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1. INTRODUCTION

Let X be a topological space and let M(X) denote the space of non-

negative finite Borel measures on X (i.e., measures defined on the g-algebra
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tinuous. It is well known [13] that if X is completely regular, then the
relative weak topology on the space M ,(X) of tight (or Radon) measures
on X coincides with the weak topology induced by the space of bounded
real-valued continuous functions on X. Recall that a measure in M(X) is
called tight if it is inner regular with respect to compact sets.

Throughout all topological statements in M(X) will be with respect to
the weak topology. We are concerned with the Baire category in M(X) and
in finite products of X. For the properties of sets involving the Baire
category (sets of the first or second category, sets with the Baire property,
etc.) we refer the reader to [6] and [10]. The main object of this paper is
to prove in Section 2 (in a more general form) the following theorem.

THEOREM A. Let X be a Hausdorff space and R a subset of X x X of the
first category. Then (uxu)* (R)=0 for all ue M(X) except for a set of
measures of the first category in M(X).

We note that u x ¢ denotes the simple product measure defined on the
product g-algebra #(X)® #(X) and that (uxu)* denotes the outer
measure induced by u xu and defined on all subsets of X x X.

Theorem A is useful in proving existence theorems using the Baire
category method in M(X). For instance, if & is a family of subsets of X
such that the set R=) {ExE:Eeé&} is of the first category in X x X,
then, by Theorem A, in the sense of category almost all measures u in
M(X) vanish on & (ie., u*(E)=0 for all Ee&). A special case of this
situation is the following corollary which is essentially Lemma 3.5 in [4]—
a result that in fact led us to prove Theorem A.
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COROLLARY. Let f: X — Y be a continuous function between Hausdorff
spaces such that f is not constant at any nonempty open subset of X. Then,
in the sense of category, for almost all e M(X) we have u(f~'({y}))=0
for every yeY.

Indeed, the set R=U {/'({y})xf'({y}):yeY}={(x,x)eXxX:
f(x)=f(x")} is closed and nowhere dense in X x X.

The above corollary when fis the identity yields the following: if X is a
Hausdorff space without isolated points then in the sense of category almost
all measures in M(X') vanish on singletons (cf. Theorem 6.1 in [11] and
Theorem 1 in [3]). Other applications of Theorem A are presented in [5].

Section 3 contains some consequences of Theorem A, among which is a
partial converse of Theorem A. Namely, we assume that M(X) is of the
second category in itself (note that Theorem A is trivial if M(X) is of the
first category in itself) and prove that the conclusion of Theorem A is also
a sufficient condition in order that a subset R of X x X with the Baire
property is of the first category. The second category subsets of X x X are
characterized similarly, replacing (u x ¢«)* (R)=0 by (uxu)* (R)>0.

It follows from the above characterizations that if R is a subset of X x X
with the Baire property, then either the set {ue M(X): (uxp)* (R)>0}
or its complement {xe M(X): (uxu)* (R)=0} is of the first category in
M(X). In order to explain this phenomenon we introduce in Section 4 the
class of invariant subsets of M(X), which contains the above sets, and
prove the following category analogue of the zero—one law: if E is an
invariant subset of M(X) with the Baire property then either E or M(X)\E
is of the first category in M(X).

Finally we make two general remarks. It is clear that the focus of the
results described above is centered upon spaces X such that M(X) is of
the second category in itself (or, equivalently, M(X) is a Baire space (see
Section 4)). A class of such spaces is examined in [5]. Here we mention
that every Cech-complete space (in particular, every compact Hausdorff
space) has this property. Indeed, the space M,(X) of tight measures on a
Cech-complete space X is also Cech-complete (cf. Theorem 17, Part II in
[14]) and is of course dense in M(X). Therefore M(X) is of the second
category.

In this paper we are concerned with the Baire category primarily in
M(X). However, the results continue to hold if we replace M(X) by any of
the usual spaces of measures M encountered in topological measure theory,
e.g, M=M/(X), or M=M(X), the space of r-additive measures. Recall
that a measure x4 in M(X) is called z-additive if x is inner regular with
respect to closed sets and u(G)=sup, u(G,) for every net {G,} of open
sets filtering up to G. To cover all these cases we will state our results for
a dense subset M of M(X).
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2. THE MAIN THEOREM

In this section we prove Theorem A of the Introduction in the more
general form of subsets of X", where n is a positive integer; namely,

THEOREM 2.1. Let X be a Hausdorff space, M a dense subset of M(X),
neN, and R a subset of X" of the first category. Then (ux --- xu)* (R)=0
for all pe M except for a set of measures of the first category in M.

In proving the theorem it will be helpful to use the following concept of
independence and Lemma 2.2, the second part of which is the lemma in
Section 3 of [7].

Let X be a topological space, ne N, and R a subset of X”. A subset 4
of X is said to be R-independent if for every (x,, .., x,) € A" with distinct
coordinates (i.e., x; # x; for i #), we have (x, .., x,) ¢ R. More generally,
a family (4;),., of subsets of X is said to be R-independent if for every
(i1, ., I,,) € I" with distinct coordinates and for every x;,€d;,j=1,.,n, we
have (x,, .., x;) ¢ R.

LeEMMA 2.2. Let X be a topological space, ne N, and R a subset of X"

(a) If R is closed in X", then for every finite R-independent subset
{X1, . x,,} of X, with x; # X; for i #], there exists an R-independent family
(V)i—1. _m of open subsets of X such that x;eV; for i=1, .., n.

(b) If R is nowhere dense in X", then for every finite family
(U))i—1....m of open nonempty subsets of X, there exists an R-independent
family (V.);_1 _,, of open nonempty subsets of X such that V,< U, for
i=1,..,m

s

Proof. We assume that m >n, the case m <n being trivial.

