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Motivated by the modelling of a roundabout, we are led to study the traffic on a road
with points of entry and exit. In this note, we would like to describe the modellisation
of a junction and solve the Riemann problem for such a model. More precisely, between
each point of discontinuity we use a multi-class extension of the LWR model to describe
the evolution of the density of the vehicles, the ‘multi-class’ approach being used in order
to distinguish the vehicles after their origin and destination. Then, we treat the points of
entry and exit thanks to special boundary conditions that give bounds on the flows of the
different types of vehicles. In the case of the one-T road we obtain a result of existence
and uniqueness. This first step allows us to obtain a similar result for the n-T road. We
describe these results and also some properties of the obtained solutions, in order to see
how long this model is valid.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

Traffic modelling, in particular from a macroscopic point of view has been intensively investigated since the seminal
paper by Lighthill and Whitham [15] and Richards [17], see for example [10,16]. This paper is motivated by the modelling of
roundabouts. Some papers have already tackled this problem by considering the roundabouts as special networks, see [11]
or [6]. Here, we want rather to consider a roundabout as an infinite road with points of entry and exit periodically dis-
tributed, so that a period corresponds to the roundabout’s perimeter. In particular, we do not want to study here the traffic
on the roads of arrival and exit.

More precisely, the model we introduce is such that between two points of entry and exit the traffic is governed by the
LWR model, so that the total density of the vehicles, denoted by r(t, x), verifies the equation:

∂tr + ∂x
(
rv(r)

) = 0, (1.1)

where v is a given speed law. In fact, we will rather consider here a multi-class extension of the LWR model, as in [14],
differentiating the vehicles after the place they come from and the place they are going to. As this distinction is quite
artificial, we have to give the same speed law v for all the types of vehicles. Finally, if ρa is the density of one type of
vehicle, it verifies the following equation on each open segment between two points of discontinuity:

∂tρa + ∂x
(
ρa v(r)

) = 0.

By summation over all a, we re-find Eq. (1.1).
Besides, the points of entry and exit are treated thanks to special boundary conditions, inspired from the Bardos–

Le Roux–Nédélec ones ([2], [19, Chapter 15]). These boundary conditions are given as inequalities and follow in fact the
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Fig. 1. A ‘T-road’.

Fig. 2. Fundamental diagram for the flow density.

same ideas as R. Colombo and P. Goatin [7]: they consist in bounds on the flows of vehicles and give a constraint corre-
sponding to the capacity of the secondary road the vehicles are entering or exiting.

We will first treat the case of the ‘one-T road’ (see Fig. 1), and then glue the solutions obtained for each point of entry
and exit (in order to obtain a local in time solution). The idea is that, at one point of entry and exit, we can differentiate
three types of vehicles: the vehicles that go straight, of density ρ1, the vehicles that are about to exit the road, of density ρ2,
and the vehicles that have entered the road, of density ρ3. Then we require that, across the point of discontinuity, the flow
of ρ1 is conserved, the flow of ρ2 is less than some prescribed output function, and the flow of ρ3 is less than some
prescribed input function. We obtain in this way a unique weak entropy solution.

In order to treat the n-T case, we have only to collate the local solutions at each point of discontinuity, the finite
propagation speed allowing in this case to obtain a unique local in time weak entropy solution. We can also give a lower
bound on the time of existence of the solution.

This paper is structured as follows: in Section 2, we describe more precisely the model and we give our principal results;
in Section 3, we give the details of the proof in the case of the ‘one-T road’; and in Section 4, we give the details of the
proof in the general case.

2. Description of the models and main results

2.1. The ‘one-T’ junction

General hypotheses. Throughout, we assume the following conditions on the speed law:

(V) All the vehicles have the same speed law v : [0,1] → R+ , which is C 0,1, decreasing and vanishes at r = 1.
Here we denote C 0,1 the set of continuous Lipschitz functions; R+ is the interval [0,+∞) and R

∗+ is the interval
]0,+∞).

(F) The flow q : [r �→ rv(r)] is strictly concave and attains its maximum qc at r = rc ∈ ]0,1[, see Fig. 2.

Below, we denote σ : [0,1] �→ [0,1] the continuous map uniquely defined by

rv(r) = σ(r)v
(
σ(r)

)
and σ(r) �= r for r �= rc .

Particular case. For a concrete example, we may take

v(r) = Vm(1 − r).

