l) x U(1) = [SU(Z)/U(l)] x [SU(2)/U(l)] = S2 x S* which 
obviously is also the orbit space of the Kepler problem. (The topological 
nature of this orbit space was first determined by Moser in [ 171. See also 
[3 1.) We realize each sphere of the product S2 x S2 as a submanifold in 
su(2)* (identified as R3) and give an explicit description of the flow that the 
truncated Hamiltonian induces on S2 x S2. This construction is analogous to 
the one presented by the author in a simpler situation in 122-251. (In this 
connection see also [ 17,351.) In particular, critical points of the truncated 
Hamiltonian give rise to periodic solutions which in our approximation are 
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still Kepler ellipses whose elements (for fixed energy), however, are functions 
of the perturbation parameter. Also, as the perturbation parameter increases, 
the frequency of the periodic solution will in general undergo a displacement 
away from the Kepler frequency. In short, the flow of the truncated 
Hamiltonian appears as a product of the quotient flow on S2 x S* with the 
(accelerated or decelerated) Kepler flow. In cases in which the truncated 
Hamiltonian is not only in involution with J but with, let us say, the third 
component of the angular momentum L, as well (as is the case in the 
problem studied in Sections 5 and 6), the truncated Hamiltonian becomes 
integrable and a further reduction is possible. The result is a Hamiltonian 
system defined on (part of) an orbit of SU(1, 1) in su(1, l)* which we 
realize as (part of) a hyperboloid (compare also [23, 241). Critical points of 
this doubly reduced Hamiltonian correspond to families of quasiperiodic 
solutions with two frequencies that the original (truncated) Hamiltonian 
possesses on each energy surface, the family parameter being u = L,/J. 
These quasiperiodic solutions are Kepler ellipses whose planes are slowly 
rotating about the 3-axis. Here, the elements as well as the two crucial 
frequencies are functions of v and the perturbation parameter. 

In Section 3 we apply the methods explained in the first two sections to 
the three-dimensional restricted three body problem for high values of the 
Jacobian constant C. By an appropriate scaling it is indeed possible to view 
this problem as a particular perturbation problem of the Kepler problem, the 
perturbation parameter being the inverse square root of the Jacobian 
constant. As pointed out by Moser in a personal conversation, the 
corresponding normal form must be of integrable type. It is therefore 
possible to apply the full machinery of the first two sections to our problem. 
First we note that the truncated Hamiltonian of our problem possesses on 
each Jacobi surface the four well-known periodic solutions (compare [ 17)): 
the two circular ones which are already present in the two-dimensional 
problem and the two collision orbits that are perpendicular to the plane of 
the two primaries. For a thorough study of the latter ones for arbitrary 
values of the Jacobian constant but for small values of ,U (= mass of one of 
the primaries), consult [ 261. 

Besides these four periodic solutions we find on each Jacobi surface four 
families of quasiperiodic solutions with two frequencies of the general type 
discussed above. We denote these four families by the critical points e,(u), 
e:(v) that give rise to them. Here the parameter which labels the members of 
each family agrees asymptotically for C+ co with the normalized third 
component of the angular momentum u z v-‘C”*L, and it is confined to 
vary in the interval 0 < ] u / < 1 (V = mass of the primary in the neighborhood 
of which the massless body moves: 0 < v < 1). The members of the family 
e,‘(v) are ellipses in the plane of the primaries which for u -+ f 1 tend toward 
the two circular solutions. This family is already present in the two- 
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dimensional problem and in that problem it can be continued (in the sense of 
KAM theory) to the full Hamiltonian, thereby also guaranteeing the stability 
of the circular solutions ([ 1, 271). 

In the three-dimensional problem we can only assert that this family is 
stable in our integrable approximation. Although most members of the 
family can be continued to the full problem (see Section 6) their actual 
stability cannot even be investigated by the KAM theory. 

The families e,(v) exist and are stable only for 0 < /U / < uO, where 
u0 = +\/15. Both of these families close in on one of the two collision orbits 
for u + 0, whereas for /u] + u0 their members become circular orbits on 
planes that enclose the angle arccos ZIP z 39.23” with the plane of the 
primaries. Finally, the fourth family e;(v) consists of circular solutions and 
it is unstable for 0 < 1 u ] < u,, and stable for u,, < 1 u / < 1. Since for u + f 1 
these solutions tend to the circular solutions of the planar problem, we see 
that in our approximation, by means of joining the families e,(v) and e;(v) 
at uO(-uO), it is possible to embed the direct (retrograde) circular solution of 
the planar problem and the two collision solutions into one continuous stable 
family of quasiperiodic solutions with two frequencies (see Fig. 4).2 

In Section 6 we take up the subtle problem of continuation of the four 
families of quasiperiodic solutions with two frequencies as well as those with 
three frequencies which “surround” them. The quasiperiodic solutions 
supported by these 3-tori correspond to Kepler ellipses whose planes and 
Laplace vectors are not only rotating about the 3-axis but are also subjected 
to small oscillations. According to KAM theory, the majority of these tori 
(in the sense of measure theory) can be continued to the exact problem if 
only a certain determinant does not vanish. Since the three frequencies (in 
the rotating system) have different orders of magnitude in terms of the 
perturbation parameter, a straightforward application of this determinant 
condition is not possible. Nevertheless we are able to prove that certain 3- 
tori in the neighborhood of the four families of 2-tori for a “very short” 
interval of the perturbation parameter persist in the exact problem. 

As far as the continuation of the 2-tori themselves is concerned, a suitable 
application of the theory explained in [28, 291 shows that only a “discrete” 
family of those tori survive the onslaught of the full perturbation. In 
particular, the perturbation parameter (and therefore the Jacobian constant) 
labeling a surviving torus must be known with absolute precision (see 
Theorem 5). 

‘After this manuscript had been prepared half way, the author learned about the 

publication of 1311 in which some features of these solutions are already described. (See in 
particular pp. 576 and 578). 
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2. REVIEW OF THE SPINOR REGULARIZATION OF 
THE KEPLER PROBLEM 

We start our exposition with a review of the spinor regularization of the 
Kepler problem by Kustaanheimo, Stiefel, and Scheifele ([2, 31) using a 
more compact notation (compare [4]). 

For this purpose, we consider the smooth manifolds IR4\(0) = C’\{O}’ 
and R3\{O} with global coordinates x = (zr , z2) (zi(i = 1, 2) = complex 
numbers) and x = (xi, x2, x3), respectively. Next, we define the submersion 

71: P\(O} -+ iR3\{O} (2.1) 

by means of the formula 

x 0 n(z) = (z, oz), (2.2) 

(2.3) 

is the vector of Pauli matrices. In (2.2) we think of z E C2 as a column and 
the notation (z, w) (z, w  E C’) is used to denote the usual inner product of 
c*, 

(z,W)=~lW, +z,w,. (2.4) 

Obviously, (2.1) defines a principal U(l)-bundle with group action e”: 
(z . , , z2) -+ (el’z,, eisz2), x being essentially the Hopf map. If in the cotangent 
bundles T*(C*\{O}) = (@*\(O}) x C* and T*(IR-‘\(O)) = (IR3\(O}) x IR3 
coordinates (z, w) and (x, y) are introduced, then their canonical l-forms 
may be written in the form 

8 = 2 Im(w, dz), 8, = y  . dx. (2.5) 

Accordingly, the canonical symplectic structures of these cotangent bundles 
are defined by d8 and do,,. Here 8 is manifestly invariant under the lifted 
group action eis : ( z, w  + ) ( eiSz, e”w) and possesses the “moment” 21, where 

Z=Re(w,z) (2.6) 

(i.e., 21 is the Hamiltonian generating the U(l)-action on T*(C2\{0}).) The 
spinor regularization of Kustaanheimo-Stiefel is based on the fact that the 

‘In this paper C” will always be regarded as a real manifold. 
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map n has a lift (denoted by the same symbol) to the cotangent bundle with 
the property 

~*4l = 4, ‘CO))” (2.7) 

Here, Ol,,-I(,,,,, denotes the restriction of 8 to the seven-dimensional 
submanifold Z-‘(O) n (z, w: z # 0) of C4. This lift of rr is obtained by 
supplementing (2.2) by the formula 

y 0 n = (z, z)- ’ Im(w, uz). (2.8) 

In order to prove (2.7) we first note that the following formula holds for 
arbitrary elements u, w, z E C* : 

(24, az) * uw = 2z(u, w) - (u, z)w. (2.9) 

(As in (2.5) the dot denotes the usual inner product of R3.) Adding to (2.9) 
the relation obtained from (2.9) by interchanging u and z yields 

Re(z, cm) . ow = u(z, w) + Z(U, w) - Re(z, u) w. (2. IO) 

Multiplying both sides of (2.10) with zt = (5,) Z2) from the left and taking 
real parts we obtain 

Re(z, ou j . Re(z, ow) = (z, z) Re (u, w) -- Im(z, u) Im (z, w). (2.11) 

Replacing in (2.11) u by dz and w by i-‘w gives 

Re(z, adz) . Im(w, oz) = (z, z) Im(w, dz) - Im(z, dz) Re(z, w). 

Substituting in this expression the left sides of (2.2) and (2.8) finally yields 
for (z, w) E (Z-‘(O))’ 

This, however, is precisely relation (2.7) which we set out to prove. 
Replacing u and w in (2.11) first by z then by i-‘w we find (with r = 1x1) on 

v-‘(o))’ 
ro7r=(z,z), (2.12a) 

IY12 0 71= (z, z)-‘(w, w). (2.12b) 

We are now in a position to give a concise description of the spinor 
regularization of the Kepler Hamiltonian 

H,=fly/2- l/r 

on the energy surface H, = - f. 

(2.13) 



ON THE KEPLER PROBLEM 149 

In the following a Hamiltonian system on a (even-dimensional) smooth 
manifold M will be a triple of objects, the first being the Hamiltonian, the 
second being the fundamental two-form defining the symplectic structure on 
A4 and thereby telling us how to associate a system of differential equations 
with the Hamiltonian, and the third being the time variable that enters these 
differential equations. For example, with (H(x, y), de,,, t) (0, given in (2.5)) 
we associate the differential equations 

dx aH dy aH -=- --. 
dt ay ) dt= ax 

(2.14) 

Stated in a more coordinate-independent way, this means that the vector field 
X, determined by the condition 

X, _I df9, = -dH (2.15) 

must be interpreted as the velocity field of the flow induced by H on M. In 
order to regularize the Hamiltonian system (Ho, dB,, t), where H, is the 
Kepler Hamiltonian (2.13), we first consider the auxiliary Hamiltonian 
system (H=jIy[*--K/r, d[8,-Kds],t) on the phase space of dimension 
eight that is obtained from T*(lR3\(O}) by adjoining the variables K and s. 
The differential equations associated with this extended Hamiltonian system 
are Eqs. (2.14) supplemented by the following two equations: 

ds aH 1 dK -= z=-z=T’ dt 0. (2.16) 

Now, by a well-known theorem (see, e.g., [20, p. 266]), the extended 
Hamiltonian system induces on the manifold H = - 4 the Hamiltonian 
system (Ko, do,, s), where K, is obtained from H by solving the equation 
H = - 4 for K. We obtain 

K,=f(ly12+ 1)r. (2.17) 

It is clear (and also directly verifiable) that the vector field of H, on the 
surface H, = - i agrees up to the scaling factor r --’ with the one induced by 
K, on the surface K, = 1. Note, however, that the “energy” surface K, = 1 is 
still noncompact so that the regularization is not yet complete. The main 
step leading toward spinor regularization consists in the replacement of K, 
by J = K, o 7~. On account of relations (2.12) we find 

J= +[(Z, z) + (w, w)]. (2.18) 

4Actually, the topological character of this surface is S* x IR” (see [ 321). 
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Thus we replace the Hamiltonian system (KO, df?,, s) on T*(IR3\{O)) by the 
Hamiltonian system (J, df?, s) (0 defined in (2.5)) which at first is regarded 
as being restricted to that portion (ZZ’(0))’ of the surface Z-‘(O) on which 
z # 0. Reducing out the U(l)-action on the manifold (ZZ’(0))’ we recover 
the first Hamiltonian system from the second. In fact, formulae (2.7) and 
(2.12) show that such a reduction is accomplished explicitly by the map 7r[. 