(a) First observe that, since R is closed in X", we have the following:
for every (yy, ..., ,) € X"\R and every family (G;);_, _, of open subsets of
X such that y; e G, for i=1, ..., n, there exists a family (W;),_, _, of open
subsets of X such that y,e W, c G, and (I]/_, W,))nR=(.

Now let {7, .., 7.} be the set of all ze{l, .., m}" with (i) #1(j) for
i#j, i,je{l, .., n}. We shall construct inductively families (V/),_, _,,, for
j=0,1, ..,k of open subsets of X such that

V=X and x,eV/icVi-! forevery i=1,.,m and j=1,..k

and

< I1 V{/_U)> NR=g  forevery j=1,..,k

i=1
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Assume that (V7/),_, ., has been constructed for some j, 0<j<k.
Since {x, .., X,,} is R-independent we have (X, (1), -» X, () ¢ R. Thus,
by the above observation, we find a family ( Tm‘(,)),_1 ..n of open subsets
of X such that x, ,eV/", =V/ . and (IT/_, Vﬁjtll(,))mRzg. If
ie{l, ..omi\{t;, (1), ... 7, 1(n)}, we set V/"'=V]

Finally, we set V,=V* for i=1, .., m and it is clear that (V;),_,
the required family.

(b) As has already been mentioned, (b) is given in [7]. A proof,
similar to that of (a), can be given beginning with the observation that,
since R is nowhere dense in X", for every family (G;);_, ., of nonempty
open subsets of X there exists a family (W.),—1. ... of nonempty open
subsets of X such that W, < G; and (I]/_, W,)n R= . Then, as in the
proof of (a), we construct 1nduct1vely suitable families (V7/),_, ., for
Jj=0,1,.. k so that (V¥),_, _,, is the required family.

We shall use several times in the sequel (not only in the proof of
Theorem 2.1) the following two simple facts about the weak topology of
M(X). If A4 is a dense subset of X, the set of measures in M(X) that are
carried by a finite subset of 4 is dense in M(X) (cf. Theorem 10, Part II in
[14]). These measures are expressed in the form >7_, ¢;4,,, where t,>0,
x; € A, and J,, denotes the Dirac measure at x,. It is also easy to see that
if G is a nonempty open subset of X, the set {ze M(X):u(G)>0} is
(open) dense in M(X).

Proof of Theorem 2.1. We can assume without loss of generality that
M = M(X). Indeed, if the set {ue M(X):(ux --- xu)* (R)>0} is of the
first category in M(X'), then the intersection of this set with M is of the first
category in M because M is dense in M(X). We can also assume that R is
closed nowhere dense in X” because R is included in a countable union of
closed nowhere dense sets.

First we consider the simple case n=1, which also follows from the
arguments in [1]. We set

C={ueM(X):u(R)>0} and C,={ueM(X):u(R)>¢}

for every > 0. Since C=),_, C,,,, it suffices to show that C, is nowhere
dense in M(X) for every e>0. Let D be the set of measures in M(X) that
are carried by a finite subset of X\R. Note that D is dense in M(X )
because X\R is dense in X. Let x be a measure in D, ie, u=Y" ¢
where 7,20 and x,e X\R. For every i=1,...m, we choose an open
neighborhood V; of x; such that V,nR=¢J and set W= {ve M(X):
W X\U7_, V;)<e}. Then W is an open neighborhood of x in M(X) and
WnC,=. This shows that DnclyxC,= and so C, is nowhere
dense in M(X), completing the proof for n=1.
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We now assume that 7 >2 and set
Go={xeX:xisisolated in X} and G,=X\G,.

Since there are no isolated points in R, Rn Gy = J. Thus

R= ) RnS(a(l),..a(n),

oce {0, 1}"

where

S(o(1), ., a(n)) =[] Gous

i=1
for €{0, 1}"\{(0,0, .., 0} and

S(0,0,...0)= ) {(x;,.. x,) €X":x;€Gy\Gy}.

i=1

It suffices to prove the theorem when R is replaced by the set
Rn S(a(1), ..., a(n)) for some oe{0,1}", that is, when R is a relatively
closed subset of S(a(1), ..., a(n)) and is of course nowhere dense in X".

If R is included in S(0, O, ..., 0), then

{ue M(X):(ux - xu)* (R)>0} = {ue M(X): (G, \G,) >0},

where the set of measures on the right is of the first category in M(X)
because G,\G, is closed nowhere dense in X and the theorem holds for
n=1. Thus, we can assume that R is a nonempty relatively closed subset
of S(a(1), ..., a(n)) where o € {0, 1}"\{(0,0, ..., 0)}.

We set

C,={ue MX): (ux - xp)* (R)>¢)

for every ¢ >0. As in the case n =1, it suffices to prove that C, is nowhere
dense in M(X) for every ¢ >0. Fix an &£ > 0 throughout the proof.
We also set

Iy={ie{l,..,n}:a(i)=0}, I,={ie{l,..,n}:0(i)=1}
and let n, be the number of elements of I, for i=0, 1. Thus, n,+n, =n and
n,>0. If ny>0 we identify S(a(1), ..., a(n)) with G® x G!' and for every

z=(z(0));ep € G We set

R.={w=(w(j))jen: (z, W) ER}.
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Claim 1. For every ze G, R. is closed and nowhere dense in G7'.

Indeed, R. is closed in G because R is closed in S(a(1), .., a(n))=
Gy x GY. Also, if V'=intgn(R.) then {z} x Vis open in X" = X" x X" and
is included in R. Since R is nowhere dense in X", VV'=¢J and so R._ is
nowhere dense.