In this case, we have q(r) = Vmr(1 − r), rc = 1/2, qc = Vm/4 and σ(r) = 1 − r.
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Description of the ‘one-T’ model. Let ρ1 be the density of the population that neither enters nor exits the road, ρ2 the
density of the population that exits and ρ3 the density of the population that enters. Assuming that the behaviour of
drivers, modelled by the speed law r → v(r), is independent from both their origin and their destination, we are led to the
local conservation laws:{

∂tρ1 + ∂x
(
ρ1 v(ρ1 + ρ2)

) = 0,

∂tρ2 + ∂x
(
ρ2 v(ρ1 + ρ2)

) = 0
for x < 0,

{
∂tρ1 + ∂x

(
ρ1 v(ρ1 + ρ3)

) = 0,

∂tρ3 + ∂x
(
ρ3 v(ρ1 + ρ3)

) = 0
for x > 0. (2.2)

Furthermore, we add the initial data:

ρ1(0, x) = ρ1,0(x) for x ∈ R,

ρ2(0, x) = ρ2,0(x) for x < 0,

ρ3(0, x) = ρ3,0(x) for x > 0, (2.3)

and the following ‘boundary’ conditions, that can be compared with the ones given in [7], where a toll-gate is considered:

ρ1 v(ρ1 + ρ2)(t,0−) = ρ1 v(ρ1 + ρ3)(t,0+) max,

ρ2 v(ρ1 + ρ2)(t,0−) � o(t) max,

ρ3 v(ρ1 + ρ3)(t,0+) � i(t) max, (2.4)

where o and i are some prescribed output and input functions taking values in R+ . In these equations, max means that the
flows of ρ1, ρ2 and ρ3 are maximised.

These conditions signify that the flow of ρ1 is conserved across the points of discontinuity, whereas the flow of ρ2
(respectively ρ3) must be less than the capacity of the secondary road this kind of vehicles is entering (respectively exiting).

At this point, we have to add a priority rule; otherwise, it will not be possible to decide which flow is maximised first.
Our goal being to treat the case of a roundabout, we choose to give priority to the vehicles that are already on the road.
This means that we maximise the flows of ρ2 and ρ1 first, and only after the flow of ρ3.

Remark 2.1. It is a priori not obvious that we can maximise at the same time the flows of ρ1 and ρ2, but it will turn out
in the resolution that, except in the special cases where we have to treat null densities at time t = 0, the maximisation of
these densities is simultaneous.

Definitions.

Definition 2.2. Let o, i ∈ B V ([0,+∞); [0,qc]). A solution to (2.2)–(2.3)–(2.4) is a triple of functions

ρ1 ∈ B V
(
R; [0,1]), ρ2 ∈ B V

(
(−∞,0); [0,1]), ρ3 ∈ B V

(
(0,+∞); [0,1])

such that

1. (ρ1,ρ2) is a weak entropy solution to (2.2) for (t, x) ∈ [0,+∞) × (−∞,0);
2. (ρ1,ρ3) is a weak entropy solution to (2.3) for (t, x) ∈ [0,+∞) × (0,+∞);
3. for a.e. x ∈ R, the traces of ρ1,ρ2,ρ3 in t = 0 satisfy (2.3);
4. for a.e. t > 0, the traces of ρ1,ρ2,ρ3 in x = 0 satisfy (2.4).

We denote below S = {ρ = (ρ, ρ̃ ) ∈ R
2: ρ � 0, ρ̃ � 0, ρ + ρ̃ � 1}.

Definition 2.3. By Riemann problem for (2.2)–(2.3)–(2.4) we mean (2.2)–(2.3)–(2.4) with constant boundary values i � 0 and
o � 0 for the inflow and the outflow, and with constant initial data, i.e.

ρ1(0, x) = ρ−
1 for x ∈ (−∞,0), ρ2(0, x) = ρ−

2 for x ∈ (−∞,0),

ρ1(0, x) = ρ+
1 for x ∈ [0,+∞), ρ3(0, x) = ρ+

3 for x ∈ (0,+∞). (2.5)

In this case, we obtain the following result:

Theorem 2.4. Under the hypotheses (V) and (F), the Riemann problem for (2.2)–(2.3)–(2.4)–(2.5) admits a unique solution in the
sense of Definition 2.2.

