Inequalities and solution of an operator equation

Chuanxi Zhua,\#, Zongben Xub

a Institute of Mathematics, Nanchang University, Nanchang 330031, PR China
b Research Center for Applied Mathematics, Xi'an Jiaotong University, Xi'an 710049, PR China

Received 18 June 2006; received in revised form 6 June 2007; accepted 2 July 2007

Abstract

In this work, we prove several important inequalities, and investigate the solution of an operator equation by means of the fixed point index in the theory of topological degree. For operator equations with different boundary conditions, the same conclusion is obtained. Meanwhile, the famous Rothe's Theorem is generalized. Finally, an example is given to show the application of Theorem 3.

© 2007 Elsevier Ltd. All rights reserved.

Keywords: Real Banach space; Semi-closed 1-set-contractive operator; Operator equation; Homotopy invariance property; Open convex subset

1. Introduction

Let E be a real Banach space. And let D be a bounded open convex set in E, ∂D the boundary of D in E. A continuous operator $A : \bar{D} \rightarrow E$ is said to be a semi-closed 1-set-contractive operator if $I - A$ is a closed operator and $\alpha(AD) \leq \alpha(D)$, where α denotes the non-compact measure.

Throughout this work, some concepts are taken from Refs. [1–6]. In Ref. [1] Li established topological degree theorems for a semi-closed 1-set-contractive operator. In Ref. [3] Guo investigated some fixed point problems for nonlinear operators. In Ref. [7–12] Zhu generalized several famous theorems and investigated the theory of the fixed point index in functional analysis. In this work, we prove several important inequalities, and investigate a solution for the operator equation by means of the fixed point index in the theory of topological degree. Meanwhile, the famous Rothe’s Theorem is generalized. Finally, an example is given to show the application of Theorem 3.

2. Main results

Lemma 1. When $n > 1$, and $n \in N$, then the follow inequalities hold:

\footnotesize

Foundation details: The National Natural Science Foundation of China (10461007 and 10761008); the Provincial Natural Science Foundation of Jiangxi, China (0411043).

Corresponding author.

E-mail addresses: zhuchuanxi@ncu.edu.cn, chuanxizhu@126.com (C. Zhu).

0893-9659/$ - see front matter © 2007 Elsevier Ltd. All rights reserved.
doi:10.1016/j.aml.2007.07.013
(i) \(t \geq e \ln t \), where \(t > 0 \);
(ii) \((t + 1)^{n+1} + (t - 1)^{n+1} > 2(t^{n+1} + 1)\), where \(t > 1 \).

Proof. Firstly, we prove that
\[
t \geq e \ln t, \quad \text{where } t > 0.
\] (1)

Let \(f(t) = t - e \ln t \), where \(t > 0 \); then \(f'(t) = 1 - \frac{e}{t} \). Let \(f'(t) = 0 \), that is, \(t = e \).
When \(0 < t < e \), we have \(f'(t) < 0 \); when \(e < t < +\infty \), we have \(f'(t) > 0 \). Thus, \(f(e) \) is a minimum value of \(f(t) \) in \((0, +\infty)\), that is, when \(0 < t < +\infty \), we have \(t \geq e \ln t \).

Secondly, we prove that
\[
(t + 1)^{n+1} + (t - 1)^{n+1} > 2t^{n+1} + 2,
\] (2)
where \(t > 1 \), \(n > 1 \) and \(n \in N \).

Let \(g(t) = (t + 1)^{n+1} + (t - 1)^{n+1} - 2t^{n+1} - 2 \), where \(n > 1 \), \(n \in N \) and \(t > 1 \).