Next we observe that every measure € M(X) carried by a finite subset
of Gy, u G| with u(G,) >0 has the following expression:

mo m
H= Z tié»\"i—"_ Z Sjéyj’ (%)

i=1 j=1

where my>0; m; 2 1; xy, .., x,,,, and yy, ..., y,,, are distinct points of G, and
G,, respectively; and ¢,,5,€R, t,,5,>0. Since G, UG, is dense in X and
{peM(X):u(G,)>0} is open dense in M(X), it follows that the set of
measures of this form is dense in M(X). For every r >0 we denote by D
the set of measures given by () so that the following additional properties
are satisfied:

(i) m;=n; and m{' —m;(m; —1)---(m; —n; +1) <(r/s;)" for every
j=1, .., my; and

(ii) {»1s .V is R-independent and R_-independent for every
ZE{ X1, ey Xy}

mo

Claim 1I. For every r>0, D, is dense in M(X).

Let 1 be a measure given by (). Since the set of these measures is dense
in M(X), Claim II follows if we show that xecly;x)D,.

We set

B U{R.:ze{xy, . X, O}, if my>0 and ny>0
R, otherwise.

By Claim I, R is closed nowhere dense in G’ if either m,>0 or n,=0.

For every j=1, .., my, let U; = G, be an open neighborhood of y,. Since
G, has no isolated points, for every j=1, ..., m, there are pairwise disjoint
nonempty open sets U, , = U;, k=1, .., p, where p is sufficiently large (to
be specified later). Now we choose nonempty open sets V, , = U, for
i=1,..,m; and k=1, .., p, such that the family (V, ), , is R- mdependent
We can do this by Lemma 2.2(b) when either m, > O or ny, =0 because then
R is nowhere dense in G'. The case where m,=0 and n,> 0 is trivial (take
V. «=U, ). Finally, we choose y; , € V; , and set

n
KU1, s Un) = Z 10+ 2 Z 9y,

i=1 Jj=1 k=1
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and

It is easy to see that for every j=1, .., m,, the net (u ), where the family
of open neighborhoods U, of y; is directed in the obvious way, converges
to 5;0, . It follows that the net (x (¢, .. v,,)) converges to u. Also, the above
expression of sy, . ¢, 18 as in (*) and satisfies property (ii) of D,. If,
moreover, p is chosen so that pm, >n, and for every j=1, ..., m,

o (= ) (=)<
mi'—m; | my—— |- m — <=
p p S

s\
(mm)"l—mm(mlp—1)---<m1p—n1+1><r"l/<pf> ,

that is,

then u g, .. Unp) satisfies property (i) of D, as well. Therefore,
K, .. Uy ED, and we have shown that u € ¢/, D,, completing the proof
of Claim II.

Claim 111. If peD,, 0 <r<1, and we assume that either (a) ny,>0,
r"u(Gy)" <e/3, and u(G,)>r"? or (b) n,=0 and " <e, then there exists
an open neighborhood W of u such that Wn C,= &.

We have that u is given by (x) so that properties (i) and (ii) are satisfied.

Case (a). Condition (a) is satisfied.
If my=0 (ie., u(G,)=0) we set

W={veM(X):v(Gy) <(e/(u(Gy)+ 1)) and v(G,) <u(G,) + 1}.
Then W is an open neighborhood of u and for every ve W,

(vx oo xV)*F(R)K(vX - xV)(S(a(1), ..., a(n)))
=1(Go)" WG )" <e,

so Wn C,= . Thus we can assume that m, > 0.
We set

R=J){R.:ze{x, ., x,} "}.

It is clear that R is closed in G4' and, by property (ii) of D,, {y1, o, Yy, }
is R-independent. By Lemma 2.2(a), we can find pairwise disjoint open sets
V,=Gy, j=1,..,my, such that y,e V; and (V});_; _,, is R-independent.

Let W be the set of all ve M(X) satisfying the following conditions:
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my
v<G_1\ U Vj><oc, wWV)>s;,— B, j=1,..m,
j=1

WG,) <u(Gy) + B,
WG \{X 15 s X} ) <o, V({x;})>1,— B, i=1,.. my,
v(Gy)™ < &/3 and WG,)>r'?

where 0 <a < ff <1 are sufficiently small (to be specified later). Clearly W
is an open neighborhood of u.
It will be convenient to set

Z={X1y s X} T={1,.,m}",
and
—{teT: (i) #1(j) ifi,jel,, i#]}.
Notice that T, has m(m,—1)---(m, —n,+ 1) elements. Finally we set
v=U U (I1 =0} <1 7 )
zeZ teTi \iel jen

Thus V is a finite union of disjoint open rectangles, V' < S(a(1), ..., a(n)),
and R < S(a(1), ..., a(n))\V by the choice of V,, j=1, .., m,. It remains to
prove that o and S can be chosen so that for every ve W

(Vo xV)(V)> (% - xV)(S(a(1), ..., a(n))) —e. (1)

Indeed, then we should have (vx --- xv)* (R)<e for every ve W, ie.,
WnC,=d.
First, let us note that for every ve M(X),

xen¥)= X8 oo (T {0} <1 Ve )

zeZ teT) iely Jjeli

-3 z(n (0D TT Ve

zeZ teT) iely jeli

< T st=0) > (5 Mve)

[(z ) I U] )
j=1 teT\T| jel
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We shall need some bounds of v(G,), i=0,1, and w(V)), j=1,..,m,,
when ve W. For this purpose we assume that

for i=0,1. (3)

(We shall impose other restrictions on f later.) Then, by the definition
of W, we have

my

WGo)Z Y W(x})> . (1~ B =u(Go)—mof>p

i=1 i=1
and

(5; =) =u(G\)—mf>f

1

WGH= Y V) >
j=1

INgE:

J

for every ve W. Let y be such that y"r" >¢/3 and y > u(G,)+ 1. Then
B<v(G)<y for every ve Wand i=0, 1. (4)

Also, by the definition of W, we have

m my mi

V) <SWG)— Y vV < Y s +B— 3 (si—p)=s,+mf
1 k=1

k=1 k=
k#j k#j

for every ve Wand j=1, .., m,. Thus, setting s =max{s;: j=1,..,m,}, we
have

(V) <s+mp for every ve W and j=1, .., m,. (5)