Furthermore, when o > 0, i > 0, there exist some invariant sets Ta,b = {(ρ1,ρ2) ∈ S; a � ρ1 + ρ2 � b}, for a � 0 small enough
and b � 1 large enough.

On S the Riemann solver for the considered problem is not continuous. However, it is continuous on some subset: for o ∈ [ε,1] with
ε > 0 and ρ ∈ T0,b , with b < 1 (T0,b being an invariant set), the solution is obtained continuously.



372 M. Mercier / J. Math. Anal. Appl. 350 (2009) 369–383
Fig. 3. An ‘n-T road’.

Qualitative properties.

Remark 2.5. If ρ1 = 0 at time t = 0, then ρ1(t, x) = 0 for all t and x and (2.2)–(2.3)–(2.4) decouples in two independent
IBVPs. From the traffic point of view, it means that those who exit do not interact with those who enter.

Remark 2.6. If i ≡ 0, ρ2 = 0 and ρ3 = 0 at time t = 0, then ρ2(t, x) = ρ3(t, x) = 0 for all t and x, while ρ1 is the usual
solution to a scalar conservation law, and we recover the classical LWR model, as exposed in Whitham’s book [21].

We observe here that some discontinuities appear when o,ρ−
2 → 0 and also when r+ → 1, ρ−

1 → 0. We can explain this
qualitatively as follows: when a road where vehicles can go is jammed (which corresponds to o = 0, respectively r+ = 1),
the behaviour of the traffic on the left-side of the road will depend dramatically on the presence or the absence of vehicles
willing to go on this jammed road. In fact, in the case o = 0 (respectively r+ = 1), if ρ−

2 > 0 (respectively ρ−
1 > 0) then the

total density on the left will increase abruptly to 1; whereas if ρ−
2 = 0 (respectively ρ−

1 = 0) then the problem arising from
the blocked road is simply ignored and nothing particular happens.

2.2. The ‘n-T’ case

In order to modelise a roundabout we would like to address the problem of an infinite road with entries periodically
distributed, so that a period corresponds to the perimeter of a roundabout. More generally, we can also consider an infinite
road with a countable number of points of entry and exit, the points of discontinuity not accumulating in some point. In
fact, we consider first the easier case of a road with n points of entry and exit and n ∈ N, n < ∞. Indeed, thanks to the
finite propagation speed, it is sufficient to see what happens in this case to obtain a local in time result, even in the case
of a countable number of points periodically distributed. Later, if we want to study what happens for larger times on a
roundabout, it will be necessary to consider the case of countable periodically distributed discontinuities.

We have to introduce here some notations. We assume that the points of entry and exit are located in the points xk ∈ R,
for k ∈ �1,n�, with xk−1 < xk < xk+1 < · · · . Furthermore, we number the main entry by 0, and the main exit by n + 1. In
this context, we call ρi, j the density of vehicles which enter in i and exit in j (see Fig. 3); in fact, the multi-class approach
by origin–destination has already been introduced in the previous work [14]. As no vehicle enters in n + 1 or exits in 0, we
finally have (n + 1)2 unknowns: the (ρi, j)i∈�0,n�, j∈�1,n+1� .

Remark 2.7. We do not allow vehicles to do more than one turn. This means that just after xk , say in x+
k , ρi,k = 0 for all

i ∈ �0,n�\{k}; and just before xk , say in x−
k , ρk, j = 0 for all j ∈ �1,n + 1�\{k}.

We add here the following hypothesis:

(P) We know the numbers pi, j that represent the proportion of vehicles entering in i that are to exit in j.

We have the following (local) conservation laws on the intervals (−∞, x1), (xn,+∞) and (xk, xk+1), for k ∈ �1,n�:

∀i ∈ �0,n�, ∀ j ∈ �1,n + 1�, ∂tρi, j + ∂x

(
ρi, j v

(∑
l,m

ρl,m

))
= 0. (2.6)

For all k ∈ �1,n�, we could prescribe as boundary conditions in xk:

∀i �= k, ∀ j �= k, ρi, j v

(∑
l,m

ρl,m

)(
t, x−

k

) = ρi, j v

(∑
l,m

ρl,m

)(
t, x+

k

)
max,

∀i ∈ �0,n�, ρi,k v

(∑
l,m

ρl,m

)(
t, x−

k

)
� ok(t) max,

∀ j ∈ �1,n + 1�, ρk, j v

(∑
l,m

ρl,m

)(
t, x+

k

)
� ik(t) max, (2.7)

the flows of the ρi, j being maximised in all these equations.
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However, it is better to consider stronger boundary conditions in xk that take into account the total flow for the exiting
and entering vehicles:

