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Abstract

Recent models of soft diffraction include a hard pomeron pole besides the usual soft term. Such models violate the black-disk limit around
Tevatron energies, so that they need to be supplemented by a unitarisation scheme. Two standard schemes are considered in this Letter, and we
show that they lead to an uncertainty at the LHC much larger than previously estimated. We also examine the signature of unitarisation on various
small-t observables, the slope in t of the elastic cross section, or the ratio of the real to imaginary parts of the scattering amplitude, and show that
the existence of a unitarised hard pomeron in soft scattering may be confirmed by LHC data.
© 2008 Elsevier B.V.
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0. Introduction: Hard poles

Experimental data reveal that total cross sections grow
with energy. This means that the leading contribution in the
high-energy limit is given by the rightmost singularities in
the complex-j plane, the pomerons, with intercepts exceeding
unity. In the framework of perturbative QCD, the leading sin-
gularity is expected to exceed unity by an amount proportional
to αs [1]. At leading-log, one obtains a leading singularity at
J − 1 = 12αS log 2/π .

Donnachie and Landshoff have shown that DIS and quasi-
elastic vector-meson production data at HERA could be well
reproduced if one included both a soft pomeron, and a hard
pomeron with an intercept of the order of 1.4 [2]. They also
showed that their parametrisation could be made consistent
with DGLAP evolution [3], both at small and high x. From this,
they were able to extract parton distribution functions [4]. So
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their works imply that there is a non-negligible hard pomeron
component at large Q2 and for large masses.

However, from analytic S-matrix theory, it is expected that
the singularities of the exchanges do not depend on the exter-
nal kinematics. Hence, although perturbative calculations can
be justified only for the scattering of far off-shell particles, and
although the hard pomeron seems to be present only at short
distances, a trace of it should be present at long distance.

In a recent study [5], we have indeed found that forward data
(total cross sections and the ratios of the real part to the imagi-
nary part of the amplitude) could be fitted well by a combination
of a soft pomeron (which would be purely non-perturbative)
and a hard pomeron. The expression of the leading terms of the
total cross sections for the scattering of a on p becomes

(1)σ
ap
tot = 1

2P
√

s
�mA(s, t = 0),

where A is the hadronic amplitude

(2)�mA(s, t = 0) ≈ Ha

(
s − u

2s1

)αH (0)

+ Sa

(
s − u
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)αS(0)
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Table 1
Parameters of the leading singularities of the fits of Ref. [5] for

√
s from 5 to

100 GeV

Parameter Value Error Parameter Value Error

αS(0) 1.0728 0.0008 αH (0) 1.45 0.01
Sp 56.2 0.3 Hp 0.10 0.02
Sπ 32.7 0.2 Hπ 0.28 0.03
SK 28.3 0.2 HK 0.30 0.03
Sγ 0.174 0.002 Hγ 0.0006 0.0002

and where P is the beam momentum in the target frame, s, t

and u are the Mandelstam variables, s1 = 1 GeV2, and the pa-
rameters are given in Table 1. We insist that throughout this
Letter the latter will be kept fixed. The inclusion of these two
pomerons, together with the use of integral dispersion rela-
tions, and the addition of subleading meson trajectories (ρ/ω

and a/f ), leads to a successful description of all pp, p̄p, π±p,
K±p, γp and γ γ data for

√
s � 100 GeV. We must stress here

that the χ2 of the fit is as good as that of the best parametrisa-
tions to the data considered in [6,7]. It is also the only model
that can naturally describe both soft hadronic cross section and
HERA DIS and vector-meson quasielastic production data.

The fit can be extended to higher energies, but the hard
pomeron then decouples from the proton. The problem is that
the fast-growing hard pomeron leads to a violation of unitarity
(an elastic cross section bigger than the total cross section) for
values of s smaller than 1 TeV. In [5], we used a simple ansatz
to unitarise the hard pole. However, we did not examine the un-
certainties linked to it, as we simply wanted to show that it was
possible to extend the fit to higher energies. In this Letter, we
pursue two goals: first of all, we give an estimate of the value
of the total cross section at the LHC in the presence of a hard
pomeron. Secondly, we propose several signatures of unitari-
sation which would in principle allow to decide which type of
scheme is correct, and to confirm the presence of hard-pomeron
exchanges.