From (4) we have v(G,) > > o for every ve Wand i =0, 1 and so by the
definition of W

< % v({x;} )>n0 >(W(Gy)—a)™>0

and
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for every ve W. Also, from (5) and property (i) of ue€ D, we have

Y vV <(mi—my(my—1) - (my—ny 4+ 1))(s +m, f)"

teT\T| jel

ni

r my \"
< m gy = (1420 p)

for every ve W. Therefore, it follows from (2) that for every ve W

(vx - XV)(V)>(V(GO)_O()HO.[(v(G_l)—o()nl_rﬂl <1 -I-H::‘lﬁ)”]]

(6)

Finally, « and f are specified as follows. Let J,>0 be such that
(I+rm)yy™5, <e/3 and (147r™) 5, <r">—r™ and choose >0 satisfying

(3) such that

n
<1+"§‘ﬁ> <140,

Next, let d,>0 be such that d,y" <¢/3 and d,< ™ and choose a>0,

o< f, such that
—(t—o)"<9; for every re[f,y] and i=0, 1.
It now follows from (4) that for every ve W
(W(Gy) — )™ >1(Gy)"™ —Jy >0

and, using also the last condition of the definition of W,
_ m, m _
(G —a)™ — M (1 +Sﬂ> >v(G)"—0,—r"(1+0,)
> P2 —pm 5 (1 +rm)>0.

Thus, comparing with (6), we have

(v o x V) (V) > ((Gp)" = o) ((G1)" — &y —r"(1 +04))

>V(Go)" v(G))" =G )" — (5, + 1" +71"d,) v(G,)™

>v(Go)" V(G )" —0y" —1"v(Gy)" — O, (1 +7") p"

>(vx - xv)(S(a(l), ..., a(n)))—e

for every ve W, ie., inequality (1).
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Case (b). Condition (b) is satisfied.

The proof of Claim III in this case follows the lines of the proof of
Case (a) for my,>0 (although here we may have m,=0) and is simpler.
Thus we choose V;, j=1, .., m;, as in case (a) (here R=R) and define in
the same way, ignoring the last two conditions involving r, an open
neighborhood W of i depending on a and f, 0 <a < f < 1. Then we set

V= U H Vi
teT) j=1
and equality (2) becomes
xeoxn=( )] = T 1tV
j=1 teT\T j=1

for every ve M(X) (note that here n,=n and I,={l,..,n}). Next we
assume (3) for i=1 and, setting y=u(G,)+ 1, we have (4) for i=1 and
(5). Now (6) becomes

for every ve W.
Finally, « and f are specified as follows. Let >0 be such that
o(1 +r")<e—r" and choose f satisfying (3) for i=1 such that

<1 + /3> <146
s
Then choose a < f§ such that

"—(t—a)"<d for every te[f,y].

It now follows that for every ve W

(vX oo xV)Y(V)>v(G)"=0—r"(1+9)

As in case (a), this completes the proof of Claim III in Case (b).
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Last, using Claims II and III, we show that C, is nowhere dense in
M(X), completing the proof of the theorem. First assume that n,>0 and
set

My={peM(X):u(G,)>0}
and
M,={peM(X): u(G))>r"?and ru(Gy)™ <e/3}

for 0O<r<1. Then My=y., -1 M,, each M, is open in M(X ), and M, is
open dense in M(X). By Claim II, D, n M, is dense in M, and so Claim III
(Case (a)) implies that C, n M, is nowhere dense in M, for every r with
0<r<1. Thus C, n M, is nowhere dense in M, and so C, is nowhere
dense in M(X). Now assume that n,=0 and fix an r with 0 <r<1 and
r"<e By Claim II, D, is dense in M(X) and so Claim III (Case (b))
implies that C, is nowhere dense in M(X).

3. CONSEQUENCES

In this section we present some consequences of Theorem 2.1. The
following result, part of which is Theorem 2.1 itself, is a characterization of
those subsets of X” with the Baire property that are of the first category
(resp. of the second category).

THEOREM 3.1. Let X be a Hausdorff space, M a dense subset of M(X)
such that M is of the second category in itself, ne N, and R a subset of X"
with the Baire property. Then

(a) R is of the first category in X" if and only if (ux --- xu)* (R)=0
for all we M except for a set of measures of the first category in M

(b) R is of the second category in X" if and only if (ux --- xu)* (R)
>0 for all pe M except for a set of measures of the first category in M.

Proof. The “only if” part of (a) is Theorem 2.1. The “only if” part of
(b) is proved as follows: Assume that R is of the second category in X", so
R=G 4P, where G is nonempty open and P is of the first category in X"
Let V;, i=1, .., n, be nonempty open subsets of X such that [T/_, V; < G.
Then R>([17_, V;)\P and, by Theorem 2.1, there exists a subset C of M
of the first category such that (ux --- xu)* (P)=0 for all ue M\C. It
follows that

n

e M:(ux - xu)* (R)=0y = Cu | {ueM:u(V;)=0},

i=1
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where the right side is a set of the first category in M. This completes the
proof of the “only if” part of (b).

Finally, the “if” parts of (a) and (b) follow immediately from the above
and the assumption that M is of the second category in itself.

The hypothesis of Theorem 3.1(a) and (b) that M is of the second
category in itself cannot be dropped. Indeed, if M is of the first category in
itself, then any subset of X" trivially satisfies the conditions in (a) and (b).
A similar remark holds for the hypothesis that R has the Baire property as
the following example shows.