∀i �= k, ∀ j �= k, ρi, j v

(∑
l,m

ρl,m

)(
t, x−

k

) = ρi, j v

(∑
l,m

ρl,m

)(
t, x+

k

)
max,

∑
0�i�n

ρi,k v

(∑
l,m

ρl,m

)(
t, x−

k

)
� ok(t) max,

∑
1� j�n+1

ρk, j v

(∑
l,m

ρl,m

)(
t, x+

k

)
� ik(t) max, (2.8)

the flows being maximised first in x−
k and then in x+

k because of the priority rule. As in the one-T case, ok and ik are some
prescribed output and input functions, taking values in R

+ and corresponding to the capacity of the secondary road located
in xk .

We denote below S(n+1)2 = {ρ ∈ R
(n+1)2

: ∀(i, j) ∈ �0,n� × �1,n + 1�, ρi, j � 0,
∑

i, j ρi, j � 1}. We can remark that the
notation of the previous section can be identified here by S = S2.

The Riemann problem. We are interested in weak entropy solutions of the problem (2.6)–(2.8), when the functions ok and
ik are taken to be constants and when we choose initial conditions that are constant on the intervals (−∞, x1), (xn,+∞)

and (xk, xk+1), for k ∈ �1,n�:

ρi, j|t=0,x∈(−∞,x1) = ρ−
i, j,

ρi, j|t=0,x∈(xk,xk+1) = ρ
k+1/2
i, j , k ∈ �1,n�,

ρi, j|t=0,x∈(xn,+∞) = ρ+
i, j . (2.9)

With the previous notations, we can announce the following:

Theorem 2.8. Under the hypotheses (V), (F) and (P), there exists T > 0 such that the Riemann problem (2.6)–(2.8)–(2.9) admits a
unique weak entropy solution for t ∈ [0, T ].

Furthermore, we can give a lower bound for the time of existence: let L = mink{xk+1 − xk} > 0, then T � L
2V .

Qualitative properties. As in the case n = 1, some discontinuity phenomena appear when we make the initial conditions
vary.

3. Technical analysis for the ‘one-T ’ case

In this section, we solve the Riemann problem for (2.2)–(2.3)–(2.4). In Section 3.1, we first study the Riemann problem on
a standard road with two types of vehicles which have the same speed law. Then, in Section 3.2, we study ‘half ’ Riemann
problems in the quarter planes {x � 0, t � 0} and {x � 0, t � 0}. Finally, in Section 3.3, we will complete the proof of
Theorem 2.4.

3.1. Riemann problem with two types of vehicles

First, we consider the classical Riemann problem, for a road with two typesof vehicles, of respective densities ρ1 and ρ2,
which have the same speed law. We obtain the following result:

Proposition 3.1. Let us consider the two-populations system{
∂tρ1 + ∂x

(
ρ1 v(ρ1 + ρ2)

) = 0,

∂tρ2 + ∂x
(
ρ2 v(ρ1 + ρ2)

) = 0
(3.10)

with the following piecewise constant initial data:

ρ1(0, x) = ρ−
1 for x ∈ R

∗−, ρ1(0, x) = ρ+
1 for x ∈ R

∗+,

ρ2(0, x) = ρ−
2 for x ∈ R

∗−, ρ2(0, x) = ρ+
2 for x ∈ R

∗+. (3.11)

Then, for all ρ− = (ρ−,ρ−),ρ+ = (ρ+,ρ+) in S , there exists a unique weak entropy solution.
1 2 1 2
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Fig. 4. Solution of the Riemann problem; waves curves.

Proof. The 2×2 system (3.10) is of a standard type (‘straight-line systems’ see [1]; see also rich or Temple systems, see [20],
[19, Chapters 12 and 13]). We also based our study on [18] and on the article of Benzoni and Colombo [4].

Let r = ρ1 + ρ2 and s = ρ1/ρ2 when ρ2 �= 0; we also denote r+ = ρ+
1 + ρ+

2 , s+ = ρ+
1 /ρ+

2 , etc. We easily obtain that, for
smooth solutions with ρ2 �= 0, the system (3.10) is equivalent to:{

∂tr + (
v(r) + rv ′(r)

)
∂xr = 0,

∂t s + v(r)∂xs = 0.