In order to complete the regularization of the Kepler problem we have to 
treat the point z = 0 on the same footing as all the other points. This is 
achieved simply by extending the domain of definition of K, to all points 
(z, W) # (0,O). (The reason why we exclude the origin of C4 will become 
clear later.) The phase space of the regularized Kepler problem is therefore 
the quotient manifold ZZ’(O)/U( l), w h ere I- ‘(0) is viewed as a submanifold 
of C\(O). 

In Section 3 we shall obtain several realizations of this phase space and 
we shall make contact with previous work of Moser [ 171, Baumgarte [ 141, 
and Guillemin and Sternberg [ 161. Here we only remark that there is a close 
connection between Penrose’s conformal completion of Minkowski space 
[ 121 and our description of the compactification of a negative energy surface 
of the Kepler problem. Indeed, selecting a fixed spacelike hyperplane iR3 in 
Minkowski space, a null line is uniquely determined by the following data: 
(i) a directional vector which can be identified with a point of S2, and (ii) 
the point of intersection with the hyperplane IR3. Thus the manifold of null 
lines of Minkowski space is identified with S2 x IR3. On the other hand, our 
map rr associates with each point (z, w) E (Z-‘(O))’ the point 
((x 0 n) . (r 0 x)-r, y) of S2 x m3 in such a way that two points are mapped 
into the same point of S* x IR 3 precisely if they lie on the same orbit of C * 
(=group of nonzero complex numbers acting on 4-tuples of complex 
numbers in an obvious way). Thus, the manifold of null lines of Minkowski 
space appears as quotient manifold (I-i(O))‘/G *. 

If Minkowski space is completed by adjoining a null cone at inlinity, the 
new manifold of null lines is Z-‘(0)/C* (’ i.e., again the restriction z # 0 is 
lifted). Since obviously 

z-‘(0)/C” =(I-‘(O)nJ-‘(l))/U(l), 

we see that the manifold of null lines of Minkowski space and a surface of 
negative energy of the Kepler problem are diffeomorphic (before and after 
compactification). In both cases the compactified manifold is S* x S3. In 
fact, lifting the restriction z # 0 amounts to replacing IR3 in S2 x iR3 by S3. 
Here, iR3 is first viewed as S3\{one point} via a stereographic projection and 
then the missing point is filled in (compare Moser [ 17, p. 6291 and Penrose 
[ 12, p. 3541). H ere I-‘(0)/U(l) is not only the appropriate phase space for 
the regularized Kepler Hamiltonian but also for a wide class of 
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Hamiltonians that are representable as suitable perturbations of the Kepler 
Hamiltonian. More specifically, we consider the class of Hamiltonians 

H = f I Y I2 - (K/r) + qx, y, E), (2.19) 

where %I is real analytic in x, y, E (E sufficiently small) and at most linear in 
y. Going through the same series of transformations as with the Kepler 
problem, we find that the vector field induced by H on the surface H = - 4 
differs from the one induced by 

K=j(IylZ+ l)r+Er~(X,y,E) (2.20) 

on K = 1 just by a scaling factor r-l. Since 8 is at most linear in y we may 
write 

9 = q)(x, E) + B,,(x, E) * y 

and we obtain 

K 0 71 = 4 [(z, z) + (w, w)] + wBo(x, E) 

+ E'll(x, c). Im(w,oz), (2.21) 

where x = (z, oz) and r = (z, z). Obviously, this Hamiltonian is real analytic 
on G4 and it also defines such a Hamiltonian on I- ‘(O)/U( 1). 

Before closing this section we shall seek an expression for the angular 
momentum L o rr, where L = x x y. For this purpose we shall make use of 
the relation (X = cross product) 

(w, u)(u, az) + i(w, cw) x (u, az) = 2(u, uu)(w, z) - (w, uu)(u, z) (2.22) 

which holds for any elements U, u, w, z E C*. This relation can be derived 
from (2.9) and the well-known relation 

(a . a) 0 = au, f i(0 X a) (2.23) 

which is valid for all 3-vectors a. Here u0 is the 2 X 2 unit matrix. Indeed, if 
we apply both sides of (23) to u E 6’ and set a = (u, uz), we obtain 

((24, at) * u) (321 = (u, uz) u + i(ou x (24, oz)). (2.24) 

Replacing w  by oz) in (2.9), however, yields a relation which allows us to 
replace the left side of (2.24) by 

2z(u, ou) - (24, z) 00. 

If the resulting relation is multiplied from the left by wt= (W,, tiJ, relation 
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(2.22) results. In order to obtain the desired expression for the angular 
momentum, we set u = u = z in (2.22) and simultaneously replace w by iw. 
Thus, we obtain 

(w, oz) x (z, az) = -i(z, oz)(w, z) + i(w, oz)(z, z). 

Equating imaginary parts on both sides yields 

(z, oz) x Im(w, az) = (z, az) Re(w, z) - (z, z) Re (w, oz). 

Hence on account of (2.2), (2.8), and (2.25), 

L o n = -Re(w, oz) on Z-‘(O). 

3. REALIZATIONS OF THE SPACE ZZ’(O)/U(l) 

(2.25) 

(2.26) 

In the last section we saw that a regularization of the Kepler problem is 
achieved by lifting the restriction z # 0 and regarding Z-‘(O) as a 
submanifold of C4\(O]. This will be our convention for the remainder of this 
paper. 

We also saw in the last section that ZZ’(O)/U(l) is not only the 
appropriate phase space for the Kepler problem but also for a wide class of 
problems that can be described in terms of a suitable perturbation of the 
Kepler problem. Therefore it may be important to have available alternate 
realizations of this symplectic manifold. 

In what follows we shall show that I-‘(0)/U(l) can be realized as an orbit 
of the Lie group SlJ(2, 2) in the dual su(2, 2)* of its Lie algebra. This will 
give some geometrical insight into the purely algebraic constructions of 
Baumgarte [ 14 1 who (stimulated by Barut’s quantum mechanical 
constructions [ 151) exhibits the regularized Kepler Hamiltonian as member 
of the Lie algebra s0(4,2) g su(2,2) (2 means “isomorphic to”). 

There is another way of realizing the phase space Z-‘(0)/U(l), namely as 
T+S3; that is to say, as the cotangent bundle of the 3-sphere from which the 
zero-section has been removed. The fact that T+S’ is symplectomorphic to 
an orbit of the group SO,(4,2) ( remember SO,(4,2) is the identity 
component of SO(4,2) which is doubly covered by SlJ(2,2)) in so(4, 2)* ” 
su(2,2)” was previously shown by Guillemin and Sternberg [ 16, 
pp. 174-1781 in connection with their discussion of Moser’s work [ 171. In 
[ 171 Moser shows (among other things) that the flow of the Kepler 
Hamiltonian on a surface of fixed negative energy is diffeomorphic to the 
geodesic flow on the unit tangent bundle of the 3-sphere. We shall rederive 
both results starting from the phase space I- ‘(0)/U(l) of the “twistor”- 
regularization described previously. We feel that our approach will not only 
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shed new light on the relationship between the KS regularization and 
Moser’s regularization of the Kepler problem but we hope to convince the 
reader that it is particularly well suited for perturbations of the Kepler 
problem such as the three-dimensional restricted three body problem for high 
values of the Jacobian constant. This problem will be discussed in detail in 
Sections 5 and 6. 

We start out by proving that U(2,2) acts symplectically on (C4\(O}, do}, 
where 8 was defined in (2.5). To this end we write 0 in the form 

e= (l/i)(Grdz, + W&z, - w,&, - &dF,) 

= (l/i)[(w, dz) + (z, dw)]. (3.1) 

Here, we have identified two cohomologous l-forms (i.e., two forms differing 
by an exact form). This convention will be in force throughout this paper 
since obviously the symplectic structure defined by dt9 only depends on the 
cohomology class of 13. Next we subject (z, w) to the transformation 

with inverse ( ;) =c( :) 3 (3.2) 

where 0. is the matrix 

(3.3) 

with (TV being the two-dimensional unit matrix. We obtain 

(3.4) 
= Im[(v, 4) - CC, dOI. 

Here we think of q and 5 as columns and of (r] ‘, ct) as row (Q, , Ij2, i,, r,). 
Moreover J is the 4 x 4 matrix 

3= (2 -:,)- (3.5) 

The right side of (3.4) is manifestly invariant under the obvious action 
(;)- U(;l) of U(2, 2) on C4. In the following we identify the corresponding 
Lie algebra ~(2, 2) with the one formed by all matrices ‘?I having the 
property that 32l is a Hermitian matrix. The appropriate bracket for this Lie 
algebra is 

[?I, B] = -i(wB - ml). (3.6) 
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In turn we identify the dual ~(2, 2)” with the same space of matrices which 
amounts to endowing this space with the inner product 

(‘2&S) = tr(J?QB). 

In the following we replace U(2, 2) by its four-fold covering group 
0(2,2) = U(1) X SU(2, 2), possessing the same Lie algebra ~(2, 2) as 
U(2, 2). Correspondingly u(2,2) and u(2,2)* decompose into an orthogonal 
sum. For example, 

U(2,2)* = u(l)” ‘3 sU(2,2)*, 

where u(l)* is spanned by the 4 x 4 unit matrix 1, and su(2,2)* is spanned 
by those elements of u(2,2)* having vanishing trace. 

We also introduce the Poisson bracket corresponding to id& Let J g be 
two real-valued functions on C4\(O}. We define 

if, gl = (Vf)+3Vg - (Vg>+ 3V = tr{ lbf(Vg)T - (~g)(WTl 3 I, (3.7) 

where (Of )’ = (af/aq,, 13f/&l~, df/a(, , af/d(,) and Vf is the corr_esponding 
column vector. Similarily, (Vf)+= (Vf)'= (&/@,, af/aq,,af/al;,, af/ay,) 
and vf is the corresponding column vector. 

The time rate of change of g under the flow induced on C’\(O} by f is 
given by 

&? = i1.L sl* (3.8) 

It follows that the moment of the action of U(2, 2) on C4\(O} is 

(3.9) 

In more explicit language this means that, given an element ‘u E ~(2, 2), the 
Hamiltonian 

(3.10) 

induces the flow (,“) + exp(i Us)(,“) on C4. The equivariance of the moment 
finds its expression in the formula (UE U(2, 2)) 

w(a’, C’) = w-’ l//(% 0 lJ+ for (1:) = U( F). (3.11) 

Its infinitesimal counterpart is 

(3.12) 
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This formula is also verified directly by substituting (3.10) into the second 
expression for the Poisson bracket given in (3.7). The moment Z of the U(l)- 
action that was already defined in (2.6) assumes the following form in the 
new variables: 

It is itself invariant under U(2, 2). In fact 21 is the quadratic form of C(2, 2) 
so that if g ( , ) denotes the corresponding inner product, then 2Z= g (a, ), 
where we have set a = (u, [). Note that Z-‘(O) actually lies in the open 
submanifold { (7, 4): q # 0, < # 0) of C4\(O}. 

We turn now to the proof of the fact that ZZ’(O)/U(l) is symplec- 
tomorphic to a certain orbit of SU(2,2) in su(2,2)*. For this purpose we 
first generalize the situation at hand and consider more generally a 
Hamiltonian G = H x K-space (M, o} with equivariant moment 

y:A4-+g*=g* @ f”. 

(Here, g, h, and t are the Lie algebras associated with the groups G, H, and 
K; g*, h*, and I* are their duals; and o is the 2-form defining the 
symplectic structure on M.) Let vH, vK be the components of v in h* and 
I*, respectively. Observe that vK is equivariant with respect to K and 
invariant with respect to H; an analogous statement is valid for v/~. In this 
situation the following theorem is valid (for background material see 
[6-l 1, 161). 