ExamMpPLE 3.2. Assume the continuum hypothesis. Let X =R, M = M(X),
and R a Lusin set in X, ie., R is an uncountable subset of X such that
RN P is countable for every subset P of X of the first category; the exist-
ence of a Lusin set in X follows from the continuum hypothesis (see, e.g.,
[6, p. 525]). Then M is of the second category in itself (in fact, M is a
Polish space) and R is of the second category in X. However, u*(R) =0 for
all u € M except for a set of measures of the first category in M. Indeed, let
E be the set of measures in M that are nonatomic. It is well known (and
follows from the comments made after the corollary of the Introduction)
that M\E is of the first category in M. Also, if € E then there exists an
F_ subset P of X of the first category such that u(X\P) =0 (cf. Theorem 1.6
in [10]) and so u*(R)=u*(Rn P)=0.

Theorem 3.1 for n=2 takes the following form which should be com-
pared with the Kuratowski-Ulam theorem and its partial converse
(Theorems 15.1 and 154 in [10]).

COROLLARY 3.3. Let X be a Hausdorff space, M a dense subset of M(X)
such that M is of the second category in itself, and R a subset of X x X with
the Baire property. Then R is of the first category (resp. of the second
category) in X x X if and only if for all ue M except for a set of measures
of the first category in M the following condition holds (resp. fails):

w*(R,)=0 for up-almost all x € X, (%)

where R, ={ye X :(x,y)eR}.

Proof. As in Theorem 3.1 it suffices to prove the “only if” parts.

By Fubini’s theorem every pue M(X) with (uxu)* (R)=0 satisfies
condition (*) of the corollary. Thus, if R is of the first category in X x X,
then by Theorem 2.1 (for n=2) all u e M except for a set of measures of
the first category in M satisfy (x).

Now assume that R is of the second category in X x X. Since R has the
Baire property, it contains a set of the form (U x V)\P, where U and V
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are nonempty open sets in X and P is of the first category in X x X. By
the above, there exists a subset Q, of M of the first category such that for
every ue M\Q, we have u*(P,)=0 for p-almost all xeX. We set
0=0,u{ueM: u(U)u(V)=0}. Then Q is of the first category in M and
for every ueM\Q, (x) fails since u*(R.)=u*(V\P,)=u(V)>0 for
u-almost all xe U and u(U) > 0.

As in Theorem 3.1, the hypothesis of Corollary 3.3 that R has the Baire
property cannot be dropped. This is shown in the following example
without any use of set theoretic hypotheses. It follows from the same
example that condition (%) of Corollary 3.3 for some R< Xx X is not
equivalent to (u x u)* (R)=0. Thus Corollary 3.3 is not just a special case
of Theorem 3.1 (using Fubini’s theorem).

ExampLE 34. Let X=R and M= M(X). A slight modification of an
example of Sierpinski (see Theorem 14.4 in [ 10]) shows that there exists a
subset R of X'x X such that (a) R meets every closed uncountable subset
of Xx X and (b) no three points of R are collinear. Let £ be the set
of nonatomic measures in M. Then M\E is of the first category in M
and it follows from (a) that R is of the second category in Xx X
and (uxu)* (R)>0 for all non-zero ucE and from (b) that (x) of
Corollary 3.3 holds for all u e E.

If X is the space of Theorem 3.1 or Corollary 3.3, then M(X) is of the
second category since it contains a dense subset of the second category in
itself. The following corollary gives some information about these spaces X
(see also Remark 4 following Corollary 4.5).

COROLLARY 3.5. Let X be a Hausdorff space such that M(X) is of the
second category. Then X" is a Baire space for every n=1,2, ....

Proof. Let G be a nonempty open subset of X”. We choose nonempty
open subsets V;, i=1, .., n, of X such that []/_, V; = G and observe that

i=1

n

{peM(X):(ux - xp)* (G)=0} = | {ueM(X): u(V,)=0},

i=1

where the right side is a set of the first category in M(X). By
Theorem 3.1(b), G is of the second category in X”. Therefore X” is a Baire
space.

In the next two results we consider products of different spaces and prove
another version of Theorem 3.1 and a generalization of Corollary 3.5.
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COROLLARY 3.6. Let Xy, .., X,, be Hausdorff spaces, M, a dense subset
of M(X;) for i=1,..,n such that T17_, M, is of the second category in
itself and R a subset of 11"_, X; with the Baire property. Then R is of the
first category (resp. of the second category) in [1/_, X, if and only if
(y % o xu,)* (R)=0 (resp. (uy % -+ xpu,)* (R)>0) for all (uy, ..., 1,) €
I[1/_, M; except for a subset of T17_, M; of the first category.

Proof. Let X=X,® --- ® X, be the topological sum of X, ..., X,, and
set M={X>"_ @, u;eM,; for i=1,..,n}, where s, denotes the Borel
measure on X given by ;(B)=u;,(Bn X;). Then M is a dense subset of
M(X) and, since each X; is closed and open in X, the function

BT M, > M  with h(u,, op)=Y i,

i=1 i=1

is a homeomorphism. So M is of the second category in itself. Also,
IT7_, X; is considered as an open subspace of X” and so R is a subset of
X" with the Baire property.

We set

and
F={ueM:(ux - xu)* (R)>0}

and observe that #(E)=F. So E is of the first category in [[7_, M, if and
only if F is of the first category in M. By Theorem 3.1, this happens if and
only if R is of the first category in X" or, equivalently, in []7_, X,. This
completes the proof of the first part of the theorem. The second part is
completely analogous.

COROLLARY 3.7. Let X1, ..., X, be Hausdorff spaces such that [T/_, M(X;)

is of the second category in itself. Then for every me N and every te {1, .., n}™,
[T, X, is a Baire space.

Proof. 1If the Cartesian product of two spaces is a Baire space, then it
is well known that both spaces are Baire spaces. Thus it suffices to show
that for every ke N ([]7_, X,)* is a Baire space.

As in the Proof of Corollary 3.6, we see that [[7_, M(X,) is homeo-
morphic to M(X') where X is the topological sum of X, ..., X,,. Thus M(X)
is of the second category in itself and, since J]/_, X, is open in X", it

follows from Corollary 3.5 that ([]7_, X;)* is a Baire space for every k € N.
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Remarks. Corollary 3.5 was proved by Wojcicka [15] when X is a
metric space. It should be noted that Wojcicka’s proof can be adapted to
yield Theorem 2.1 when X is a metric space without isolated points.