If ρ2 = 0 and ρ1 �= 0, we obtain something similar by considering ρ2/ρ1 instead of ρ1/ρ2, so the only problem is in ρ = 0.
Consequently, we first solve the problem in S\{0}.

The characteristic speeds of (3.10) are λ1(ρ) = v(r) + rv ′(r) and λ2(ρ) = v(r), with ρ = (ρ1,ρ2). We remark that
λ1(ρ) < λ2(ρ) when ρ = (ρ1,ρ2) �= 0, and that λ2 is always non-negative (except in r = 1). The associated eigenvec-
tors are v1(ρ) = ( ρ1

ρ2

) = ρ and v2 = ( 1
−1

)
. This allows us to see that the 1-characteristic field is genuinely nonlinear

when ρ �= 0, as dλ1(ρ) · v1(ρ) does not vanish in S\{0}, q being strictly concave. The 2-characteristic field is linearly
degenerate since for all ρ ∈ S we have dλ2 · v2 ≡ 0. We can remark here that the functions r and s are strong Rie-
mann invariants. Let ρ ∈ S . The wave curves are O1(ρ) = O1(ρ1,ρ2) = {(ρ1,ρ2) ∈ S; ρ1/ρ2 = ρ1/ρ2}, when ρ2 �= 0,
and O2(ρ) = {(ρ1,ρ2) ∈ S; ρ1 + ρ2 = ρ1 + ρ2}. In particular, the shock-curves and the rarefaction-curves coincide and are
straight lines.

The 1-waves are made of shocks or rarefaction waves, whereas the 2-waves are contact discontinuities. More precisely,
we have the following:

If ρ1/ρ2 = ρ+
1 /ρ+

2 and r+ � r, the 1-waves that go from ρ = (ρ1,ρ2) to ρ+ = (ρ+
1 ,ρ+

2 ) are rarefaction waves, which are
between the lines of equations x/t = q′(r) and x/t = q′(r+).

If ρ1/ρ2 = ρ+
1 /ρ+

2 and r+ > r, the 1-waves that go from ρ to ρ+ are shocks of speed

c = r+v(r+) − rv(r)

r+ − r
.

In order to solve the Riemann problem, we must find an intermediate state ρ I = (ρ1,I ,ρ2,I ) so that s(ρ I ) = s− and

r(ρ I ) = r− (see Fig. 4). Clearly, we have ρ I = r+
r− ρ− , when r− �= 0.

Now, we want to see what happens when ρ− or ρ+ is 0.
If we make ρ− tend to 0 along a line ρ1/ρ2 = cst, it looks like we could obtain different solutions: a 1-wave from 0 to

whatever point in Δr+ = {ρ ∈ S; ρ1 + ρ2 = r+}, and then a 2-wave from this intermediate state to ρ+ . However, all these

intermediate states correspond in fact to the same solution, because the 1-shocks are of speed c = q(r+)−q(r−)

r+−r− = v(r+) and
the 2-waves are of speed λ2(ρ+) = v(r+), so the waves are attached. If we do not accept fictitious waves between ρ− = 0
and ρ+ , we take only a shock of speed c = v(r+). To summarise:

if ρ− = ρ+ = 0, we define the solution as ρ ≡ 0;
if ρ− = 0, we define the solution by linking ρ− to ρ+ by a 1-shock;
if ρ+ = 0, we define the solution by linking ρ− to ρ+ by a 1-wave. �
Remark 3.2. The set S is invariant under the flow of the system (3.10). More precisely, the trapezoids whose boundaries
are the Hugoniot loci are also invariant under the flow of the system (3.10). (For some general results on invariant sets,
see [12].)

3.2. Half-Riemann problems

We call ‘half-Riemann problem’ the simple case of an initial–boundary value problem in the quarter of plane {x � 0;
t � 0} or {x � 0; t � 0} when the initial condition is a constant. The problem here is to find the acceptable boundary
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Fig. 5. Left, r− � rc and N(ρ−) = [B, C]; right, r− < rc and N(ρ−) = {ρ−} ∪ [E, C].

conditions in x = 0. Some general criteria have been introduced in the literature in an attempt to characterise the set of
attainable states (see [2,3,9]).