Section 1 will be devoted to a reminder of unitarisation, and
of the impact-parameter (�b) formalism. Section 2 will consider
the “minimal” unitarisation, which cuts off the amplitude in im-
pact parameter once it saturates the black-disk limit—we shall
refer to this scheme as the saturation scheme. Section 3 will
consider analytic unitarisation schemes. Finally, putting every-
thing together, we shall show that the cross section at the LHC
should be large, of the order of 150 mb. We shall explain what
some generic consequences of unitarisation will be for observ-
ables at the LHC.

1. Unitarity and black-disk limit

The simplest expression of the unitarity constraints can be
obtained from partial-wave amplitudes. We can write

(3)A(s, t) = 8π
∑

l

(2l + 1)Fl(s)Pl(cos θs).

At high energy and small angle, one can rewrite l ≈ b
√

s
2 , so

that the partial-wave decomposition can be rewritten in impact-
parameter space as

(4)A
(
s, t = −q2) = 2s

∫
d2 �b e−i �q.�bF(s, b).

In terms of F(s, b) = ∫
d2 �q ei �q.�bA(s, t)/(8π2s), the total and

elastic cross sections are given by

(5)σtot = 4π

∫
b db�mF(s, b)

and

(6)σel = 2π

∫
b db

∣∣F(s, b)
∣∣2

.

One can then show that unitarity of the S matrix, SS† = 1,
together with analyticity, and with the normalisation used in (5)
and (6), requires that

(7)0 �
∣∣F(s, b)

∣∣2 � 2�mF(s, b) � 4.

At high energies, as �mF ∝ sΔ with Δ > 0, the scattering am-
plitude F(s, b) reaches the unitarity bound for some value bu(s)

of the impact parameter.
However, before this happens, another regime is reached,

which we shall call the saturation regime, and where the in-
elasticity 2�mF(s, b) − |F(s, b)|2 reaches its maximum, i.e.
if

(8)�mF(s, b) = 1.

This is the region where the proton becomes partially black,
and it is usually referred to as the black-disk limit. The imagi-
nary part of F is usually noted as Γ (s, b) and called the profile
function. Γ (s, b) = 1 at some distance bS(s) between scatter-
ing particles means that the inelastic amplitude has reached its
maximum value.

What happens then is largely unclear. There is no unique
procedure to unitarise. In the following, we shall consider two
main schemes: the minimal one, where unitarisation freezes the
profile function at 1: this is the minimum possibility for the
restoration of unitarity, as it does not affect in any way the low-
energy data. We shall refer to it as “saturation of the profile
function”. We shall also consider the predictions of a simple
eikonal scheme, in which multiple exchanges prevent the pro-
file function from reaching 1. We shall refer to this kind of
scheme as “analytic unitarisation”.

2. Saturation

If we take a single simple pole for the scattering amplitude,1

with an exponential form factor of slope d ,

(9)A(s, t) = SpsαS(0)+α′t edt ,

then the radius of saturation and its dependence on energy can
be obtained analytically:

(10)bS(s)2 = 4(d + α′ log s) log

(
SpsαS(0)−1

2(d + α′ log s)

)
.

1 As we shall consider energies ranging from 100 GeV to 14 TeV, we shall

approximate s−u ≈ s in the following.
2
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Table 2
Parameters of the elastic pomeron form factor, see Eq. (12)

Parameter Value Parameter Value (GeV−2)

h1 0.55 d1 5.5
h2 0.25 d2 4.1
h3 0.20 d3 1.2

Approximating σtot ≈ 2πb2
S(s), one sees that the total cross sec-

tion grows logarithmically at medium energies and like log2 s

at very high energies.
In our model [5,8], the pp elastic scattering amplitude is pro-

portional to the hadrons form-factors and can be approximated
at small t as:

A(s, t) = [
HpFH (t)(s/s1)

αH (0)eα′
H t log(s/s1)

(11)+ SpFS(t)(s/s1)
αS(0)eα′

S t log(s/s1)
]
,

where the couplings and intercepts are given in Table 1. The
study of Ref. [8] of small-t elastic scattering shows that the
slope α′

S of the soft pomeron trajectory is slightly higher than
its classical value [9,10], and we shall take α′

S = 0.3 GeV2.
The slope of the hard pomeron trajectory is evaluated [2,8] to
be α′

H = 0.1 GeV2. The normalisation s1 = 1 GeV2 will be
dropped below and s also contains implicitly the phase factor
exp(−iπ/2), corresponding to crossing symmetry.