The hypothesis in Corollary 3.6 that [[7_, M, is of the second category
in itself is stronger than the hypothesis that each M, is of the second
category in itself. Indeed, Wojcicka [15] showed that there exist metric
spaces X, i=1, 2, such that M(X;) is of the second category in itself for

1

i=1,2, but M(X,)x M(X,) is of the first category in itself.

4. INVARIANT SETS OF MEASURES

Throughout this section X is a Hausdorff space. Let R be a subset of X"
for some ne N and set

E={peMX):(ux - xu)*(R)>0}. (%)

It follows from Theorem 3.1 that if R has the Baire property in X", then
either E or M(X)\E is of the first category in M(X). A natural question is
whether the same conclusion holds whenever E has the Baire property in
M(X). One may also ask whether E has always the Baire property. Note
that if £ has the Baire property, then R need not have the Baire property
(see Example 3.2 or 3.4; also a Bernstein set [ 10, p. 24] gives an example
similar to 3.2 without the continuum hypothesis).

In this section we introduce a class of invariant (under some equivalence
relation) sets in M(X), which contains the sets E given by (x). The main
result is Theorem 4.2 which provides an affirmative answer to the first
question for all invariant sets in M(X) (Corollary 4.5(a)). The second
question is answered in the negative for invariant sets and, under the
continuum hypothesis, for sets given by (x) (Proposition 4.6).

DeriNITIONS.  If 1 € M(X') and B is a Borel set in X, we denote by u, the
Borel measure on X given by uz(A) =u(Bn A). We define a relation ~ on
M(X) by u~ v if and only if there exist ¢, ..., ¢, >0 (ne N) and Borel sets
B, .., B,in X such that X={)/_, B,and v=3"_, c,lip.

It is clear that the sets B, ..., B, can be chosen to be disjoint and that
~ 1s an equivalence relation. Also, this relation can be defined equivalently
as follows: u~v if and only if there exists a simple Borel measurable
function f: X' — (0, c0) such that v(4) = SA fdu for every Borel set 4 in X.

If E is a subset of M(X') we say that E is invariant under ~ in M(X) or
simply invariant if for every u, ve M(X) with u~v we have ue E if and
only if ve E. More generally, if r is an equivalence relation on a set S, the
invariant under r subsets of S are similarly defined.
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ExampLES 4.1. The following subsets of M(X) are invariant: the sets of
the form {ye M(X): (ux -+ xu)* (R) >0}, where R is a subset of X" and
neN, the spaces of measures M, (X), M (X), and M(X), the set of
measures in M(X) vanishing on singletons and the set of measures
neM(X) with full support (i.e., with u(U) >0 for every nonempty open
Uc X). In fact, it can be proved that these sets are invariant under the
weaker equivalence relation ~* given by u~*v if and only if u and v
have the same nullsets. A different example of invariant set is {u e M(X):
lim, #*(R,) =0}, where R,, n=1, 2, ..., is a given sequence of subsets of X.

THEOREM 4.2. Let M be a dense subset of M(X) and E a subset of M
such that E is invariant in M(X). Then either E is of the first category in M
or E is of the second category at any point of M (i.e., En G is of the second
category in M for every nonempty open set G in M).

For the proof of Theorem 4.2 we need two lemmas and the following
notation. If V,, .., V, (neN) are disjoint nonempty open sets in X,
&y e &, =0, and >0 such that X7, a;,<a, we set

N( Vla ceey Vn) Ay eeny Xy O()

={ueMX):u(V)y>a,i=1,.,nand u(X)<a}.

We denote by .4 the family of all subsets of M(X) of this form.

Lemma 4.3. A is a pseudobase for the topology of M(X).

Proof. Clearly 4" consists of nonempty open subsets of M(X). Let
v=>37" 10, €M(X), where t,>0, x,e€ X, and x; # x; for i#j. Since the
set of these measures is dense in M(X), it suffices to show that the family
of all Ne 4" with ve N is a neighborhood base for v.

Let G be a basic open set in M(X), ie, G={ueM(X) U)>p,,

=1,..,k, and u(X) <} for some nonempty open sets U, ... Uk in Xand

some f,, ..., f =0 and f >0, such that ve G. We choose disjoint open sets
Vi,.,V,in X such that x,e V,, i=1,..,n, and if x; belongs to some U,
then V, < U;. Next we choose Opy e ock>0 and o >0 such that ¢t,—¢/n<
o<t i=1 ,n, and Y7 t,<oa<X?_ | t;+¢& where ¢>0 is such that
e<v( ﬂ,,/—l .k, and e < —v(X). Finally we set N=N(V,, .., V,;
o o, ). It is clear that ve Ne A". Also, if e N then

wXxX)< i ti+e=v(X)+e<p
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and for every j=1, ..,k

pU)ZEAV )V, e Uy =¥ Au(Vi): x, e U}
>Y {t,—en:x;eU} =Y {t;:x,€eU;} —¢
—WU) &>,

Therefore N = G, completing the proof of the lemma.

In the next lemma we shall use the following concepts. Let f: S — T be
a function between topological spaces. We say that f'is feebly continuous if
for every open subset V of T with f~'(V)# ¢, the interior of f (V) in
S is nonempty. If f is one to one and onto and both fand f ' are feebly
continuous, then we say that f'is a feeble homeomorphism. We shall also use
the simple fact that if fis a feeble homeomorphism and N is a subset of 7,
then N is of the first category in T (resp. the interior of N in T is empty)
if and only if £ ~'(N) has the corresponding property in S (cf. Proposi-
tion 4.4 in [2]).