THEOREM 1. Assume (i) ,u,, E f * is a regular value of yK and that its 
isotropy subgroup K,O in K acts freely and properly on V/K ‘(,uJ so that 

Yi ‘CUo>IKJ4, is a symplectic manifold. (ii) The isotropy group of ,u,, in 
G: G,O= H x KNO acts transitively on w;‘(&). (iii) For some a, E I;‘, 
let & = 1/1u(a,,). Assume that & is a regular value of vH and K acts tran- 
sitively on V/H’(&). Then vy, defines a symplectomorphism between the 
spaces ~~‘(,uo)/KMO and SJ&,) (orbit of H through & in b*) which 
intertwines the action of the group H. In particular, if X,,, Y,, are the vector 
fields induced in b* by the one parameter groups exp(Xt), exp(Yt), where X, 
YE 9, and zy o$O is the canonical two form defining the symplectic structure 
on On(&) (discovered by Kirillov [7 I), i.e., 

wv~~ 9 Y,*,) = -4[X Yl) (3.14) 

for II E On(&), then 

YH*WWO = 4*po). (3.15) 

We postpone the proof of this theorem to an appendix. Instead we apply it 
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immediately to the situation at hand: Here G = Z.$2, 2), K = L’( 1). 
H = SU(2, 2) vK = Z, ,LL~ = 0, and the application of Theorem 1 will give 

THEOREM 2. We have that l-‘(O)/U( 1) is symplectomorphic to the orbit 
of all elements ‘ZI of su(2, 2)” having the property that JZI is a one- 
dimensional orthogonal projection of the Hilbert space C4 (equipped k&h the 
norm W, J given in (2.18)). 

Proof: Condition (i) of Theorem 1 is obviously satisfied. In order to 
check condition (ii) we have to show that U(2, 2) acts transttively on I- ‘(0). 
This follows either by Witt’s theorem or directly as follows: To a = (v, c) we 
associate b = J-‘(I?, -0, where we think of J as being expressed in the 
variables 7, < 

(3.16) 

Notice that on C4\{O}, b is well defined. Setting e = +(a + b), f = ;(a - b), 
we have on Z-‘(O), that g(e, e) = -g(Jf) = 1 and g(e,f) = 0. Choose 
vectors e,,,fo E C(2,2) so that (e, e,,f,&) is an orthonormal basis in C(2, 2). 
Finally, let U E U(2,2) be the matrix whose columns are the members of 
this basis. Then U carries the vector e, = (1, 0, I, 0) into a. Here our 
convention to regard Z-‘(O) as a submanifold of G4\{0} rather than of C’ 
became essential. 

Finally we check condition (iii) of Theorem 1 by setting a0 = e, so that 
1, = v,(e,). Since w and vH agree on Z-‘(O), I,v)~ is given in (3.9) and one 
easily obtains w;‘(A,) = (eia, 0, e’“, O)ncN, so that all assumptions of 
Theorem 1 are satisfied. The nature of the orbit as described in Theorem 2 
follows immediately from an inspection of formula (3.9). 

Our next goal is to introduce suitable coordinates on this orbit. Combining 
the 3-vector of Pauli matrices (2.3) with u0 we obtain the 4-vector of Pauli 
matrices (T = (a,, 0). With its help we construct an orthogonal basis of 
u(2,2) by setting 

The Hamiltonians inducing the corresponding one-parameter flows in C4 are 
denoted by the corresponding latin letter so that 

M= wm, N= WRY Q=YQ? P= ‘i/q. (3.18) 

The following relations are immediate consequences of these definitions: 
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J=M,-N,, I=M,+N,, (3.19) 

M = j(lr, v), N = -f(L 4, (3.20) 

Q = Re(v, 4, P = Im(rl, d>, (3.21) 

Q, = Wrl, 0, P, = Im(rl, 4). (3.22) 

There exist several relations between these functions. For instance, replacing 
z by q and u = w first by [ and then by -i& in relation (2.11) yields 

Q’+Q;=J’-I’, P2 + P; = J2 -I’. (3.23) 

Here, for reasons that become clear shortly, we have set 

Q4=-PO, P,=Q,. (3.24) 

Making the same substitutions also in (2.25) yields 

+(I + J) Q = MP, + (M x P), 

-~(z+J)P=MQ,+(MxQ). 
(3.25) 

Using also that M2 = (+(I + J))’ ( see formula preceding (4.5)), we deduce 
from (3.25) that 

PeQ+P,Q,=O (3.26) 

whenever I + J # 0. In particular this is the case on the surface Z-‘(O). 
Now let (v, q) = (r],, r2, q,y4) denote global coordinates on C2 X R4. By 

setting q o F = q, q o F = J-IQ, where 0 = (Q, Q4), we define a smooth (i.e., 
real analytic) map F:[C’\(O}] x C2 -+ [C’\{O)] x iR4. The following Lemma 
gives a deeper insight into the nature of the manifold Z-‘(O). 

LEMMA. If the map F is restricted to I-‘(O), it becomes a diffeomorphism 
onto [C’\(O)] x S3, where S3 = (q: l(ql( = l}, (jql( = (q2 + qt)1’2. 

Prooj Let G: [C’\(O)] x R4 + ]C2\(O}] X C2 be the smooth map 
defined by qoG=~, ([oG)(q,q)=(q.o)q-iq,q. Then (CoGoF) 
$: fb;g’ [<Q - 0) rl - iQ4rll. If we set u = w = q, z = [ in relation (2.10) 

so that (co G o F)(r], [) = J-‘(I + J) [. The right side of the last relation 
reduces to [ on the surface I- ‘(0). Furthermore, we find on account of 
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(2.23) that q 0 F 0 G = (J 0 G) -‘(I?, v)q, where (.Z 0 G)(r], q) = 
411 + q2 + SMl, 7) i so that q 0 F o G reduces to q on S’. 

Combining this result with the observation that F and G leave ~1 
unaffected completes the proof of the Lemma. 

COROLLARY. We have that I- ‘(O)/U( 1) is diffeomorphic to 
(R3\(0)) x s3. 

Proof We first note that if we let U(1) act trivially on S3, then F 
becomes an isomorphism of U(l)-spaces. Let rr’ be the map rr introduced in 
(2.1) with the difference, however, that in the present context the coordinates 
of C*\(O) are v and those of iR3\{0 1 will be denoted by m so that 
(m o k)(q) = 2M (M defined in (3.20)). Since rc’ defines a principal U( 1) 
bundle, it follows that the map f: Z-‘(O) + (ll? 3\{O}) x S3 defined by the 
formula: 75= (71’ x id) o FlrmlCoj (where id is the identity on S’) induces a 
diffeomorphism between the spaces ZZ’(O)/U(l) and (lR3\{O}) x S3. 

This proof also shows that m o 7Y = 2M, q o 7? = J-‘o is a set of coor- 
dinates on ZZ’(O)/U(l) (and h ence also on our SU(2,2)-orbit in su(2,2)*). 
Now (lR’\(O)) x S3 can be viewed as TtS3, i.e., as a cotangent bundle of 
the 3-sphere from which the zero-section has been removed. Indeed, the map 
j: (lR3\{O}) x s3 -+ iR* defined by so.i=q and (P oj)(m 4) = 
(-q4m + (q x m), q . m) yields a parametrization of T’S3 = (p, q E R*: 
q2 +q:= 1, q. p +p4q4=0, p#O}. Finally, setting $=jo n’ we find 
(p o 72)(~, <) = J-‘(-Q4 2M + 2(Q X M), 24 . M) = (P, P4), where the last 
equality holds on account of (3.25). Combining this result with the obvious 
relation q o ? = J-‘o we find in view of (3.26): 

?*(p . dq +p4dqJ = P . d(J-‘Q) + P4d(Jp*QJ 

= J- ‘(P . dQ + P4dQ4). 

Replacing u by -i[, z by v, and w by d[ in (2.11) yields 

Im(q, 4) Re(V, 04) = -(rl, rl) Im(k &) + Re (rl, C;> Im(% 4). 

Since P + dQ is obtained from the left side of the last expression by antisym- 
metrization in v, c, we find 

P - dQ =J[Im(q, drl) - Im(L dC)l + P,[Im(v, dl;) + Wdn 01 

or finally 

(3.27) 
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where 19, is the canonical l-form of lR8, 

0, = (P .ds +P,&,)* (3.28) 

Combining this result with the fact that $ by its very construction 
establishes a diffeomorphism between Z-‘(0)/U(l) and T’S3 shows that 
TtS3 with its canonical symplectic structure defined by the 2-form dB,I,+,, 
provides us with a second realization of the symplectic space I- ‘(O)/U( 1). 
Since also Do(&) (as described in Theorem 2) constitutes such a realization, 
we essentially recover the result by Guillemin and Sternberg 
[ 16, pp. 174-1781 who prove that Tf S3 is symplectomorphic to a certain 
orbit of SO,(4,2) in so(4,2)*. (Note that SO,(4,2) g SU(2,2)/(1, -1) (see 
[ 13, p. 60)] and that the action (3.11) of SU(2,2) does not distinguish 
between U and -U.) We summarize our previous discussion in the following 
diagram: 

{@* ' {Ol ,de} 

F 

t---------- {?9t: v#Ol .z====xz 
2 4 

cc \{O}xM) 

> T+S3 =====S {R*,da,}, 

All nonlabeled arrows represent imbeddings of submanifolds. A double 
arrow represents a symplectic imbedding (the symplectic structure being that 
of the larger space). Observe also that restrictions of maps are denoted by 
the same symbols as the unrestricted maps. We expect the left arrow at the 
bottom of the diagram to represent essentially Moser’s transformation (see 
1171). A detailed calulation that we omit yields 

4 = [r(l + y2)]-'(x(1 t Y') - 2(x . Y) Y, -2(x * Y)> 

P = cry, t(l - Y’) r), r= (xl. where 
(3.29) 

(See 1321.) 
The image in Tt S3 is the complement of the manifold S3 X {neg. p,-axis}. 

On it the map possesses an inverse which is described by the formulae 

x = (II P II + Pa) 9 - 44Ph Y = (II P II + PJ ‘P. (3.30) 

409/93/lLl I 
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It is not difficult to verify that formulae (3.29) define a symplectic injection 
of (lR3\(O}) x RR3 into T+S 3. The same interpretation applies to Moser’s 
transformation which in our notation takes the form 

q=-(l+y2)-‘[2y,l-y*], p=(;(y*+l)x-(y*x)y,-x.y). (3.31) 

Both transformations carry Hamiltonian (2.17) into the Hamiltonian ]I p // 
on the surface /] p]] = 1 a flow whose orbits project onto the geodesic lines 
on S3. Observe that if transformation (3.29) is followed by the symplectic 
S-‘. Observe that if transformation (3.29) is followed by the symplectic 
automorphism of TtS3 that replaces q by ]) p Il-‘p and p by -llpll q, then 
transformation (3.3 1) results (compare ] 17 1). 

4. PREPARATIONS FORTHE STUDY OF THE PERTURBED KEPLER PROBLEM: 
REDUCING OUT THE KEPLER FLOW 

In this section we first present a detailed study of the Kepler flow using 
our “twistor”-regularization and then proceed to construct the orbit manifold 
of the Kepler flow explicitly. It is well known that this manifold has 
topological character S* x S* (see, e.g., [3, 171). By definition of the orbit 
manifold, the Keepler flow leaves this space pointwise fixed. Any pertur- 
bation of the Kepler problem, however, will via its normal form induce a 
flow on S2 x S2. We shall present a recipe for the explicit construction of 
this flow. It is intuitively obvious that the product of this reduced flow with 
the Kepler flow constitutes a first approximation to the perturbed Kepler 
problem under investigation. The precise nature of this approximation will 
not be discussed in general. For the case of the three-dimensional restricted 
three body problem in the limit of large values of the Jacobian constant, 
however, such a discussion is presented in Section 6. 