A small-t analysis [8] indicates that the form factor FS(t)

is close to the square of the Dirac elastic form factor, and can
be approximated by the sum of three exponentials with fixed
parameters [10]:

FS(t) =
(

4m2
p − 2.79t

4m2
p − t

1

1 − t/Λ2

)2

(12)≈ h1e
d1t + h2e

d2t + h3e
d3t ,

where mp is the mass of the proton, Λ2 = 0.71 GeV2. The other
parameters are given in Table 2. For the hard pomeron, the form
factor is rather uncertain [8], and we assume that it can be taken
equal to FS(t).

We then obtain in the impact parameter representation a spe-
cific form for the amplitude in �b space, F0(s, b) [11], which we
show in Fig. 1:

F0(s, b) = Sp

s

∑
i

2hi

ri,S
sαS(0) exp

(−b2/r2
i,S

) + (S → H)

with

(13)r2
i,S = 4

(
di + α′

S log(s)
)
,

(14)r2
i,H = 4

(
di + α′

H log(s)
)
.

One can see that at some energy and at small b,

(15)Γ0(s, b) = �mF0(s, b)

reaches the black disk limit. For our model, this will be in the
region

√
s ≈ 1.5 TeV.

Saturation will then control the behaviour of σtot at higher
energies. We assume that once it reaches i, the amplitude does
not change anymore and remains equal to i: recombination
Fig. 1. The profile function for proton–proton scattering: at
√

s = 2 TeV without
(Eq. (15)) and with (Eq. (16)) saturation (hard line and circles), at

√
s = 14 TeV

without and with saturation (the dashed line and squares), or from the eikonal
scheme (Eq. (26)) (dash-dotted line).

must be maximal for black protons. But this freezing of the
profile function must be implemented carefully, and we have
to introduce 3 parameters to describe it: one cannot simply cut
the profile function sharply as this would lead to a non-analytic
amplitude, and to specific diffractive patterns in the total cross
section and in the slope of the differential cross sections. Fur-
thermore, we have to match at large impact parameter the be-
haviour of the unsaturated profile function.

We use an analytic interpolating function, which is equal
to 1 for large impact parameters and which forces the profile
function to approach 1 at the saturation scale bS as a Gaussian.
Analyticity of the function enables us to use a complex s as
before to obtain the real part.

We assume saturation starts at a point b0 a little before bS ,
and that the profile function is 1 for b < b0. The saturated pro-
file, Γs(s, b), is otherwise given by

(16)Γs(s, b) =
Γ0(s, b − b0

1+((b−b0)/bz)2 )

1 + (Γ0(s,0) − 1) exp[−(
(b−b0)
by(s)

)2] .

We find that we need to assume that the scale in the Gaussian is
s-dependent because the slope of the profile function decreases
with energy. A reasonable match is provided by by = 32/ log s,
which is about 5 GeV−1 at the Tevatron. We shall give our re-
sults for b2

z = 2 GeV−2 and b0/bs = 97.5%.
We show in Fig. 2 the behaviour of the total cross section

at high energies. We see that saturation brings in a significant
decrease of the LHC cross section. However, it is also clear that
the simple saturation considered here is not enough, as the total
cross section at the Tevatron will be 85 mb, which is 2 standard
deviations from the CDF result.

Nevertheless, the contribution of the hard pomeron has been
fixed by looking at low-energy data. There, its contribution is
small, and one can still get a good fit by varying the intercept
and the coupling. Thus we show in Fig. 3 the effect of changing
one or the other. We see that if saturation is the driving mech-
anism, then the coupling would need to be reduced2 to 0.06

2 Note that Ref. [12] also predicted a large LHC cross section, but did not use
a unitarisation scheme, and instead used a very small hard pomeron coupling,
about 4 times smaller than considered here.
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or the intercept to 1.41 in order to accommodate the Tevatron
point in this scheme. This would lead to an LHC cross section
slightly larger than 130 mb. As we want to show qualitatively
what the effect of saturation might be, we keep the parameters
of Table 1 in the following.