LEmMmA 44. Let V,,.. V, be disjoint nonempty open subsets of X,
o, f:=20 fori=1,..,nand a>3"_ a; f>>"_| ;. Then there is a feeble
homeomorphism h: N(Vy, .., V5 oy ey 0, ) > NV, oy Vs Bis oos Bus B)
such that h(u) ~u for every we N(Vy, .., V5 aq, oy o, ).

Proof. We set

NoczN(Vls-": }1;a1’---a an’a)’ N[)’ZN(VIB’ Vn;ﬂlsnwﬁn’ﬂ)»
_ n - n 5 n _ﬁ—ﬁ_
=y v, “—Z% /3—2/3,—, and c= ->0
. S o — o

Then we define

¢, R->R with ¢,(x)=c(x—a,)+f,fori=1, .., n,

p:R->R with @(x)=c(x—a)+p

and for every ue N,
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It is clear that /i(u)e M(X) and h(u) ~u. Next we show that i(u)e Ny.
Indeed, we have

h(@) (V) =@, V) > @(a;) =B,

since u(V,;)>a, for i=1, ..., n, and

HO(X) = Y @ V)) + cu(X\V) = e V) — &) + f+ cu(X\ V)

= (u(X)) <p(a) =4,

since (X ) <a. Thus h: N, — N and it is easy to verify that / is one to one
and onto. In fact, A~ Ny — N, is given by

i o, (V) 1

h='(v)= 7 v,/,,—f-; Vo

i=1

U are of the same form, it suffices to show

for every ve Ny. Since h and i~
that % is feebly continuous.
Since N is open in M(X), by Lemma 4.3 every nonempty open subset

of N, contains an open set of the form
N=NUy, .. U Y1y s Vis V) EN.

Moreover, we can assume that for every j=1, .., k, either U, = V, for some
ior UcX\V. (If U nV#J, we replace U, by U; n V, where i is such
that U, n V; # J.) Now it is easy to check that

Vj,u( )
@ (u(V;)

Vi

hl(N)={ueNa:,u(Uj)> it U, eV, u(U)>

if U,cX\V, and,u(X)<g0_1(y)}.

Thus 4~ '(N) is open in N, and 4 is feebly continuous.

Proof of Theorem 4.2. Since M is dense in M(X), if E is of the first
category in M(X') (resp. of the second category at any point of M(X)) then
E is of the first category in M (resp. of the second category at any point
of M). Thus if suffices to prove the theorem when M = M(X).

Assume that E is of the second category in M(X) and let N=
NV, ...V, o, ..,a,, o) be an element of .. We set

oy &y,
Nk =N Vl 5y aeey V,,; ;, ey ?7 ko
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for k=1,2,... By Lemma 4.4 for every k there exists a feeble homeo-
morphism /,: N - N, such that /&, (u) ~u for every e N.

Since U Ne={ueM(X):u(V,)>0 for i=1, .., n} is open dense in
M(X) and E is of the second category in M(X), there exists k € N such that
En N, is of the second category in M(X) and so in N,. Since E is
invariant i (ENnN)=En N,. Thus En N is of the second category in N
and so in M(X) (because N is open in M(X)). It now follows from
Lemma 4.3 that E is of the second category at any point of M(X).

COROLLARY 4.5. (a) Let M and E be as in Theorem 4.2. If E has the
Buaire property in M then either E or M\E is of the first category in M.

(b) Every second category invariant set in M(X) is a Baire space.

Proof. (a) Assume that M\E is of the second category in M. Since
M\E has the Baire property in M, M\E contains a set of the form G\P,
where G is nonempty open and P is of the first category in M. It follows
that G Ec P and so G E is of the first category in M. By Theorem 4.2,
E is of the first category in M.

(b) If E is a second category invariant set in M(X), then by
Theorem 4.2 (for M = M(X)) every nonempty relatively open subset of E
is of the second category in M(X) and so in E. Thus E is a Baire space.

Remarks. 1. Using the method of the proof of Theorem 4.2 we can
prove that if E is an invariant set in M(X), then

(a) E is either nowhere dense or dense in M(X); and
(b) the interior of E in M(X) is either empty or dense in M(X).

Indeed, assume that for some N=N(V,, .., V,;oq, ..,a,,a)eN, E is
dense in N (resp. E contains N). Let N, and i, k=1, 2, .., be as in the
proof of Theorem 4.2. Since 4, (E N N)=En N, it follows that for every k,
E is dense in N, (resp. E contains N, ). But |J”_; N, is open dense in M(X)
and so E is dense in M(X) (resp. E contains an open dense subset of

M(X)).

2. As mentioned in the Introduction the reason for considering a
dense subset M of M(X) in the formulation of our results is to cover the
cases where M is a space of measures (M =M(X), M(X), or M[(X)).
Since the spaces of measures are invariant (Examples 4.1), it follows that
if M in Theorem 4.2 and Corollary 4.5(a) is a space of measures, then the
hypothesis that E is invariant in M(X) can be replaced by “FE is invariant
in M,” that is, invariant under the restriction of ~ to M.

3. Let S be a topological space and r be an equivalence relation
on S. We say that (S, r) satisfies the category zero-one law if the following
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category analogue of the zero-one law of Kolmogorov holds: for every
invariant under r set E in S with the Baire property, either £ or S\E is of
the first category in S. Several category zero-one laws are known (see, e.g.,
[8, 9, 12] and the references given there). It follows from Corollary 4.5(a)
and Remark 2 that every space of measures equipped with ~ satisfies the
category zero-one law.

4. Every space of measures of the second category in itself is a Baire
space. This follows from Corollary 4.5(b) since the spaces of measures are
invariant in M(X). In particular, we have that M(X') in Corollary 3.5 and

n

"_, M(X;) in Corollary 3.7 are Baire spaces.

Next we prove the existence of invariant sets without the Baire property.