We first note that the subgroup of U(2, 2) leaving the regularized Kepler 
Hamiltonian (2.18) invariant is U(2) x U(2). Indeed, subjecting this 
Hamiltonian to the transformation of variables (3.2) will identify this 
Hamiltonian with the expression J as given in (3.16) and our contention 
becomes obvious. The action of U(2) x U(2) on C4 is described by the 
formulae 

t7’ = u, 9, C’ = u,i, u, ) u, E U(2). (4.1) 

We note in passing that restricting (Or,, U,) to SU(2) X SU(2) induces an 
element of SO(4) on TtS3. Indeed, since SU(2) is parametrised by S3 by 
means of the association u E S3 + u400 - ia . u E SU(2), there is a linear 
correspondence a’ = Oa E S3 such that 

U,(a,a, - ia . 0) U, = (a;ao - ia’ . a). (4.2) 
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Sandwiching both sides of (4.2) between q, [ and taking imaginary and real 
parts we obtain, in view of definitions (3.21), (3.22), and (3.24) 

Q’ .a+Q;u,=Q.a’+Q,a;, P’ . a+ Pia,= P + a’+ P,a;,(4.3) 

where the primed quantities on the left side are defined with the help of 
(r]‘, c’) (given in (4.1)) in the same way as the unprimed ones on the right 
side. Since 0 carries S3 linearly into itself and since SU(2) X SU(2) is 
connected, it follows that 0 E SO(4) and from (4.3) we conclude 

(0 = (Q, Q4), etc.) (Compare also [30, p. 204; 331.) 
Next we note that the “infinitesimal generators” of the U(2) x U(2) action 

are M and N given in (3.18). In particular, M, N given in (3.20) generate the 
SU(2) x SU(2) action. We also introduce the vectors 

L=-M-N=ve, A=M-N=I/+,, (4.4) 

P+ (-; -i), 9+(; JEsu(2,2). 

(Here the notation is the same as in (3.18).) The vector L is none other than 
the angular momentum. This is easily checked by subjecting expression 
(2.26) to transformation (3.2). It will become clear below that A is the 
Laplace (= negative Lenz-) vector. (Of course, we may also transform back 
into the x, y variables in which case we obtain A = [y X (y x x) + 

f(y2 + 1) x] 0 n.) 
Setting z=u=v and w=( in (2.9) we find (q, 0~) or = 

2~(?7, [) - (v, ‘I) [. Multiplying the last relation from the left by -ic’ yields 

Moreover, replacing z in (2.12a) by q and [, respectively, we find 
MZ = a(~, a), N* = f(l;, 4). On Z-‘(O) these expressions simplify to 

M . N = ;J* - 4 1 (q, t;) I*, M* = N* = fJ”. (4.5) 

An immediate consequence of (4.5) are the relations 

A* = I(rl, Ol’, L*+A*=J*, A.L=O. (4.6) 

which are all valid on Z-‘(O). 
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Expressing the position vector x and the momentum vector y (whose Z-M’ 
expressions are given in (2.2) and (2.8)) in the [, r] variables yields 

x=A+Q, r=J+P,, 

y = (Js P,)-‘P, Iy1 = (J + P,)-‘(J- P4). 
(4.7) 

(By dropping the symbol 7~ on x, y we employ the usual abuse of notation 
according to which the same symbol can be used to denote an independent 
or a “dependent” variable, (i.e., a function) depending on the context.) 

Observe that under the Kepler flow ([, 7) is multiplied by e”. Thus. in 
terms of the variable 

u = arg(L v), (4.8) 

the Kepler flow is simply represented by the translation u --* u + s. Hence, 
varying u and keeping all other variables constant we expect the endpoint of 
x (given in (4.7)) to trace out an ellipse that lies in a plane perpendicular to 
L, has one focus at the origin, and has center A. In order to prove this 
contention we introduce the right-handed orthonormal basis 

f, =/AI-IA, f* = fj x f, , f3 = ILI-‘L* (4.9) 

Setting w = D = 7, u = z = [ in (2.22) and equating imaginary parts on both 
sides yields 

-f(rl, 0~) x (Lo0 = -Im[(L v)(rl, 01 = PP, + QQ4. 

Setting 

e=IAjJ-‘, 

we find on account of (4.6), (4.8), (4.10), (3.22), and (3.24) that 

P, = Je cos u, Q4 = Je sin u, 

and therefore 

(4.10) 

(4.11) 

LxA=Je(Pcosu+Qsinu). (4.12) 

Furthermore, we obtain from (4.7) 

r2=(x~2=J2e2+2A~Q+Q2=J2+2JP4+P~. (4.13) 

Combining (4.11) with relations (3.23) and (3.26) (where I = 0) we find 

Q’ = J2 - Qi = J2( 1 - e2 sin’ u), 

P.Q=-PP,Q,=-J’e’cosusinu. 
(4.14) 
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Replacing Q’ and Pi in (4.13) by their values, given in (4.14) and (4.1 l), 
respectively, yields 

A.Q=JP,=J2ecosu. (4.15) 

Let 

x, = x . fk (k= 1,2,3) (4.16) 

be the components of x with respect to basis (4.9). Using (4.15) we find 

X, = J(e + cos u). 

Since according to (4.9), (4.10) and (4.12) 

f,=JLI-‘(PcosufQsinu), 

we compute in view of (4.14) 

X,=f,.x=f,.(A+Q)=f,.Q=(LIp’J2(1-e’)sinu. 

However, on account of (4.6) and (4.10), 

L’=J*-A2=J2(1-e’), 

so that 

X2 = J( 1 - e’)“’ sin u. 

Finally, a suitable application of (2.11) yields on I-‘(O) 

(4.17) 

(4.18) 

(4.19) 

X,=f,.x=f,.(A+Q)=f,.Q=+-‘[(M+N).Q]=O. 

These formulae confirm our conjecture that by keeping all quantities except 
u constant, x traces out an ellipse in a plane perpendicular to L with one 
focus at 0 and center A, u being the so-called “eccentric anomaly” (see 
Fig. 1). 

In order to motivate our explicit construction of the orbit manifold of the 
Kepler problem, we first return to the perturbation problem described by 
Hamiltonian (2.21). We shall show that a careful preparation of this 
Hamiltonian will naturally lead us to a construction of the orbit manifold of 
the Kepler problem. The view of normal form theory that will be presented 
in the sequel was strongly influenced by Moser’s lectures and by some 
correspondence with R. Churchill (see also [6, 18, 19,351). 

Expressing the perturbation terms also in the new variables, Hamiltonian 
(2.2 1) becomes 

K=J+eP. B,(A+Q,E)+E(J+P~)~)~(A+Q,E). (4.20) 
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FIGURE 1 

In the following we shall denote the perturbation term simply by ~9 ,(E), 
keeping only in mind that By can be expanded into a formal power series 
in E whose coefftcients lie in some Lie algebra R so that K can be written in 
the form 

K =J+ &II\‘) + c*Y.l)I” + e39)12’ + ... . (4.21) 

In the case of Hamiltonian (4.20), St can be taken to be the Lie algebra of 
real analytic functions in the “generators” of the Lie algebra su(2,2), 
equipped with Poisson bracket (3.7). In the following, however, R is any Lie 
algebra and temporarily we write the Lie product like an ordinary one. (Of 
course, since the product is antisymmetric we must be careful about the 
order of the terms.) Here J is viewed as a linear operator over R sending an 
element S E Jt into JS = -SJ (this operator is usually denoted by ad J). The 
basic assumption underlying normal form theory is that R splits under J, 

R=KerJ@RanJ. (4.22) 

In order to see that (4.22) is satisfied in the present context, we write all 
functions as power series in Q, P with coefficients depending on J, M, N, 
where relations (3.23) and (3.26) are used to simplify as much as possible. 
Then Ker J consists of “constant terms” only, whereas Ran J consists of 
power series in Q and P having no constant terms. 

Returning to the general case, we denote the unique solution S E Ran J of 
the equation JS = IB (9 E Ran J) by S = J-9 and caret and tilde are used to 
denote the projections onto Ker J and Ran J that correspond to the splitting 
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in (4.22). Starting from (4.21), we first multiply from the left with exp ES,, 
where S, = I?@\” and obtain 

J + &zB(” + &%)O) + a(&‘) 1 (4.23) 

where 

gJ)“’ = $j(O’ 
1 9 ~:“‘=fS:J+S,~)10’+~)I”=tS,~~o’+S,~2), +%I;‘). 

(4.24) 

Transforming (4.23) by multiplying from the left by exp(sS,) (S, = d$“‘) 
yields 

J + &m(1) + &*mD’*’ + @(E3), 

(4.25) 

Proceeding in this way, higher and higher order terms are “squeezed” into 
Ker J. Note, however, that since Ker J is itself a Lie algebra, we may let our 
series of transformations follow by an arbitrary transformation exp(sT(e)), 
where T(E) is a polynomial in E with coefficients in Ker J, without destroying 
what we have achieved in the first place, namely, that all terms of the 
transformed Hamiltonian up to a certain order lie in Ker J. For example, 
such an additional transformation will replace ZBx)‘*’ by the expression 
!IIJ’*’ + ?‘(“)!I13D(1), which by an appropriate choice of T”’ may be simpler 
than !II3(*‘. This remark was communicated to the author by Moser who, 
after studying the author’s work [ 11, pointed out that the Hamiltonian of 
11, p. 1344, (37)] could be simplified by an appropriate choice of T”‘. 

In any case, what we learn from the previous discussion is that apparently 
there exists a canonical transformation which brings our Hamiltonian into 
the form 

K = J + E’D(J, M, N, E) + b(c”+ I). (4.26) 

Here, 9B is a polynomial of degree n - 1 in E whose coefficients are real 
analytic functions of the seven variables J, M, N. Notice, however, that 
relations (4.5) exist between these variables. (The fact that we stay within the 
set of analytic functions by applying transformations of the type exp ES can 
be seen for instance by realizing that exp ES is nothing but the local flow of 
the Hamiltonian system (S, d8, E). This flow, however, is analytic in all 
variables for sufficiently small E if S has this property.) Dropping the term 
B(E”+‘) in (4.26), we are left with a Hamiltonian, in the following called 
truncated Hamiltonian, whose flow can essentially be represented as the 



166 MARTIN KUMMER 

product of the Kepler flow with a suitable flow that m induces on the orbit 
manifold S2 X S2 of the Kepler flow. A precise description of the latter flow 
requires, however, that this orbit manifold be constructed explicitly. 
Obviously, it is obtained by reducing out the action of U(1) X U( 1) on the 
submanifold S3 x S3 = {(M,,N,)= (J/2, -J/2)} of C2 x c2. (Set I =O in 
(3.19)) Now, the symplectic space (C”, df?} is the product of the symplectic 
spaces (c:‘, de+} (8, = Im(r, dq)) and the symplectic space {c:“, -de-} 
(K = WC, &)I so that it is sufftcient to construct the symplectic manifold 
S”/U(I), where S3 = {VIM, = (J/2)}. In this situation Theorem 1 becomes 
applicable with 

K= U(l), H = SU(2), p,, = J/2. (4.27) 

Identifying su(2) and su(2)” with R ’ (the pairing being the usual dot 
product) we find that the moment vH is simply M = j(y~, cry), i.e., again the 
Hopf map. Since SU(2) acts on R3 via rotations, the reduced space becomes 
a sphere of radius J/2. This is also seen from relation (4.5). 

According to Theorem 1, the symplectic form on S2 is 

w,(X, Y) = M . (X x Y) . (4/J’). (4.28) 

Summarizing, we see that the orbit space of the Kepler flow can be realized 
as the product of two spheres of radius J/2 which we think imbedded in 
M - N space, the latter being equipped with the product structure wM + wN, 
where We is detined in (4.28). Accordingly, truncated Hamiltonian (4.26) 
induces on S2 X S2 a flow that is governed by the differential equations 

M=MxV,!IB, fi=NxV,ZB. (4.29) 

A more direct way of obtaining these differential equations starts from the 
“commutation” relations 

{M,,M,}=--iM3, ({N,,N,} =--iN,) (4.30) 

and cyclic which are proved by setting ?I = mm,, B = tm, (2I = W,, B = s2) 
in relations (3.12) and taking the commutation relations for the Pauli 
matrices 

[c7,, 4 = 20, (4.3 1) 

into account. (In turn (4.31) follows from (2.23) and the definition of the 
bracket given in (3.6).) Now, on account of (3.8) and (4.30), we compute 

k, = i(K, M,} = iV,K . {M, M,} = iVMzK{M2, M,} + iVM3K{M,, M,} 

= VM3KM2 - VMZKM3 = (M x V,K), . 
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This relation together with those obtained from it by a cyclic permutation of 
the subscripts make up the first of vector equations (4.29). The second is 
proved similarily. 