The saturation regime will have some major effects at the
LHC. We show in Fig. 4 that the elastic cross section will be
somewhat affected, and that its growth will be tamed: the ratio
σel/σtot will start a slow growth towards 0.5. But more impor-
tantly, the small-t data will look quite different. We show in
Fig. 5 the behaviour of the ratio of the real-to-imaginary part

Fig. 2. The total cross section as a function of
√

s, for the bare amplitude
(short dashes), the saturated amplitude (plain curve), the eikonalised amplitude
(dash-dot-dot), and for a renormalised eikonal (long dashes).
of the cross section, both in the bare and in the saturated case.
From it, we see that the small-t slope of ρ will be one of the
most striking features of saturation. If this is not measurable at
the LHC, then one can also consider the slope of the differential
elastic cross section, which we show in Fig. 6. We see that sat-
uration increases the slope at small |t |, and predicts a fast drop
around |t | = 0.25 GeV2, when one enters the region of the dip.

In fact, saturation naturally predicts a small increase of the
slope with t at small |t |. To understand this, let us take the sim-
ple form of the black disk with a sharp edge at radius R ∼ bS(s)

of Eq. (10), or Fig. 1. The scattering amplitude can then be rep-
resented as

A(s, t = 0) ∼ J1(
√−tR)√−tR

.

In this case, the slope of the differential cross section at small
momentum transfer will be

(17)BBDL ∼ R2/4 + R4/32|t |.

Hence the slope will grow with increasing |t | at small momen-
tum transfer, as can be seen in Fig. 6.

This strong dependence of the slope and of ρ on t imply that
it may be necessary to measure both of them to obtain a reliable
measurement of the total cross section [13].
Fig. 3. The total cross section at the Tevatron (lower curves) and at the LHC (upper curves) as a function of the intercept (left) and of the coupling (right) of the hard
pomeron for a saturated amplitude (plain curves and short dashes) and for an eikonalised amplitude (long dashes and dash-dots).

Fig. 4. The elastic cross section as a function of s (left), and its ratio to the total cross section (right), for the bare amplitude (short dashes), the saturated amplitude
(plain curve), the eikonalised amplitude (dash-dot-dot), and for a renormalised eikonal (long dashes).
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Fig. 5. The ratio of the real to the imaginary part of the amplitude as a function of t , for the bare (left figure) and the saturated (right figure) amplitudes at various
energies: 100 GeV (plain curve), 500 GeV (long dashes), 5 TeV (short dashes) and 14 TeV (dash-dotted curve).

Fig. 6. The slope of the elastic differential cross section as a function of t , for the bare (left figure) and saturated (right figure) amplitudes at various energies:
100 GeV (plain curve), 500 GeV (long dashes), 5 TeV (short dashes) and 14 TeV (dash-dotted curve).
3. Analytic unitarisation schemes

As we have seen, in �b space, unitarisation can be written

(18)2�mF − (�mF)2 − (�eF)2 = gin > 0.

The general solution can be obtained iff gin < 1, and can be
written F = i(1 − (1 − gin)e

iΦ). We can rewrite it using the
opacity Ω so that (1 − gin) = e−Ω

(19)F = i
(
1 − e−Ω+iΦ

) = i
(
1 − eiχ(s,b)

)
.

Any unitarisation method has to lead to such a form for the
amplitude. The ambiguity however comes when one tries to
identify gin and Φ in formula (19) with the physics input. It
is known from potential models that in non-relativistic physics
one can think of the Taylor expansion of (19) as a description
of successive interactions with the potential. Here, however, we
have no potential, so that the identification of each term with
successive pomeron exchanges is not obvious.

The usual approach is to assume that the Taylor expansion
of (19) is such that the nth term corresponds to n-pomeron ex-
change. In this case, we take the eikonal form for the scattering
amplitude.

Ae(s, t = 0) = 2s

∫
d2b

[
1 − exp

(
iF0(s, b)

)]
.

Before giving the results in this approach, a few comments
are in order. First of all, the eikonal is only a model. Indeed, it
is known [14] that it does not reproduce properly the s-channel
cuts of the scattering amplitude coming from multiple ex-
changes. For instance, already the second term, corresponding
to the two-pomeron cut, could have a suppression due to the
structure of the proton [10].