Then
\[
g'(t) = (n + 1)(t + 1)^n + (n + 1)(t - 1)^n - 2(n + 1)t^n
= (n + 1)[(t + 1)^n + (t - 1)^n - 2t^n]
= (n + 1)
\[
\left[t^n + n(t^{n-1} + \frac{n(n - 1)}{2!}t^{n-2} + \cdots + 1) + t^n - nt^{n-1} + \frac{n(n - 1)}{2!}t^{n-2} + \cdots + (-1)^n - 2t^n\right]
= (n + 1)[(n(n - 1)t^{n-2} + \cdots [1 + (-1)^n]) > 0.
\]

Hence, \(g'(t) > 0 \).

Therefore, \(g(t) \) is a strictly monotone increasing function in \([1, +\infty)\).

Consequently, when \(t > 1 \), then \(g(t) > g(1) \).

That is, \((t + 1)^{n+1} + (t - 1)^{n+1} > 2t^{n+1} + 2\), where \(t > 1 \), \(n > 1 \) and \(n \in N \).

Theorem 1. Let \(D \) be a bounded open convex subset in \(E \) and \(\theta \in D \). Suppose that \(A : \bar{D} \to E \) is a semi-closed 1-set-contractive operator, and \(Ax \neq x \), for every \(x \in \partial D \). Meanwhile, the following condition holds:

\[
(H_1) \quad \|Ax + x\|^{n+1} + \|Ax - x\|^{n+1} + \|x\| \leq 2[\|Ax\|^{n+1} + \|x\|^{n+1} + e \ln \|x\|]
\]

for every \(x \in \partial D \), \(n > 1 \) and \(n \in N \); then the operator equation \(Ax = x \) has a solution in \(D \).

Proof. By the given conditions, we know that \(Ax = x \) has no a solution in \(\partial D \).

Let \(H_1(x) = tAx \), where \(t \in [0, 1] \), for every \(x \in \bar{D} \); then \(H_1 : \bar{D} \to E \) is a semi-closed 1-set-contractive operator. In fact, we have \(\alpha[H_1(D)] = \alpha[tA(D)] = t\alpha[AD] \leq t\alpha(D) \leq \alpha(D) \), where \(\alpha \) denotes the non-compact measure.

Thus, \(H_1 : \bar{D} \to E \) is a 1-set-contractive operator. This is because
\[
I - H_1 = I - tA = I - tA + tI - tI = (1 - t)I + t(I - A).
\]

By virtue of the given conditions, we know that \(H_1 : \bar{D} \to E \) is a semi-closed operator.

Thus, we obtain that \(H_1 : \bar{D} \to E \) is a semi-closed 1-set-contractive operator. When \(\|x\| > 0 \), by (i) in Lemma 1, we have \(e \ln \|x\| - \|x\| \leq 0 \), and by \((H_1)\) we have
\[
\|Ax + x\|^{n+1} + \|Ax - x\|^{n+1} \leq 2[\|Ax\|^{n+1} + \|x\|^{n+1}] + (e \ln \|x\| - \|x\|)
\leq 2[\|Ax\|^{n+1} + \|x\|^{n+1}] + (e \ln \|x\| - \|x\|).
\]

Hence, by the given condition \((H_1)\) and Lemma 1, we can prove \(x \neq H_1(x) \), for every \(x \in \partial D \), \(t \in [0, 1] \). According to the homotopy invariance property in Ref. [1], we know that
\[
i(A, D, E) = i(\theta, D, E) = 1.
\]

And by the solution property of Ref. [1], we know that \(Ax = x \) has a solution in \(D \).