In particular, periodic orbits of the truncated Hamiltonian correspond to 
critical points of 2?3 on S* x S*, i.e., to points (M, N) at which the equations 

V,‘LD = A,M, V,‘2B = L,N (4.32) 

are satisfied for a pair of “multipliers” (A,, A,) E R *. Suppose (M, N) is such 
a critical point. The corresponding periodic orbit must be a Kepler ellipse in 
a plane perpendicular to L = -M - N with center at A = M - N (see 
Fig. 1). The major axis of this ellipse is J which for E = 0 equals one (since 
K = 1). For nonzero values of E, however, this is no longer the case. Indeed, 
since 2B in (4.32) does not only depend on M, N, but also on .Z, E, the vectors 
M, N (as well as the multipliers l1, A,) satisfying (4.32) will in general be 
functions of J, E. Substituting these functions into ‘D(.Z, M, N, E) will produce 
a function @(.Z, E) of .Z, F only. The major axis of our ellipse as a function of 
F is then obtained by solving the equation 

Ji&ti(J,&)= 1 

for J. By substituting this function in place of J back into M and N, we 
finally obtain all elements of our Kepler ellipse as functions of E. 

We note in passing that points (M, M) correspond to circular orbits and 
points (M, -M) to collision orbits. 

The “quotient” flow governed by Eqs. (4.29) determines the flow of the 
truncated Hamiltonian almost completely. It is possible to introduce a 
symplectic chart on I-‘(0)/U(l) which is adapted to this situation. In order 
to exhibit this chart we first introduce the polar representation for these 
variables, 

r/-k = (Y/J "*eiak, i& = (Z,) "2 e -ih (k = 1, 2). (4.33) 

Substituting these expressions into (3.4), we find 

f%NN = Jdx + Yda + Z@, (4.34) 

where we have set 

Y, = Y, z, = z, X=a, +P,, 

a=a2-a,, P=P*-PI, 

(4.35) 

so that we also have 

Y, =J- Y, Z,=J-Z. (4.36) 
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Notice that all these functions, and therefore also 0 as given in (4.34). are 
defined on that portion of I-‘(0)/U(l) for which Y,, Y,, 2,) and Z, are all 
nonzero. Correspondingly, we have to put the following restrictions on Y 
and Z: 

o< Y<J, O<Z<J, J > 0. (4.37) 

It turns out that (Y, a) parametrizes the first and (Z, p) the second sphere of 
the orbit space S2 x S2 everywhere except for the poles. In order to see this, 
we express M, N in the new coordinates 

M = VW% r2), W7, v2h I<& - Y2)) 

= ((J- Y)1’2Y”2 cosa, (J- Y,“*Y”* sina,J/2- Y) (4.38) 

N = (-WC, C2), -Im(fl C2), $(Z, - Z,)> 
= (-(J - Z)1/2Z’/2 cos /3, (J - Z) I” Z ‘I2 sin p, Z - (J/2)). (4.39) 

We can interpret (4.38) as a map which assigns to each point P’: 
(Y”2 cos a, Yi” sin a, 0) a point P: (M,, M,, M3) on the sphere. 
Geometrically this relationship can be described as follows: Let P” be the 
point with the same M,-M, coordinates as P’ but lying on a sphere of radius 
J”2 whose center is the south pole S: (0, 0, -J/2) of the first sphere. Then 
the ray SP” intersects the first sphere in the point P (see Fig. 2). 

Formula (4.39) allows a similar interpretation: The point P’ in this case 
has coordinates (-Z iI2 cos ,LI, Zi/’ sin p, 0) and the south pole in the previous 
construction is replaced by the north pole. 

Since J is the regularized Kepler Hamiltonian, the angle x like u is just 

FIGURE 2 
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translated by s under the Kepler flow. In order to find a relation between the 
two angle-like variables, we substitute the right sides of (4.33) into (4.8) and 
obtain in view of (4.35) and (4.36) 

where 

u=x+E, (4.40a) 

7 _ arg[(J- Y)~/*(J - ,qw + yl/*zl/*,i(a+fl)]. Y- (4.40b) 

Since the change in time of E is completely determined by the flow on the 
orbit space S* x S2 and since furthermore on account of (4.34), (4.38), and 
(4.39), 

we see that Eqs. (4.29) and (4.41) determine the flow of truncated 
Hamiltonian (4.26) completely. In particular, for a periodic solution for 
which B is constant, 1 may be replaced by the eccentric anomaly u and in 
view of (4.32) we obtain 

zi = 1 + E[azB/aJ + (A, + n&J/4)]* (4.42) 

Formula (4.42) is easily seen to be valid also when the critical point happens 
to have M, coordinate -J/2 or N, coordinate J/2 although the right side of 
(4.41) is undefined at such points. 

Let (S*), x ((S*)‘) be a sphere from which the south pole (north pole) has 
been removed. By using rectangular coordinates for P’ instead of polar coor- 
dinates, i.e., by setting 

cl = (Y) li2 e’“, i2 = ~112 ei4, (4.43) 

we extend our previous parametrization to (S*), x (S*)‘. Fundamental l- 
form (4.34) in the chart (J, x, < = (r,, r2)) takes the form 

81,=, = Jdx + In@, u3dt;). (4.44) 

Here, u3 is the third Pauli matrix and < E G* is thought of as a column. 
According to (4.37), the range of the new chart is 

l&l2 <J, K212 <J, J> 0. (4.45) 
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Moreover, the third component of the angular momentum becomes 

L,=-M-N,= Y-Z=(&a,(). (4.46) 

It follows that L, induces on S2 X S2 a flow in which both spheres rotate 
counterclockwise with unit angular speed. Restricted to the surface L, = V 
this flow is made up of a one-parameter family of products of circles: 
M,=Mi, N,=-V-M:, where 

-J/2 < M; < -V + (J/2) for O< V<J 

and 

-V - (J/2) < M; <J/2 

(see Fig. 3). 

for -J< I’<0 

Ignoring for the moment restrictions (4.45), we recognize from (4.44) that 
the group U( 1, 1) acts symplectically on C* via the action 5 + U< 
(LIE U(1, 1)). Theorem 1 becomes applicable with K = U(1) and 
H = SU( 1, 1). The moment wK is L, whereas an identification of SU( 1, 1) and 
SU( 1, l)* with IR3 allows us to view the moment of the SU( 1, 1) action as a 
map from C* to IR 3 which takes the point r into the point 

V = (WtI?2), W<,?2)T t(lr,l’ + lt212)). (4.47) 

For Vf 0 this map takes the surface L, = it, /* - / r2j2 = V into the upper 
sheet of the hyperboloid 

vi - v; - v; = v/4, v, > 0. (4.48) 

(In our identification of SU( 1, l)* with iR3, the coadjoint action of SU( 1, 1) 
is the obvious action of the orthochronous Lorentz group S0,(2, 1). Accor- 

La= J 
\ 
L,ZV 

FIGURE 3 
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dingly, orbits of this action are hyperboloids of type (4.48).) The (Kirillov-) 
symplectic structure on hyperboloid (4.45) is defined by the two-form 

0,(X, Y) = [(V x X) . Y](2/v)2. (4.49) 

Taking restrictions (4.45) into account also, we obtain 

THEOREM 3. Reducing out the flow of L, on a hypersurface L, = V 
(0 < 1 VI < J) of S* x S* produces that portion of hyperboloid (4.48) which is 
defined by the inequalities 

+lvl< v, <J-fpq. (4.50) 

The symplectic structure is given in (4.49). 

This result attains significance whenever the perturbation term 
BJ(J, M, N, E) “commutes” with L, thereby defining a function 
!IIJ(J, L,, V, E) on the domain described by (4.48) and (4.50). Under this 
assumption the flow of truncated Hamiltonian (4.26) is governed by the 
differential equations 

\i = v,m x 0, (4.5 1) 

where V = (V,, V,, -V3). Equations (4.5 1) can also be derived from the 
Poisson bracket relations of the components of V which with respect to the 
symplectic structure id0 (19 given in (4.44)) take on the following form: 

{VI, V,}=--iv,, IV,, V3) =iV,, (V,, V,)=iV,. 

Using (3.8), we find 

ri, = iVv‘B3 . (V, V,} = iVy22J3{V2, V,) + iVvlm{ V,, V,) 

= -v2vv,m - v,v,*m = (QB x O),, 

and similarily for the other components. Instead of working with the 
variables V and V, it is often preferable to work with the normalized 
variables 

v = J-‘V, v = J-IV= Jm’L3. (4.52) 

In these normalized variables the region described by (4.48) and (4.50) is 
defined by the relations 

v: - v: - u: = v2/4, fIu(<u,< l-(12(/2) (O<lvl< 1) (4.53) 
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and Eqs. (4.5 1) become 

J\i = (V,@ x C), (4.54) 

where !&(J, v, v, E) = IB(J, Jv, Jv, E). 
It is clear that to any critical point of the function a(v) (we suppress the 

other variables momentarily) in region (4.53), truncated Hamiltonian (4.26) 
possesses a quasiperiodic solution with two frequencies. In order to 
investigate the nature of these quasiperiodic solutions we express the vectors 
M and N in terms of the variables v and v. Using the two auxiliary functions 

c, = (1 - v3 F (v/2))“‘(V3 T (v/Z))“‘, (4.55) 

we find 

M, + iM, = JC, e’“, M, = J(l(l - ~I/21 - VA 
2(4.56) 

-N 
1 

-iN 
2 

= JC e-i”ei” - 2 -N, = J(l(l + v)/2] - vd, 

where p= a +p is the phase of u, + iv, and a (defined in (4.35)) is 
arbitrary. These formulae show that to a critical point of !& in region (4.53) 
we obtain a one-parameter family of Kepler ellipses, the family parameter 
being a. The planes of these ellipses are perpendicular to the vectors 

J-l@, + iL,,L,) = [eia(C_emim - C,), vj (4.57) 

and the centers of the ellipses are located at 

(A, + iA,,A,)= J[e’“(C_e-‘” + C,), 1 - 2u,]. 

From (4.55), (4.57), and (4.6) we find 

(4.58) 

J-L’= 2v, - 2~; - 2[(1 - ZQ)* - (v’/~)]“‘v, + (u2/2) 

J-2A2 = 1 - J-*L*. 
(4.59) 

The condition that e is a critical point of @3 can be written in the form 

(V,!&)(e) = -AC, (A = multiplier of critical point e of a), (4.60) 

where e = (e, , e2, -e3), It shows that in general v3 and q in (4.57~(4.59) 
will be functions of u, J, and E. Ultimately, they may be viewed as functions 
of u and E only since J can be eliminated from the condition 

J + &(J, v, e, E) = 1. (4.61) 

In order to obtain a complete description of the flow of the Hamiltonian 
J + EG we have to augment differential equations (4.5 1) by two equations 
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involving angle variables. For this purpose we use the angles cp = a + /3 and 
a. On account of (4.34) and (4.46) we find 

fqzo = Jdx + Zdq + Vda. (4.62) 

In order to write down the Hamiltonian equations for x and a we express V 
in terms of V, 2, cp: 

V=([Z(V+Z)]“*COS~,[Z(I/+Z)]~‘~~~~~,Z+(V/~)). (4.63) 

The two equations which in conjunction with Eqs. (4.5 1) describe the flow of 
our Hamiltonian J + s@ are 

(4.64) 

If v = e is a critical point, then 3 (defined in (4.40)) is again constant so that 
x may be replaced by the eccentric anomaly U. On account of (4.60) we 
obtain 

li= 1 +E [$-J-i (~$+k;)], d=sJ-I [$+A+]. (4.65) 

These differential equations are all formulated in terms of the artilical time s. 
In order to obtain the corresponding expressions in terms of the physical 
time t we first observe that as a consequence of (2.16), (4.7) and (4.11) we 
have 

i=J+P,=J(l +ecosu). (4.66) 

Hence, introducing the mean anomaly 1= u + e sin u we find 

dlfdt = J-Ii, da/dt = J-‘d(1 + e cos u))‘. (4.67) 

If the expressions given in (4.65) are substituted into (4.67) for ti and d, the 
two frequencies of the quasiperiodic solution corresponding to our critical 
point e are expressed in terms of the physical time t. 
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5. THE THREE-DIMENSIONAL RESTRICTED THREE BODY PROBLEM 
FOR HIGH VALUES OF THE JACOBIAN CONSTANT (LUNAR PROBLEM) 

In order to apply the theory developed in Sections l-3 to the Hamiltonian 
of the three-dimensional restricted three body problem for high values of the 
Jacobian constant, we first have to prepare the corresponding Hamiltonian, 

H=~/y/*-(x,4’*--x,y,)-~(x), 
F(x)= v lx -piI--’ fp /x + vii-‘. 