3.2.1. Left-half problem
We fix a left state and we look for the right states attainable by a wave of negative speed.

Lemma 3.3. Fix ρ− = (ρ−
1 ,ρ−

2 ) ∈ S and denote r− = ρ−
1 +ρ−

2 . Then the set N(ρ−) of points ρ̂ = (ρ̂1, ρ̂2) ∈ S such that the solution
to the Riemann problem⎧⎪⎪⎨

⎪⎪⎩
∂tρ1 + ∂x

(
ρ1 v(ρ1 + ρ2)

) = 0,

∂tρ2 + ∂x
(
ρ2 v(ρ1 + ρ2)

) = 0,

(ρ1,ρ2)(0, x) =
{(

ρ−
1 ,ρ−

2

)
if x < 0,

(ρ̂1, ρ̂2) if x > 0

contains only waves with negative speed is:

If r− � rc : the segment with extreme points rc
r− ρ− and 1

r− ρ− (see Fig. 5, left);

If r− < rc : the segment with extreme points σ(r−)
r− ρ− and 1

r− ρ− , together with the point ρ− (see Fig. 5, right).

In both cases, for all ρ− ∈ S , minN(ρ−) ρ1 v(ρ1 + ρ2) = 0.

Remark 3.4. When we want not to consider shocks of zero speed in the left-half problem (that are fictitious as they are
located on the axis x = 0), we have to modify a little the set N(ρ−) in the case r− < rc and take N ′(ρ−) = {ρ−}∪{λρ−; λ ∈
] σ(r−)

r− , 1
r− ]}.

Proof of Lemma 3.3. The study of the left-half problem is equivalent to searching an artificial right state ρ̂ = (ρ̂1, ρ̂2) in a
problem like (3.10)–(3.11). We are here only interested in the waves with negative speed, in order to know what are the
states attainable on the line {x = 0}. We have seen in the proof of Proposition 3.1, that the 2-waves always have positive
speed, so we can only have a 1-wave: either a shock or a rarefaction wave, depending on the sign of r̂ − r− , which means
in particular that N(ρ−) ⊂ {ρ ∈ S; ρ1/ρ2 = ρ−

1 /ρ−
2 }.

If r̂ > r−, we have a shock of speed c = q( r̂ )−q(r−)

r̂−r− , which is negative if and only if q( r̂ ) − q(r−) � 0. There are two cases:
• when r− � rc , q( r̂ ) � q(r−) ⇔ r̂ � r− ,
• when r− < rc , q( r̂ ) � q(r−) ⇔ r̂ � σ(r−).

If r̂ � r− , we have a rarefaction wave which is located between the lines of equations x/t = q′(r−) and x/t = q′( r̂ ). These
two lines have negative slopes if and only if r̂ � rc , because q′ is non-increasing. Finally, we obtain r− � r̂ � rc (in
particular r− � rc).

We can summarise the situation as follows:

• if r− � rc , we have a wave of negative slope when rc � r̂ � 1,
• if r− � rc , we have a wave of negative slope when σ(r−) � r̂ � 1.

In order to complete the proof, we note that we can always have the state ρ− as artificial right state. In this case, nothing
happens and the solution is taken to be constant, equal to ρ− .

In the special case ρ− = 0, we define N(0) = {0} ∪ Δ1, where Δ1 = {ρ ∈ S; ρ1 + ρ2 = 1}. �
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Fig. 6. Let P = P (ρ+): left, r+ � rc and P = Trc ; right, r+ > rc and P = Tσ (r+) ∪ Δr+ .

3.2.2. Right-half problem
We fix now a right state and we search the states on the left attainable by a wave of positive speed.

Lemma 3.5. Fix ρ+ = (ρ+
1 ,ρ+

3 ) ∈ S and denote r+ = ρ+
1 +ρ+

3 . Then, the set P (ρ+) of points ρ̌ = (ρ̌1, ρ̌3) ∈ S such that the solution
to the Riemann problem

⎧⎪⎪⎨
⎪⎪⎩

∂tρ1 + ∂x
(
ρ1 v(ρ1 + ρ3)

) = 0,

∂tρ3 + ∂x
(
ρ3 v(ρ1 + ρ3)

) = 0,

(ρ1,ρ3)(0, x) =
{

(ρ̌1, ρ̌3) if x < 0,(
ρ+

1 ,ρ+
3

)
if x > 0

contains only waves with positive speed is:

If r+ � rc : the triangle Trc of points ρ̌ ∈ S such that ρ̌1 + ρ̌3 � rc (see Fig. 6, left).
If r+ > rc : the triangle Tσ(r+) of points ρ̌ ∈ S such that ρ̌1 + ρ̌3 � σ(r+), together with the line Δr+ = {ρ ∈ S; ρ̌1 + ρ̌2 = r+} (see

Fig. 6, right).

