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Abstract 

A tensegrity structure consists of a set of continuous cables in tension and a set of discontinuous struts in compression. 
The tensegrity structure can be classified into self-stressed and pre-stressed structures. Present paper interest is in the 
self-stressed tensegrity structures, since they can free standing without any support while maintaining their 
self-equilibrium state. 
In the process form-finding of a tensegrity structure, some constraints are usually introduced for geometry and/or 
member to ensure uniqueness of the solution. The tensegrity structures are indeterminate problems in most cases. In 
this paper, a genetic algorithm based form-finding for tensegrity structures is presented to assist designers to obtain 
tensegrity structures with less design variables. 
A novel and versatile numerical form-finding procedure which requires only a minimal knowledge of initial structure 
configuration is adopted. The procedure needs only the prototype of each member, i.e. either compression or tension, 
and the connectivity information of members. The connectivity of members and its prototype information are encoded 
to form an individual population used in genetic algorithm searching problems. As for the fitness evaluation to each 
population, the existence of self-stressed state in each population is sought. At the end, some numerical examples are 
given to show the efficiency of the present study and its ability in searching new configurations of tensegrity structures.
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1. Introduction 

A tensegrity structure consists of a set of continuous cables in tension and a set of discontinuous struts in 
compression. Tensegrity structures are usually associated with pin-jointed mechanism which is stabilized 
by the action of pre-stress. Generally, the tensegrity structures are statically indeterminate. The tensegrity 
structure can be classified into self-stressed and pre-stressed structures. Present paper interest is in the 
self-stressed tensegrity structures, since they can free standing without any support while maintaining their 
self-equilibrium state. In this paper, a genetic algorithm based form-finding of tensegrity structures is 
presented to assist designers to search tensegrity structures with less design variables. 

2. Form-Finding of Tensegrity Structures 

Most of existing form-finding procedures (Motro 2003; Tibert and Pellegrino 2003) require initial 
assumptions on the length of member, geometry or symmetrical information of the structure. Here, a 
novel and versatile numerical form-finding procedure (Estrada et al. 2006) which requires only a minimal 
knowledge of initial structure configuration is adopted. The procedure requires only a prototype of tension 
coefficient, i.e. either compression or tension, and connectivity information of members. In (Estrada et al. 
2006), the form-finding of tensegrity structure is found by a full iteration procedure until a state of 
self-stress is obtained. Full iterative process in form-finding does not fit with the GA because the iteration 
will violate the evolutionary process. In present study, one time iteration is used to search a self-stress 
state of tensegrity structures. 

3. Genetic Algorithm 

Genetic Algorithm (GA) is one among the trendy computation algorithms for searching problems 
based on the mechanics of natural selection and genetics (Goldberg 1999). The most crucial effort in 
developing a form-finding method for a tensegrity structure is how to define the input parameters which 
have to be encoded into genes to form a chromosome of an individual population. In this study, 
connectivity matrix and prototype tension coefficient are encoded into two different chromosomes to 
form an individual population with different genetic information. 

3.1. Equilibrium equation of tensegrity structure 
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Figure 1: Equilibrium at node i. 
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Figure 1 is used to illustrate the equations of static equilibrium of a reference node i connected to 
nodes j and k by members i,j and i,k, respectively. 

The tension coefficient (Southwell 1920), or force density (Schek 1974) coefficient is often used to 
simplify the equilibrium equations which are given by the following equations. 
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For a tensegrity structure which is self-stressed, no external load is to be applied.  Therefore, the 
equilibrium equation can be written as 
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where A is the equilibrium matrix, t is the tension coefficient vector and C is the connectivity matrix of 
b n size which is given by 
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here, b is the number of members and n is number of nodes. 

3.2. Encoding scheme for individual population 
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Figure 2: Encoding scheme for triplex tensegrity structure example. 
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Here, a triplex tensegrity structure is used to illustrate the encoding scheme. Figure 2 shows the 
encoding for the triplex tensegrity as an individual population which is presented by two separated 
chromosomes: connectivity matrix and prototype tension coefficient as genetic information. 

A B 1CD EF GH IJ KL 1 0 1 1 0 1 0 1 0 0 1

A B 0CDE F GH IJ K L 0 1 0 1 1 0 1 1 0 1 0

Connectivity Matrix Chromosome Tension Coefficient Chromosome
Character Encoding Binary Encoding

Parent

Child

Permutation
Random Crossover 
Position

Figure 3: Genetic operation for triplex tensegrity structure example. 

The connectivity matrix is encoded into character based chromosome. The binary based chromosome 
is used for encoding the tension coefficient vector, in which the value of 1 represents the tensile member 
and the value of 0, represents the compressive member. Figure 3 shows genetic operation used in the 
present study. Permutation in reproduction process is used in the connectivity matrix chromosome to 
ensure that there are no members having the same connectivity. 

3.3. Solution procedure 

Figure 4: Solution procedure for searching a tensegrity structure algorithm. 