(5.1) 

(i = unit vector along x,-axis; V, ,D = masses of the primaries: v +,B = I) in 
such a manner that it assumes form (2.19). Assuming that the massless body 
is confined to move in Hill’s region of the mass V, we first shift this mass into 
the origin by means of the substitution x -pi + x. We obtain 

H=~ly/*-(x,y,-x,y,)--~z--F(x), (5.2) 

F(x)=vr-‘+p/x+i/mm’. (5.3) 

Hamiltonian (5.2) and the Hamiltonian 

~=~IY12-(x,~2-x,.v,)+~u(l-x,)-~(x) (5.4) 

induce flows in the phase space (iI?‘\ X IR3 whose projections onto 
R3\(0) (x space) agree. This is checked by eliminating y from the 
corresponding Hamiltonian equations. Remembering that r stays small, we 
may expand the term Jx + i 1~ r with respect to x 

/x + i/-I = 1 -.x, + fG(x) + P(r’), 

where G(x) = 3x: - r2. Substituting this expression into (5.3) yields 

H = i IY I2 - (4~) - &I~2 - x2.v,) - CUPI G(x) + W3). (5.5) 

Our goal is to study the flow of this Hamiltonian on the (Jacobi) surface 

H=-+E-*, where e<l. (5.6) 

In order to bring Hamiltonian (5.4) into the form of (2.19) we stretch 
variables according to the recipe 

x = ve22, y zz t‘ - ‘JT, H-e-*I?, t=K( (5.7) 
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where the reciprocal of the quantity 

K=VE3 

is the Kepler frequency (mean motion). 
Dropping the carets in (5.6) again, we obtain the Hamiltonian 

(5.8) 

Thus we have succeeded in bringing the Hamiltonian of the three- 
dimensional restricted three body problem into the form of (2.19) to which 
the theory explained previously is applicable. It requires that Hamiltonian 
(5.9) be brought into normal form. To that end we first switch to the 
regularized form K of the Hamiltonian and express it in terms of the 
generators of SU(2,2) with the result 

K = J- “L,(J + Q,) - (4’2) K’(J + &,)[3(A, + Q,)’ - (J + Q,)‘] + @@). 

(5.10) 

Comparring this form of the Hamiltonian with the general form (4.21) shows 
that K = ve3 takes over the role of E. (The fact that the “third-order” term is 
of order E’ rather than of order ~~ is irrelevant.) Apparently, the following 
identifications must be made: 

TJ!O’ = -L,(J + Q,), 8)I” = -01/2)(J + Q,)[3(A, + Ql)’ - (J + Qo>“l. 

Using the notation introduced in Section 4 in connection with (4.23>-(4.25) 
we find 

m(” = @(o) = -JL 
1 37 

sjj”“=-Q L 
1 0 3, 

s 
I 

=fi(O’=gJ L 
I 0 3’ 

The last equality follows from (3, PO} = iQo, which in turn is a consequence 
of (3.12) with 2I = 43, B =Vo. Indeed, we find {J, iP,L,) = 
iL,{J, PO! = -QoL3. Moreover, since {PO, Q,l = -iJ as a consequence of 
(3.12) and [‘Qo, a,] = f3 an since L?[?3 commutes with ‘PO, Do, we find d 

+(S,, @I”‘} = - fi{P,L,, QoLj} = -(i/2) L;{P,, Q,] 

= - fJL: E Ker J. 

It remains to calculate !B$“, where 

2J)I” = f [J3 + 3J2Qo + 3JQ; + Q; - 3JA; - 3JQ; 

-6J4Q,-3QoA:-3QoQ:-6Qo4Q,l. 

409/93/ 1 I2 
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We only give the result, 

~I”=OrJl2)135’-3(L:+L:)-~-A:-tL:l. 

This expression can be simplified by transforming with exp(icT), where 

T= ip(-iL,L, + %.A,A,). 

According to the remark following (4.25), the modified term becomes 

@“+ {T,!lB~“)=~/2)J[-~J*+~L*-~L~++l~]. 

Summarizing, we see that the regularized Hamiltonian of the three- 
dimensional three body problem for values of the Jacobian constants E-* 
(E < 1) can be transformed into the form 

K = J + KZU + @(E”), (5.11) 

where 

Now K is in form (4.26) with !ZB given in (5.12). The critical points of YB on 
S* x S2 are those of its dominating term -JL,, namely, (J/2)(kk, +k) 
(where k is the unit vector in the 3-direction). The points &(J/2)(k, k) 
represent circular orbits in the plane of the primaries whereas *(J/2(k, -k) 
represent collision orbits perpendicular to this plane (compare [ 17, p. 632 1). 

For later use we also compute the corresponding sum of the multipliers. 
We find 

1, + A2 = f4 - K . (4 - 3~) J 

for the circular orbits and 

(5.13) 

for the collision orbits. 

1, + /i2 = K15,d (5.14) 

Since 28 is in involution not only with J but also with L,, we see that 

E=6(L;+L;)+ 15A; 

is also an integral of truncated Hamiltonian (5.11). Furthermore, the three 
integrals J, L,, and E are mutually in involution so that the truncated 
Hamiltonian represents an integrable approximation to the Hamiltonian of 
our problem. Since on account of (4.6) 

L;+L;+A*=J*-L: (5.15) 



ON THE KEPLER PROBLEM 177 

is also an integral and since a circular solution in the plane of the primaries 
is characterized by the fact that all quantities on the left of the last equation 
are zero, these quantities stay small on neighbouring solutions, proving that 
in our approximation the circular solutions are stable. A similar argument 
that starts from the observation that 

is also an integral of our integrable approximation shows that in this approx- 
imation also the two collision orbits are stable. 

Notice that the condition J + K!D = 1 subjects the three integrals to a 
relation, which when solved for J assumes the form 

J= 1 +KL~+(K*/~)[~~++(~-~)L;-/&]+@(K~). (5.16) 

In particular, on a circular solution this relation becomes 

J= 1 $: K + (K*/4)@ + lo) + @(K3) (5.17) 

and on a collision solution 

J= 1 +K* +@(K3). (5.18) 

The first solution corresponds to a rotation of the massless body along a 
circle of radius ve*J (J given in (5.17)) in the plane of the primaries whereas 
the second corresponds to an “oscillation” perpendicular to that plane with 
amplitude 2vs*J (J given in (5.18)). Here, the factor VE* is due to the 
stretching of variables given in (5.7). We also find 

am 
-=*J-+J*-+(4-3p)J* 
f3J 

on a circular orbit and cYW/~J = 0 on a collision orbit. Substituting these 
values together with. (5.13) and (5.14) into (4.42) yields 

ri= 1 f 2!d-$fK2J2-~K2J2 (5.19) 

on a circular orbit and 

2i= 1+ +K*J* (5.20) 

on a collision orbit. Substituting the right sides of (5.19) and (5.20) into the 
first of Eqs. (4.67) and simultaneously replacing J by its value as given in 
(5.17) and (5.18) yields 

dU/dt = K-'(1 f 3K - 3K* -/lK*) + @(K’) 
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for the frequency of the circular solutions (in agreement with [ 1, Eq. (44)j) 
and 

df/dt = K’(1 + 5,UK2), 

for the one of the collision orbits. 

I= u + sin U, 

We turn now to the determination of the quasiperiodic solutions with two 
frequencies. For this purpose we express 2IJ in terms of the variables v and v 
by making use of relations (4.57)-(4.59). We obtain 

ti =-J*v + KJ~[--(v*/~)+&L~ + 3&i,v3,v)], (5.21) 

F(v,, u3, v) = -2V, + 20; - j[(l - U3)* - (u’/4)]“’ u,. (5.22) 

We look now for critical points of F’ in region (4.53). For simplicity we 
assume v > 0. This assumption will be in force for the remainder of this 
paper. In fact, it is not difficult to see that the case u < 0 can always be 
reduced to the case u > 0 by a time reversal which is implemented by the 
replacement cc) d, E + --E (see (4.46)5). Writing down condition (4.60) with 
(!.I& 1) replaced by (F, (2d)-‘) (we find it more convenient to work with 
(21))’ than with A) we obtain the relations 

u, =L[(l - U$- (u’/4)]““, v* = 0, 

u,=&&4)[L2-8L+ 11-i. 
(5.23) 

Since we also have vi - U: = $ v*, we can eliminate vi and v3 from the last 
two equations. We find that 1 must either take the values f 1 or it must be a 
solution of the following quadratic equation 

A*-2(4-\/15v-‘)I+ l=O. (5.24) 

Actually, at first we find that L could also be a solution of an equation that 
differs from (24) by a replacement -fi -+ +\/rs. Since the corresponding 
critical point does not lie in region (4.53), however, it can be discarded. The 
solutions of (5.24) are found to be 

A+ = -2-v-‘6,) 6, = -(2/e) v + i( 1 f p(v)), (5.25) 

where 

p(v) = [ 1 - (8/o) v + a*]“* = [(vO - v)(v,’ - v)]“’ (5.26) 

‘In the original variables this transformation takes the form t -+ 4; .x1 -+x,, ~2 + -x2, 

x,-1xl;Y,~--Y,,Y2~Yz,Y3~-Yl. 
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and 

v,, = a = ; &5 = 0.77459667... . (5.27) 

Since p(v) must be a real number, the interval in which v is allowed to vary 
is reduced from the unit interval to (0, vO). Using (5.23) we compute the 
critical points corresponding to A, and find 

e*(v) = (-CL) l’*, 0, f(l f P(V)>>. (5.28) 

One checks that for 0 < v < vt,, 6, is positive and that e*(v) lies indeed in 
region (4.53). A simple computation using (5.23) also yields the critical 
points 

et(v) = f(*(l - v*)“~, 0, 1) 

corresponding to J. = l 1. They exist for all values of v in (0, 1). Using (4.57) 
and (4.58), we compute the elements e, A, L of the Kepler ellipses that 
correspond to these critical points. Setting first arbitrarily a = 0 we find 

e = (1 - (v/vO))“*, L = J(-((v/v,) - vz)“2, 0, v); 

A = T J((vv, - v~)“~, 0, p(v)) 

for e,(v), 

e = (1 - v~)“~, L = J(0, 0, v); A =J((l - v2)ii2, 0,O) (5.29) 

for e:(v), and finally 

for e;(v). 

e = 0, L = J(-( 1 - v2)“2,0, v), A=0 

In these formulae, J has to be determined as the solution of Eq. (4.61) 
with @ given in (5.21). We find for a critical point v = e = (e,, 0, e3) of F, 

cf= 1 +VK+$V2K2-K2[$+3/if(V)]+@(K3), (5.30) 

where 

f(v) = P(e,, e3, v) = -2e, + 2e: - (ef/2A). (5.3 1) 

Setting e = e,(v) and e = et(v), respectively, we find (in obvious notation) 

f*(v)=fv2-:\/15v, f;(v)= * g(1 -v’)-f. (5.32) 

In writing down the expressions for the elements A, L of the Kepler ellipses 
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we have arbitrarily put a = 0 (see (4.57) and (4.58)). Actually, these vectors 
revolve about the 3-axis with angular velocity da/dt. 