The eikonal scheme however produces results which are
similar to those of saturation, so that it makes sense to compare
these two schemes. Indeed, we take the eikonal in factorised
form

(20)χ(s, b) = h(s)f (b),

with h(s) = sΔ, and assume simple functional forms for the
form factor f (b), which allow an analytical treatment. If one
considers a Gaussian form

(21)f (b) ∼ exp
(−b2/R2),

one obtains

(22)A(s, t = 0) ∼ iR2(Γ (
0, sΔ

) + γ + Δ log s
)
,

where

Γ (a, z) =
∞∫
z

ta−1e−t dt

and, in our case,

(23)Γ
(
0, sΔ

) → 0, s → ∞.
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Fig. 7. The ratio of the real to the imaginary part of the amplitude (left), and the slope of the elastic differential cross section (right) as functions of t for the
eikonalised amplitude at various energies: 100 GeV (plain curve), 500 GeV (long dashes), 5 TeV (short dashes) and 14 TeV (dash-dotted curve).
If R2 is independent from s, we have

(24)σtot ∼ log(s),

whereas for R2 growing like log(s), we obtain

(25)σtot ∼ log2(s),

so the total cross section respects the Froissart bound.3

Hence we can now see whether the saturation effects that we
found in the previous section depend on the picture of satura-
tion, or depend only on the onset of unitarising cuts.

We show in Fig. 1 that, in this case, the profile function

(26)Γe(s, b) = �m
[
1 − exp

(
iF0(s, b)

)]
never saturates: the cuts actually reduce the cross section from
the start, and never allow Γe(s, b) to become larger than 1. This
means, as is shown in Fig. 2 that eikonalisation will give a
suppression, even at lower energies. So one needs to modify
slightly the parameters of Table 1, to recover the low-energy fit.
We find that multiplying the couplings by 1.2 provides such
an agreement, and refer to this as the “renormalised eikon-
al”, shown in Fig. 2. We see that both curves are very close
at the LHC, but exceed considerably previous estimates [16]:
whereas the total cross section at the LHC was predicted to be
111.5 ± 1.2+4.1

−2.1 mb, it is now 152 mb.
In a similar manner, Fig. 4 shows that the elastic cross sec-

tion also gets large corrections from the cuts at lower energies.
Again, the renormalised eikonal is close to the saturated curve
at low energy, but this time deviates at higher energies, so that
the ratio of the elastic cross section to the total cross section
changes by about 10%.

We had seen that a striking feature of saturation was the be-
haviour of the real part of the amplitude at small-t , as the ρ

parameter would have a drastic change of slope. We find that
such an effect will also be present in the eikonal case (see
Fig. 7), although the real part will be much bigger in this case.
Similarly, we also show in Fig. 7 the behaviour of the slope of

3 The eikonal does not always guarantee unitarisation. Although it obeys
Eq. (7) for all values of b, it can produce, after integration, amplitudes that
violate the Froissart bound depending on the b dependence of the form fac-
tor [15]. The form factors that we use lead to a cross section that does respect
the Froissart bound.
the differential elastic cross section. Again, we see that it in-
creases at small-t , and then decreases towards the dip.

4. Conclusion

Now the structure of the diffractive scattering amplitude can-
not be obtained from first principles or from QCD. The proce-
dure used to extract such structure and parameters of the elastic
scattering amplitude from the experimental data requires some
different assumptions. If we assume that the hard pomeron is
present in soft data, it will lead to a cross section of the or-
der of 150 mb (a similar conclusion, via a different argument,
has been reached in [12]).4 The uncertainty in this number is
quite large, as unitarisation and saturation schemes are numer-
ous. Hence it seems that the total cross section can be anywhere
between 108 mb [16] and 150 mb.

Other observables may be used to decide whether one has a
simple extrapolation of the lower-energy data, such as in [16],
or one is entering a new regime of unitarisation. Indeed, in
the presence of the hard pomeron, the saturation effects, which
must then be present at LHC energies, can change the behav-
iour of the real part of the cross section making it smaller than
expected, especially in the near-forward region, and of the slope
of the differential elastic scattering cross section.

Despite the lack of an absolute prediction for total cross sec-
tions, the observation of such features would be a clear sign that
a new regime of strong interactions has been reached.
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