Figure 4 gives an overview of the present search process for a tensegrity structure. The process keeps 
reproducing generations until the tensegrity structure is found. 
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3.4. Fitness and penalty functions 

In this study, one fitness function combined with two constraints which are transformed into penalty 
functions (Michalewicz 1994) to evaluate the fitness of each individual in the population are adopted.  
The fitness function is determined from the result of seeking the state of self-stress of an individual 
tensegrity structure. The state of self-stress of a tensegrity structure is evaluated from connectivity matrix 
and vector of tension coefficient which are decoded from the individual population. The fitness evaluation 
for an individual population is defined from a summation of three fitness function as below. 

321 ffff                                                                 (4) 

3.4.1. Equilibrium and State of Self-Stress 

The fitness of an individual population is evaluated by using the following procedures. The force 
density matrix, D, is constructed from the vector of tension coefficients, t, and the connectivity matrix, C,
from each individual population. 

TT UVUCtdiagCD                                                          (5) 

By performing the Schur decomposition (Meyer 2000), the first (d+1) columns of the matrix U contain 
the basis of nodal coordinates calculated from the tension coefficient vector. The d is a parameter for 
dimensional space. The approximation of coordinates can be obtained from 

Tuuuzyx d 121 .. , with 

000

100

010

001

T .                         (6) 

The set of approximated coordinates, x, y and z, are then used to compute the equilibrium matrix A.
A Singular Value Decomposition (Meyer 2000) analysis of matrix A in equation (2) by using the 

coordinates from equation (6) will result in singular vectors of tension coefficient, t.
TUVWA                                                                       (7) 

The resulting singular values of diagonal matrix V follows the decreasing sequence of 
diag(v1,1…vend,end). When zeroes in the diagonal matrix V obtained, it reduces the number of rank of the 
matrix which further imply the number of states of self-stress which are exist for the tensegrity structure.  
Here, the state of self-stress of the diagonal matrix V is used as the fitness value for the individual 
population. To narrow the searching space, only one rank of deficiency is sought which gives only one 
state of self-stress of the tensegrity structure. Deficiency of one rank is found when the value of right 
bottom diagonal in the matrix is considerably small and approaching zero. 

),(1 endendVf                                                                (8) 

3.4.2. Connectivity at a Node 

To eliminate any infeasible solution resulting from very few member connections at a node, a 
predefined minimum number of members, NC, at a node is imposed by the following constraint 
evaluation function. 
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Equation (9) will result in zero value as the best fitness if the number of members at a node equal to 
NC, elsewhere will give fitness value larger than zero. 

3.4.3. Separation between Struts 

One of the typical characteristic of tensegrity structure is that all the compressive strut members have to 
be independent and separated each other to guarantee that all the strut members are in compression. In 
order to eliminate the connection which has two struts, the following constraint evaluation function which 
is transformed into fitness value is adopted. 
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here NS can be obtained from NS = NC-2. Equation (10) will give the best fitness value of zero only if 
there are no two strut members connected at a node, otherwise will give value larger than zero. 

4. Examples 

The conventional GA (Goldberg 1999) such as reproduction, crossover, mutation and elitism operators 
are used for implementing GA in the present study. The GA is run with several individuals in population, 
where one individual is reserved as elite after each generation. The GA is run with mutation probability of 
0.2 value. 

The input parameters for this example are n = 6 and 10 nodes (two examples), d = 3 dimensional, and 
NC = 4 is a predefined number of member connectivity’s at a node. Figure 5 and 6 show the results of 
form-finding of tensegrity structures from 6 and 10 nodes examples. 

Summary of parameters used in the examples shown in Figure 5 and 6 are given in Table 1. 

Table 1: Summary for different population size 

Case

6-Node Example 10-Node Example 

Population Size 
Required 

Generation 
Population Size 

Required 

Generation 

I 10 134 30 5,837 

II 20 55 40 2,581 

II 30 2 50 1,480 
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Figure 5: The 6-node result by using 10 population size. 

Figure 6: The 10-node result by using 40 population size. 
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5. Conclusions 

From the results shown in the previous examples, several conclusions can be drawn as follow. 
By adopting the form-finding procedure (Estrada et al. 2006) which requires only less information 
such as dimensional space, connectivity matrix and tension coefficient, the implementation of GA to 
the form-finding of tensegrity structures problems becomes very easy and straightforward. In the 
present study, the new idea of encoding the connectivity matrix and tension coefficient into genetic 
information of an individual population accommodates the implementation of GA process in searching 
for a self-stressed tensegrity structure. Finally, with only a few constraints defined and number of 
nodes required, a self-stressed tensegrity structure could be sought by using the evolutionary process. 
The more number of nodes used in the GA simulation, the more generation process is required until 
the form-finding of the tensegrity structure is achieved. 
The application of the GA to the form-finding of tensegrity structure is highly depend on the need of 
the designer. Hence, addition of some constraints, criteria or fitness functions to the present proposed 
method is recommended to achieve results as desired. 
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