We now turn to the calculation of this angular velocity which represents 
one of the frequencies of the quasiperiodic solution under investigation. At 
the same time we shall obtain the second frequency, namely, df/dt, where 1 is 
the mean anomaly. For this purpose we first compute li and d according to 
recipe (4.65) remembering also that we have to replace 1 by { ml”~L - i as a 
consequence of our earlier replacement (!@, 1) -+ (F, (22))‘) (see (5.21) and 
the remark preceding (5.23)) 

ti= 1 -JuK+J~K~{-~u~+++~~[~~(u)-(u~/~)(~--’+A)]), 

ci=-KJ+J2K2[&(P’+A)- l]LL 

Substituting these expressions together with the value of J given in (5.30) 
into (4.67) yields: 

dl 1 
-=;-2Zl+K -2v2f5,u+3p 4f(u)-;(A-‘+A) 
dt ! [ Ii 

+@(K*), 

(5.33) 

~(l+fXOS#)=-l-K[l-~(;-i+i)]U+~(K2). (5.34) 

In these formulae also, the stretching of the time variable given in (5.7) has 
been taken into account. In order to get rid of the term (1 + e cos u) on the 
left side of (5.34), we average over t and in this manner we find for the 
average rate of rotation of the orbital plane about the 3-axis 

&/dt=-1-K[l-~p(A-1+~)]U+@(K2). (5.34’) 

Using the values of f(u) given in (5.32), we specialize these formulae to the 
case of the four families of quasiperiodic solutions with two frequencies. The 
result for e+(u) is 

dl/dt = (l/K) - 2u + K[-2U2 -t 5~ + 3/+’ - +- q,u)] + @(K*), 

i!iii/dt=-1 -K[(l- 3fl)U+ +q,]+@(Kz). 
(5.35) 

For et(u) we have 

dl/dt=(l/K)- 2u+ K[--2U*++~,4+~(K'), 

dGL/dt=-1 -K(l -;jf)u+@(K*). 
(5.36) 
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Finally, for e;(u), 

du/dt = (l/rc) - 2v + K[-2V2 + (42) - +Pu*] + @(K*), 

da/dt = -1 - K(1 + a/d) v + @(K*). 
(5.37) 

(Since the last family consists of circular solutions, we can replace the mean 
anomaly I by the eccentric anomaly u and apply (5.34) instead of (5.34’).) 

For a discussion of the four families et(u), e*(u) of quasiperiodic 
solutions with two frequencies we refer the reader back to the latter part of 
Section 1. All statements made there with the exception of those pertaining to 
the stability of our solutions (which will be dealt with shortly) can be 
deduced from relations (5.29) ( see also Fig. 4). Here we only add some 
comments on expressions (5.35~(5.37) for the two frequencies. The term 
K -’ in the formula for dl/dt is the Kepler frequency and the second term 
gives the correction due to rotation of the coordinate system (Coriolis term). 

(r-l)‘= 1 - $c$s i 

FIGURE 4 
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Only the third term gives the correction due to the specific potential of the 
restricted three body problem. The second term in the formulae for da/dt 
gives a first approximation to the average rate of rotation of the orbital plane 
about the 3-axis. 

We finally turn to a discussion of the stability of our quasiperiodic 
solutions with two frequencies. Let e = (e,, 0, e3) (e3 > 0) be one of the 
critical points of function (5.22) in region (4.53). By means of the canonical 
transformation of variables 

where Tanh y = el(ej))’ and J,x are kept unchanged (see (4.44)), we can 
succeed in moving the critical point into the position (v/2) k. Indeed we 
easily check using formula (4.47) that the transformation of variables 
induces in v-space the following transformation: 

v, = (2/v)(v^,e, + C3e,), v3 = (2/v)(v”, e, + v”,e,). (5.39) 

In particular, the point i = (v/2) k corresponds to the point e = (e,, 0, eJ). 
By inserting the right sides of (5.39) in place of u, and vj in (5.22) and 
dropping the carets again, we obtain the function 

F(u,, u3, v> = - (4/v)(v,e, -+ u3e3> + @/v’)(u,e, + u3e3>’ (5.40) 
- (l/v)[(l - (2/v)(u,e, + v3e3))’ - (u’/4)]“‘. (u,e3 + v3e,). 

Clearly, if e = (e,, 0, e3) is a critical point of F’ with multiplier (2A))‘, then 
(v/2) k is a critical point of F with the same multiplier. In order to study this 
function near the critical point we introduce the coordinates 

x = @2 cos (0, y = $E sin p. (5.41) 

Using the variables (x, y) in place of (Z, p) in formula (4.63) for V, we 
obtain 

V=f[(2V+x2+y2)“‘x, (2V’+~~+y~)“~y,(V+x*+y~)] (5.42) 

and the normalized vector v can simply be obtained from (5.42) by replacing 
V by u and (x, y) by (J-“‘x, JP “*y). The fundamental l-form (4.62) has the 
following expression in the new coordinates: 

01,,,=Jdx+xdy+ Vda, (5.43) 

so that the coordinate patch defined by (J,x, x, y, V, a) is symplectic. 
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Substituting the expressions for u, = J-IV,, u3 = J-IV3 that follow from 
(5.42) into (5.40), we obtain a function 

f(u) + G(J-“*x, J- “*y, v) (5.44) 

where f(v) was defined in (5.31). The critical point e = (e,, 0, e,) of F 
appears now as a critical point of G at the origin of the x -y plane. Accor- 
dingly, G possesses an expansion about (0,O) of the type 

G(x, y, v) = $4~’ + By*) + c B,/x’y + c Ck,xky’ + Fp, (5.45) 
&t/=3 k-C/=4 

where @5 represents a power series in (x, y) starting with a term of order five. 
Defining 

A(v) = &((@‘) + n’> v* - 4f(u) - +- e3( 1 - e,) (5.46) 

(where (213)-l is the multiplier corresponding to the critical point 
e = (e,, 0, e3) of F; see the remark preceding (5.23)), we find 

B = (u/41), A = (4/l/v) A(v). (5.47) 

The remaining coefficients entering (5.44) are presently not needed. They 
only play a role in Section 6 when the question of continuation of our 
solutions to the full Hamiltonian will be taken up. From (5.45) and (5.47) 
we recognize that A(L) is precisely the Hessian of the critical point 
e = (e, , 0, e3). Accordingly, the corresponding quasiperiodic solution is 
stable if A(u) > 0 and unstable if A(v) < 0. Specializing (5.45) to the four 
critical points e,(v) and et (v), we obtain (in obvious notation) 

A,(v) = + (u, - v)(u,’ - u) > 0 for 0 < u < 210, 

A,f (v) = 4 (5 - 3~‘) >o for O<v<l, (5.48) 

A,(v) = $(5u* - 3) >o for u0 < 0 < 1, 

but A;(u) is negative (!) for 0 < u < 0,. 
From these formulae the reader can deduce all the statements that were 

made in the introduction with respect to the stability of our quasi periodic 
solutions with two frequencies. For an overview of the zeroth approximation 
of our four families e,f (u), e*(v) of quasiperiodic solutions with two 
frequencies for v > 0 we refer the reader to Fig. 4. A corresponding figure 
could be drawn for u < 0 with all arrows and the vector L reversed. 

The locus of the apocenters and pericenters of the rotating Kepler ellipses 
from which our stable solutions emerge is a surface of revolution about the 
x,-axis. In Fig. 4 we have drawn its intersection C with the x2 -x3 plane. If 
the absolute value of the inclination i of the Kepler orbit is less than arc cos 
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u,,(= critical inclination: compare [ 311) then C is part of a circle. We have 
drawn the continuation of this circle beyond the critical inclination using an 
interrupted line in order to indicate that the family e;(c) becomes unstable 
there. In fact, for these values of the inclination the families e,(u) take over 
an one easily deduces from formula (5.29) that the curve C for 
Ii1 > arc cos u,, has the equation 

(r - 1)’ = 1 - 5 cos’i. 

(r, i polar coordinates in x2 -x3 plane.) 
Since a stable critical point is a center (for the quotient flow), we see that 

the corresponding quasiperiodic solution with two frequencies is 
“surrounded” by quasiperiodic solutions with three frequencies. Since for 
these solutions the angle (D is subjected to small variations, it follows from 
(4.57) and (4.58) that they represent solutions in which the angular 
momentum as well as the Laplace vector, in addition to rotating about the 3- 
axis, are also subjected to small oscillations. In Section 6 we intend to show 
that these solutions can be continued to the full Hamiltonian in the sense of 
KAM-theory by checking the corresponding determinant condition. In order 
to prepare ourselves for this endeavour we have to bring G(x, y, V) into 
normal form with respect to its quadratic term under the assumption 
d(v) > 0. Applying techniques (4.21)-(4.25) to the Hamiltonian G (the Lie 
bracket being the one canonically associated with the form dx A dy) we find 
for the normal form up to fourth order terms 

qx, y, u) = (A(u))“‘Z + k(u) z2 + @’ , (5.49) 

where Z = f(x’ +y2) (see (5.41)) and k(u) is related to the coefficients of G 
(given in (5.45)) by the formula 

2kA=]3C,,B2+C,2A+3C,,A’-+?A[4(~)2+(~+~)2] 

+A [4 (%)‘+ (%+%)2] 1. (5.50) 

(Compare also [23,24]). In the specific case under consideration we find 
B,, =B,, = 0 so that the second line of (5.50) does not give any 
contribution to k. Still the calculations are long and tedious and therefore are 
omitted here. We just give the final result, 

2k,A,=210r’+4r2-;l+l, 

2k,+A,+ =& (u2-+), 

1 V 

‘==v,’ 

2k,A, =& (1-2Lu2). (5-51) 
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Notice that in (5.49) we have actually introduced angle and action variables 
up to order five. It is clear from the method of the generating function that 
this can be done to any order as long as 0 < u < 1 and 2 < zO, z,, sufficiently 
small. Rather than denoting these variables by new symbols we assume in 
the following that Z and cp are action angle variables for the Hamiltonian G 
and the new Hamiltonian will be denoted by c(u, Z). Thus (5.49) should be 
viewed as an expansion of G” in the variable Z about Z = 0. 

6. CONTINUATION OF QUASIPERIODIC SOLUTIONS 

In this final section we address ourselves to the question of continuation of 
the quasiperiodic solutions that we found in the last section. Expressing our 
Hamiltonian in the symplectic chart (J, x, x,y, V, a) near the quasiperiodic 
solution with two frequencies that corresponds to the critical point 
e = (e,, 0, e3), we find from (5.1 l), (5.21), and (5.44) 

K=J-rclV+KZ[-~JVZ+,,3+3C1J3f(J-‘V) 

+ 3pJ3G(J-"2x,J-"2 y,PV)] + a(&">. (6.1) 

On the surface K = 1, K defines a Hamiltonian system (A, d&x), where 6 is 
given by the expression 

0 = Z&I + Vdcf = xdy + Vda, (6.2) 

and the Hamiltonian 

/1 = -KV-- $K2V2 + 3/lK2f(V) + 3jlK2G(v, z) + a(&“) (6.3) 

is obtained from K by solving the equation K = 1 for -J and dropping some 
irrelevant constant terms. Furthermore, the function G(x,y, I’) has been 
replaced by its normal form C? that was introduced at the end of the last 
section. 

We stretch variables according to the recipe 

v=u+&li, Z=z+&i, k&/i, (6.4) 

where u and z are fixed. (The variable z introduced here has nothing to do 
with the variable of Section 1 denoted by the same symbol.) Subjecting our 
Hamiltonian (6.3) to transformation (6.4) and dropping the carets again as 
well as some constant terms, we obtain 

A = 3K2[-(1/3K) + g,(v, z)] V + 3K2g*(V, z) z + a(&‘), (6.5) 
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(6.6) 

Integrating the corresponding Hamiltonian equations over x from x = 0 to 
x = 2n yields a symplectic map of the surface x = 0 onto itself. In our 
variables this map assumes the form 

aI = a + 6rc~~[-(1/3~) +g,(v, z)] + a(~‘), v, = v + P(&‘), 

p1 = p + 6m*g,(u, z) + @(E’), z, =Z+P(e’). 
(6.7) 

Here the terms FY(s’) represent terms that are real analytic in (0, z, 9, u, Z, 
V, E: 0 < u < 1, 0 < z < zO; Z, V, E sufficiently small, z0 delined at the end of 
Section 5) starting with a term of order E’. Now KMA theory (see, e.g., 
[ 181) implies that the map 

a, = a + 67~~~04 + @(E’), v, = v+@(&‘), 

~,=~+~zK*w,+@(E'), z, =Z$@(&'), 
(6.8) 

possesses a 3-parametric family of tori 

for every frequency vector w = (w,, wz) that satisfies the irrationality con- 
dition 

l~,P+~*ql>Y(lP/+lql+ l>-” (6.10) 

for all (p, q)E H'\{O} with some constants (y, r): 0 < y < 1, r > 0. The 
functions V,, Z, are delined and real analytic for all (v, z) in a rectangle 
O<u< l,O<z<~~providedonly that E<E,(Y,~). 

In the following we shall show that for all four families of quasiperiodic 
solutions with two frequencies the determinant condition 

(6.11) 

is satisfied for z = 0 and therefore also in some interval 0 < z < zO. We think 
of z0 being chosen in such a way that (i) G(t, u) exists as a real analytic 
function for 0 < z < z,,, 0 < v < 1. (ii) Inequality (6.11) holds true there. 