ProPOSITION 4.6. Let X be a Polish space (i.e., a metrizable space by a
metric for which it is separable and complete) without isolated points. Then
there exists an invariant set E in M(X) without the Baire property.
Moreover, if we assume the continuum hypothesis, E can be chosen to be of
the form {ge M(X): u*(R)>0} for some R< X.

Proof. Let {E;:iel} be the partition of M(X) into the ~ -equivalence
classes. First we prove that every E; is of the first category in M(X). For
every i€ I, we choose y; € E,. If y1;=0, then E;= {0} is of the first category
in M(X). If u; #0, then there exists a subset A; of X of the first category
with u*(A4;) >0 (cf. Theorem 1.6 in [10]). It follows that E; is included in
the set {ue M(X):u*(4;)>0} which is of the first category in M(X) by
Theorem 2.1 (for n=1). Therefore every E, is of the first category.

Assume, if possible, that for every J< I, |J,.; E; has the Baire property
in M(X). Since |J;.,E; is invariant, it follows from Corollary 4.5(a) that
either {J,., E;, or M(X)\U,., E, is of the first category in M(X). For every
JcI we set A(J)=0, if ., E; is of the first category, and A(J)=1,
otherwise. It is clear that 1 is a {0, 1}-valued measure defined on all subsets
of I and vanishing on singletons. Also, A(/) =1 since M(X) is of the second
category. But this is a contradiction since I has the cardinal of the con-
tinuum (see [6, p. 533]). Thus, there exists some J < I such that (J;., E;
does not have the Baire property and clearly (J;., E; is the desired set E.

Now assume the continuum hypothesis and let (M, ), -, be an enumera-
tion of all second category G subsets of M(X). We construct by induction
first category F, subsets P,, Q, of X and u,,v, € M(X)\{0} for every
o < w, such that

PocUroCX\U (P[)’UQ/S‘)? Pochoczg

<o

lLlCX’ vfx e Mf)(’ ﬂ(X(X\PCX) = 07 and va(X\QO() = 0'
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Assume that Py, Qf, ugz, and vg; have been constructed for f<a. Since
Up<a(PsuQp) is of the first category in X, the set {ueM(X):
u(Up<o (Py U Qp))>0} is of the first category in M(X) (by Theorem 2.1
for n=1). Thus we can choose ., € M, \{0} such that (U, -, (Psu Qp))=0.
Then we choose a first category F, subset P, of X such that P,c
X\Up-o(PpuQp) and p,(X\P,)=0. Similarly, using that P,u
(Up<a (P uQp)) is of the first category, we choose Q, and v, with the
required properties. The construction is now complete.

We set R=J,_,, P,and E={ue M(X):u*(R)>0}. Since p,e M, NE
and v, e M \E for every a <w,, E and M(X)\E do not contain any second
category G subset of M(X). Therefore, E does not have the Baire property
(see Theorem 4.4 in [10]).

Finally, let us remark that the results of this paper remain valid if we
replace M(X) by the space M'(X)={ue M(X):u(X)=1} of probability
measures. To see this one can check that the proofs with slight modifica-
tions apply to probability measures. However, it is much easier to use the
results proved so far in conjunction with the following lemma, the simple
proof of which is omitted.

LEMMA 4.7. Let ¢: (0, 00) x M'(X) > M(X)\{0} be given by o(r, 1) = ru.
Then

(a) @ is a homeomorphism and for every pe M(X)\{0}, ¢ '(u)=
(W(X), (X))

(b) given a subset E of M(X)\{0}, we have ¢ '(E)=(0, c0)x
(EnMY(X)) if and only if rue E for every r>0 and u € E;

(c) given a subset E of M'(X), we have that E is invariant in M*(X)
if and only if ((0, c0) x E) is invariant in M(X).

First let us prove that Theorems 2.1 and 4.2 remain valid if we replace
M(X) by M'(X). We can assume that the dense subset M of M'(X) is
M'(X) itself. Let @ be as in Lemma 4.7.

Let R be a first category subset of X" and set E={ueM(X):
(ux -+ xu)* (R)>0}. By Theorem 2.1, E is of the first category in M(X).
By Lemma 4.7(a) and (b), ¢ YE)=(0, 0)x (EnM' X)) is of the
first category in (0, c0)xM'(X) and so EnM'(X)={ueM'(X):
(Lx - xp)* (R)>0} is of the first category in M'(X). Therefore,
Theorem 2.1 holds for probability measures.

Now let E be an invariant set in M '(X). By Lemma 4.7(c), ¢((0, c0) x E)
is invariant in M(X). By Theorem 4.2, either ¢((0, o0) x E) is of the first
category in M(X) or ¢((0, o0)x E) is of the second category at any point
of M(X). Thus, using Lemma 4.7(a), we conclude that either E is of the
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first category in M'(X) or E is of the second category at any point of
M'(X). Therefore, Theorem 4.2 holds for probability measures.

It is now clear that 3.1, 3.3, 3.5, 4.5, and 4.6 for probability measures can
be proved either by the above method or as consequences of Theorems 2.1
and 4.2 for probability measures. Note also that by Lemma 4.7(a), the
hypothesis of Corollary 3.5 that M(X) is of the second category is equiv-
alent to the hypothesis of Corollary 3.5 for probability measures that
M'(X) is of the second category (in itself).

To prove Corollary 3.6 for probability measures we proceed as in the
proof of 3.6 using a different homeomorphism. Namely, we set

An:{(tl, e 1,)ER": Y 1,=1,1,20for i=1, ...,n}

i=1

and

Mz{ Yot (ty, nt,) €A, u; €M, fori=1, ... n}

i=1

and define the homeomorphism

hed,x [] M;—> M with h(ty, ., 6, g, e i) = Y. 25

i=1 i=1

If £ and F are as in the proof of 3.6, then A(4, x E)=F and the result

follows from Theorem 3.1 for probability measures. Finally, Corollary 3.7

for probability measures follows similarly since, by the above, 4, x
"_, M'(X,) is homeomorphic to M'(X).
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