Lemma 2. When \(t > 1 \), \(p > 1 \), the following inequality holds:
\[
2(t - 1)^p + 1 < t^p + (1 + t)^p.
\]
Proof. Let \(f(t) = t^p - 1 - 2(t - 1)^p + (1 + t)^p \). Then
\[
f'(t) = pt^{p-1} - 2p(t - 1)^{p-1} + p(1 + t)^{p-1},
\]
\[
= p[t^{p-1} - 2(t - 1)^{p-1} + (1 + t)^{p-1}].
\]
This is because
\[
\frac{t^{p-1} + (1 + t)^{p-1}}{-2(t - 1)^{p-1}} = \frac{t^{p-1}}{-2(t - 1)^{p-1}} + \frac{(t + 1)^{p-1}}{-2(t - 1)^{p-1}}
\]
\[
= -\frac{1}{2} \left(\frac{t}{t-1} \right)^{p-1} - \frac{1}{2} \left(\frac{t+1}{t-1} \right)^{p-1}
\]
\[
< -\frac{1}{2} \left(1 + \frac{1}{t-1} \right)^{p-1} - \frac{1}{2} \left(1 + \frac{1}{t-1} \right)^{p-1}
\]
\[
= -\left(1 + \frac{1}{t-1} \right)^{p-1} < -1.
\]
According to \(-2(t - 1)^{p-1} < 0\), we obtain that
\[
t^{p-1} + (1 + t)^{p-1} > 2(t - 1)^{p-1}, \quad \text{that is,}
\]
\[
t^{p-1} - 2(t - 1)^{p-1} + (1 + t)^{p-1} > 0, \quad \text{that is,}
\]
\[
p[t^{p-1} - 2(t - 1)^{p-1} + (1 + t)^{p-1}] > 0.
\]
Thus, \(f'(t) > 0 \).
Therefore \(f(t) \) is a strictly monotone increasing function in \([1, +\infty)\). When \(t > 1 \), we have \(f(t) > f(1) \) and \(f(1) = 2^p > 0 \).
Hence \(f(t) > f(1) > 0 \), that is, \(f(t) > 0 \), that is, \(t^p + (1 + t)^p > 2(t - 1)^p + 1 \), where \(t > 1, p > 1 \).

Theorem 2. Let \(D \) be a bounded open convex subset in \(E \), and \(\theta \in D \); suppose that \(A : \bar{D} \to E \) is a semi-closed \(l \)-set-contractive operator such that
\[
(1) \quad 2\|Ax - x\|^p - \|x + Ax\|^p \geq 2\|Ax\|^p - \|x\|^p, \text{for every } x \in \partial D, p > 1.
\]

Then the operator equation \(Ax = x \) has a solution in \(D \).

Proof. By \((1)\), we know that \(Ax = x \) has no solution in \(\partial D \), that is,
\[
x \not= Ax, \quad \text{for every } x \in \partial D. \quad (3)
\]
We prove
\[
x \not= tAx, \quad \text{for every } t \in (0, 1), \text{ for every } x \in \partial D. \quad (4)
\]
In fact, suppose that \((4)\) is not true, that is there exists a \(t_0 \in (0, 1) \), and an \(x_0 \in \partial D \) such that
\[
x_0 = t_0Ax_0, \quad \text{that is,} \quad Ax_0 = \frac{1}{t_0}x_0.
\]
Inserting \(Ax_0 = \frac{1}{t_0}x_0 \) into \((1)\), we obtain
\[
2\left\| \frac{1}{t_0}x_0 - x_0 \right\|^p - \left\| x_0 + \frac{1}{t_0}x_0 \right\|^p \geq \left\| \frac{1}{t_0}x_0 \right\|^p - \|x_0\|^p, \quad \text{where } p > 1, x_0 \in \partial D,
\]
that is,
\[
2\left(\frac{1}{t_0} - 1 \right)^p \|x_0\|^p - \left(1 + \frac{1}{t_0} \right)^p \|x_0\|^p \geq \left(\frac{1}{t_0} \right)^p - 1 \|x_0\|^p. \quad (5)
\]
This is because $x_0 \in \partial D$; hence $\|x_0\| \neq 0$.