Let the image of the open square {(u, z): 0 < u < 1, 0 < z < zO} under the 
map 

w, =g1(u, z), 02 = ‘!T*(u, z> (6.12) 
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be denoted by %. Our choice of z0 ensures that Yl is an open set in the w,-wz 
plane. For any real number, let %, be the r-translate of % in the w,-direction. 
Thus (o,, wJ E 31, iff (0, - I, OJ E %. Let 

c(E)= qlc-’ = (3V)-‘&-3 (6.13) 

and let C(y, r) be the set of all w-vectors satisfying (6.10) and lying in one of 
the sets VI-,, r > c(E~(Y, 7)). 

Since the w  vectors satisfying (6.10) with some y, 7 (0 < y < 1, 7 > 0) are 
dense in the o plane, the set C = lJ Y,r C(y, 7) is certainly nonempty. In the 
following we shall show that for every w  E C there exists a small s-interval 
I, such that for E E I,, map (6.7) possesses an invariant torus with 
frequency vector o. Indeed, if o E ,?Y(y, r), then (wi + r, cc*) E % for r E yU c 
(c(E,(Y, t)), co), fm being a suitable open interval. Hence (w, + C(E), 02) E 3t 
for E E ZL =def c-‘&J c (0, E,(Y, 7)). Since the map defined by (6.12) is a 
local diffeomorphism, there exist functions U,(E), Z,(E) defined in some open 
interval I, c Zh such that the point (u,(E),z,(E)) is mapped into 
(oi + C(E), 02) by (6.12). Replacing (v, z) by (U,(E), z,(s)) in (6.7) converts 
map (6.7) into map (6.8) which is known to possess the invariant tori (6.9). 
Thus, carrying through the same replacement also in (6.9) we obtain the 
predicted family of tori. 

It remains to check condition (6.11) (with z = 0) for the four families of 
quasiperiodic solutions. We find 

i.e., in obvious notation 

40, = -(l -p)(840z3 + 16z2 - 471 + 4) - 15/~(15z - 2)2 < 0 

for 0 < I < &(I = &(u/uO)) and 

2560,’ = 140 - 35/1- 12~’ - 33pv2 > 60 for O<v<l, 

2560, = -12 - 3/1+ 140~’ - 65~~~ > 30 for u0 < u < 1. 

Finally we turn to the question of the continuation of the stable 
quasiperiodic solutions with two frequencies themselves. In order to treat this 
question we first remark that the following theorem is an immediate conse- 
quence of the results contained in [28,29]: 

THEOREM 4. Let C(y, 7) be the class of o = (0, , 02) E R2 satisfying the 
inequalities 

I~,~,+~~2-~l~Y(l~lI+V21+1)~T (6.14) 
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for all (j, ,.A) E Hz\{01 and k = -2, - 1.0, 1, 2 with some constants 7, 
r: 0 < y < 1, r > 1. Let 8(e) represent a convergent power series in the 
variables (x, y, J, v, E) which starts out with a term of order E and whose 
coefficients are real analytic functions of the angle-like variables x, a (with 
period 271). Then there exist two real analytic functions n,,(e), ,azw(e) such 
that the Hamiltonian system (A, 8, s) 

A = (w, + ep,,(e))J + (co2 + E/Q&)) V + 4(x’ + y’) + O(E), (6.15) 

0 = Jdx + xd.y + Vda (6.16) 

possesses a family of quasiperiodic solutions with two frequencies and 
f--w;,““;pti~ 0,/q, the family parameter E varying in some interval 

,E, ,r * 

Remark. In the following it will be important to note that the functions 
,u~~(E) (o E C(y, r)) (i = fixed = 1 or 2) possesses a common interval of 
definition with nonempty interior and that they are bounded there by a 
common bound. Since this situation will play a fundamental role in the 
sequel we shall call a family {f,},, R 2 of real-valued functions (defined and 
real analytic on a open subset of some Wr) normal if for every pair (y, r) 
0 < y < 1, r > 1 the following holds: (i) the functions f,, w  E C(y, 5) have a 
common domain of definition with nonempty interior, and (ii) they possess a 
common bound there. 

Sketch of a proof of Theorem 4. From 129, p. 173 ] we deduce the 
existence of three normal families of functions Alw(s, a), AZW(e, a), u.,(E, a) 
such that for E and a suffkiently close to zero the Hamiltonian 

A = (13, + d,,(e, a))J + (~0~ + e&,(6, a)) V 

+ $( 1 + eu,(s, a))(x’ + y’) + (1 + a) B(e) 

has a family of quasiperiodic solutions with frequency vector 
o = (w,, wJ E C(y, t). By a stretching of the time variable 
s + (1 + so,(e, a)) s the associated transformation of the Hamiltonian 
A -+ (1 + EG,(E, a))-‘A brings it into form (6.15), provided only that the 
equations 

a = ~a,(&, a), wElR2, 

possess a normal family {a,(e)),,IR 2 of solutions. This follows, however, 
from the fact that {a~,(&, a)/aa) wpRZ is a normal family of functions by 
constructing a,(e) in the usual manner (i.e., by means of the contraction 
principle) as a fixed point of the map a -+ E~.,(E, a). 
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In order for Theorem 4 to be applicable to the problem at hand we set 
z = 0 in (6.5) and we obtain (see also (6.6) and (5.49)) 

/i = J + (-K - 3K’V + 3/dK*f’(?l)) v + 3jiK”(~f(U))“’ 

x f(x” + y’) + B(E’). (6.17) 

Here, R differs from n by the additional term J. Clearly, the Hamiltonian 
system (2, 0 given in (6.16), s) is equivalent to (4,&x) as given in (6.2) and 
(6.3) in the sense that both systems induce the same flow in I’, a, x, y-space. 
(Note, however, that J is only an auxiliary variable which should not be 
confused with the variable denoted by the same symbol in the previous 
sections). The symbol a(&‘) in (6.17) represents a convergent power series in 
x, y, V, E starting with a term of order seven in E whose coefficients are real 
analytic functions in 0, (r, x. 

Stretching the time variable according to the recipe s -+ 3p~‘(A(u))“‘s 

brings our Hamiltonian into the form 

/1 =K-2U(U)J+ (b(U)-K-‘U(U)) v+j(X’+y*)+@(&), (6.18) 

where 

a(u) = (3~)-‘(Li(v))-“2, 

b(u) = (3~)-‘(&))-“2(-3v + 3,@(u)). 

(Remember that we are concerned with the continuation of the stable 
quasiperiodic solutions so that d(u) > 0.) Form (6.18) of our Hamiltonian 
invites comparison with the corresponding Hamiltonian (6.15) of Theorem 4. 
Indeed, B(E) now represents a function of the type described in Theorem 4 
except that it also depends on v but not on J. Accordingly, the functions 
,U ,o, pzw in (6.15) not only depend on E but also on u. 

Agreement between (6.15) and (6.18) is ‘achieved if we succeed in 
satisfying the equations 

K-2u(u) = CT&(&, u), b(U) - K - ‘U(U) = G2(&, U) (6.19) 

with some appropriate choice of u and E. Here we have set Gi(e, u) = 
oi + epi,(e, u) (i = 1, 2), where again o = (w,, w2) belongs to some class 
Q(YT 5). 

Eliminating K from the second equation in (6.19), we see that it may be 
replaced by the equation 

b(u) - u(u)“2~:‘2 = &,. (6.20) 

We first show that given any u* corresponding to a stable quasiperiodic 
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solution of the truncated Hamiltonian we can find arbitrarily close to it a 
value U, which solves Eq. (6.20) in the case E = 0 for an appropriate choice 
of UJ in a(~, 5). To this end we first consider the equation 

b(u) 6 - u(Ly2 + +*y = q (6.21) 

and note that since a(v)’ # 0 for 6, q near zero it possesses a solution 
v = v^(6, q) such that v^(O, 0) = v *, Now (6.20), for E = 0, can be written in 
the form 

b(u) co;“2 - a(zp* + u(u*)“* = q(w), (6.22) 

where q(w) = co2w;“* + a(~*)“*. 
Now let D(c) be the unit disk in the w, - w2 plane centered at (<, b(v*) - 

a(u *)“*~“*) and set 

Here y is chosen so small that each unit disk contains at least one point of 

w 5). 
Clearly, Z(y, r, v*) contains o vectors with arbitrarily large first 

components and we have 

lim 
0, -+a3 

q(w) = /iII q(<, b(v*) - u(u*)“*t”*) = 0. 

wEI(y,r,L’*) 

It follows therefore that for w E ,?Y(y, r, u *) and w, sufficiently large 

u, = qw ; I’* ) q(w)) (6.23) 

solves (6.20) in the case E = 0. In the case E # 0, the same argument goes 
through with w replaced by G = G(E, v) so that in this case (6.23) becomes 
an equation for u: 

ZI = fi(~; I’*) q(G)). (6.24) 

Notice, however, that since we have (in obvious notation) 
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for w, + co, there exists a solution v = U,(E) of (6.24) such that {~Je)}~~n~ 
is a normal family of functions (compare with argument at the end of the 
proof of Theorem 4). Since furthermore 

K,(E) = &(E, Uw(&))-1a(V”(&))“2 

is also a normal family of functions with the property that K~(E) + 0 
uniformly in n,,,~e(y,T)dom(KJ for 0, + co, the equation K,(E) = re3 has a 
unique solution E, for w1 sufficiently large. Summarizing we see that 
Eqs. (6.19) have indeed solutions E,, 0,(&J if only o1 is sufficiently large in 
C(y, r, u*), where y in turn is chosen sufficiently small. The situation is most 
vividly described by the following theorem which is an immediate conse- 
quence of the foregoing considerations: 

THEOREM 5. Given any v* corresponding to a family of stable two-tori 
of the truncated Hamiltonian, then there exist sequences E, + 0, v, --f v* such 
that the two-torus corresponding to v, and lying on the Jacobi surface 
H = -$e;’ persists in the full problem (in a slightly displaced and deformed 
manner but with the same frequency ratio). The two-torus is densely filled 
with an orbit on which the third component of the angular momentum Lyj is 
fixed and the sequence {Ly’} (in the original unstretched variables) has the 
properties lim,,, L $“’ = 0 and lim,,, L :“‘/vE, = v *. 

APPENDIX TO SECTION 3 

We present here a sketch of a proof of Theorem 1 (see [6-l 11, in 
particular [lo] for background material). 

Since I,V~ is equivvariant and since by (ii) G,, acts transitively on u/;‘t&), 
it is clear that 

In order to show that vH induces a diffeomorphism between the spaces 
yI/K’(&)/Kllo and 0&J it suffices to show that 

is a principal fiber bundle with structure group K,O. Clearly, for any L = 
Ad,,#& E D&J (Ad# = coadjoint action of H), the submanifold 

is made up of KPO-orbits. In order to show that it is made up of a single such 
orbit we invoke assumption (iii). We leave the details to the reader and 

409/93/lLl3 
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instead turn now to a proof of formula (3.15). This will complete our sketch 
of the proof of Theorem 1 since formula (3.15) implies that the 
diffeomorphism induced by v/[, between the spaces v/~‘&)/K,,~ and O,,(J,) 
is actually symplectic. 

In order to prove (3.15) we first note that on account of the equivariance 
of vH the vector fields JLM and X,, induced by the H-action on M and I)*, 
respectively, are y/,-related, i.e., 

dvJ$,, = X~,+clrta, 

for all a E M. (For notational convenience we have dropped the subscript H 
on the right side. This convention will be in force for the remainder of this 
proof). Another well-known consequence of the equivariance of w is the 
formula (see, e.g., (IO, p. 1471) 

where we have set I,? = w(a)(X) and where ( , } is the Poisson bracket 
associated with m. With the help of these formulae, relation (3.15) is easily 
proved : 

(‘Y*w”“>,(~M, 1 YM,> = ~::,,(Xh*r(rr) 3 yIJ*r(d) 

= -(w(a), [XT Y]> = -9,([‘K Y]> 

= 19(‘0 d(Y)/@> = ~aK,nr Yu,). 

Restricting a to V/K ‘@,J yields (3.15). 
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