Therefore (5) gives that

$$2 \left(\frac{1}{t_0} - 1 \right)^p - \left(1 + \frac{1}{t_0} \right)^p \geq \left(\frac{1}{t_0} \right)^p - 1.$$ \hspace{1cm} (6)

Let $t = \frac{1}{t_0}$; as $t_0 \in (0, 1)$, we obtain that $t > 1$. Hence (6) gives that

$$2(t - 1)^p - (1 + t)^p \geq (t)^p - 1,$$ \hspace{1cm} (7)

that is, $2(t - 1)^p + 1 \geq t^p + (1 + t)^p$. This is a contradiction to Lemma 2.

Thus,

$$x \neq tAx,$$ \hspace{1cm} for every $x \in \partial D, t \in (0, 1).$$ \hspace{1cm} (8)

By (3) and (8), we know that $x \neq tAx, t \in (0, 1]$, for every $x \in \partial D$.

By Ref. [1], we obtain that $i(A, D, E) = 1$. That is, the operator equation $Ax = x$ has a solution in D.

We can prove that the following Theorem 3 holds in an analogous way.

Theorem 3. Let D be a bounded open convex subset in E, and $\theta \in D$. Suppose that $A : \bar{D} \to E$ is a semi-closed I-set-contractive operator, and satisfies the following condition:

$$(H_3) \quad \|Ax - x_0\| \leq \|x - x_0\|, \quad \text{for every } x \in \partial D, \text{ and } x_0 \in D.$$

Then the operator equation $Ax = x$ has a solution in \bar{D}.

Remark 1. Theorem 3 generalizes the famous Rothe’s Theorem [4,7].

Example 1. Let us consider the following integral equation which comes from information science and applied mathematics:

$$\int_{0}^{x} \left(\frac{1}{2} \sin |t| + \frac{1}{4} \cos |t| \right) dt - x + 2.1 = 0, \quad \forall x \in [-\pi, \pi].$$ \hspace{1cm} (9)

It is easy to prove that this equation has a solution in $[-\pi, \pi]$.

In fact, let

$$Ax = \int_{0}^{x} \left(\frac{1}{2} \sin |t| + \frac{1}{4} \cos |t| \right) dt + 2.1.$$

We write $\|y\| = |y|$, for every $y \in R$. Thus, we have

$$|A(-\pi) - 2.1| = \left| \int_{0}^{-\pi} \left(\frac{1}{2} \sin |t| + \frac{1}{4} \cos |t| \right) dt \right|$$

$$\leq \int_{-\pi}^{0} \left| \frac{1}{2} \sin |t| + \frac{1}{4} \cos |t| \right| dt$$

$$\leq \int_{-\pi}^{0} \left(\frac{1}{2} + \frac{1}{4} \right) dt$$

$$= \frac{3}{4} \pi$$

$$< |\pi - 2.1| = \pi + 2.1.$$
And

\[|A(\pi) - 2.1| = \left| \int_{0}^{\pi} \left(\frac{1}{2} \sin |t| + \frac{1}{4} \cos |t| \right) dt \right| \]

\[= \left| \int_{0}^{\pi} \left(\frac{1}{2} \sin t + \frac{1}{4} \cos t \right) dt \right| \]

\[= \frac{1}{2} \int_{0}^{\pi} \sin t dt + \frac{1}{4} \int_{0}^{\pi} \cos t dt \]

\[= \frac{1}{2} \left(-\cos t \right) \bigg|_{0}^{\pi} + \frac{1}{4} \left(\sin t \right) \bigg|_{0}^{\pi} \]

\[= 1 < |\pi - 2.1| = \pi - 2.1. \]

Let \(D = [-\pi, \pi] \). It follows that \(|Ax - 2.1| \leq |x - 2.1| \), for every \(x \in \partial D \).

That is, \(\|Ax - 2.1\| \leq \|x - 2.1\| \), for every \(x \in \partial D \). Meanwhile, \(A \) is a semi-closed 1-set-contractive operator. According to Theorem 3, we obtain that \(Ax = x \) has a solution in \([-\pi, \pi]\). That is, Eq. (9) has a solution in \([-\pi, \pi]\).

References