In both cases, for all (ρ+
1 ,ρ+

3 ) ∈ S , minP (ρ+) ρ1 v(ρ1 + ρ3) = 0.

Remark 3.6. As before, when we do not want to consider shocks of zero speed, we have to change a little the definition
of P in the case r+ > rc into P ′(ρ+) = Δr+ ∪ {ρ ∈ S; σ(r+)/r+ > r � 0}.

Proof of Lemma 3.5. The ideas of the proof are essentially the same as for Lemma 3.3, up to replacing ‘negative speed’ by
‘positive speed’. For this reason, the 2-waves are now always allowed, that is why the line Δr+ of equation ρ1 + ρ3 = r+ is
always in P (ρ+). It also implies that we only have to search the admissible 1-waves and then add whatever 2-wave. That is
why we search the states ρ̌ that can be linked to ρ+ by a 1-wave. This 1-wave is a shock or a rarefaction wave, depending
on the sign of ř − r+ .

If ř � r+ , we have a rarefaction wave located in the quarter plane {x � 0, t � 0} if and only if ř � rc . So, in this case, we
have r+ � ř � rc .

If ř � r+ , we have a shock of speed c = q(ř)−q(r+)

ř−r+ , which is positive if and only if q(ř) � q(r+).

• If r+ > rc , c � 0 if ř � σ(r+).
• If r+ � rc , c � 0 if ř � r+ .

Finally,

• if r+ > rc , then (ρ̌1, ρ̌3) ∈ Tσ(r+) ∪ Δr+ ,
• if r+ � rc , then (ρ̌1, ρ̌3) ∈ Trc . �

3.3. The Riemann problem

3.3.1. Proof of Theorem 2.4
Now we prove Theorem 2.4, according to which the Riemann problem for (2.2)–(2.3)–(2.4) admits a unique solution.
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Fig. 7. Solution.

Proof of Theorem 2.4. Let r− = ρ−
1 + ρ−

2 and r+ = ρ+
1 + ρ+

3 . The solution consists in (see Fig. 7):

1. the state (ρ−
1 ,ρ−

2 );
2. a (possibly null) 1-wave with negative speed;
3. the state (ρ̂1, ρ̂2) in N(ρ−

1 ,ρ−
2 );

4. a non-classical discontinuity with 0 speed;
5. the state (ρ̌1, ρ̌3) in P (ρ+

1 ,ρ+
3 );

6. a (possibly null) 1-wave with positive speed;
7. the state (ρ̃1, ρ̃3);
8. a (possibly null) 2-wave with positive speed.

The first wave and the last two waves are the restrictions of a standard solution to the Riemann problem (3.10); the states
(ρ̂1, ρ̂2), (ρ̌1, ρ̌3) are obtained thanks to Lemma 3.3 and Lemma 3.5. Now we only have to attach these states in x = 0,
which is possible if the boundary conditions (2.4) are realised. The uniqueness will come from the maximisation of these
conditions.

There are several cases, depending on the position of r− and r+ with respect to rc .

If r+ � rc , we note

N = N
(
ρ−

1 ,ρ−
2

) = N
(
ρ−

1 ,ρ−
2

) ∩ {
(ρ1,ρ2), ρ2 v(ρ1 + ρ2) � o

}
and

P = P
(
ρ+

1 ,ρ+
3

) = P
(
ρ+

1 ,ρ+
3

) ∩ {
(ρ1,ρ3), ρ1 v(ρ1 + ρ3) = M

} ∩ {
(ρ1,ρ3), ρ3 v(ρ1 + ρ3) � i

}
,

with M = ρ̂1 v(ρ̂1 + ρ̂2), so that N and S are the sets where the boundary conditions are verified. These sets are
non-empty: for example the point 1

r− (ρ−
1 ,ρ−

2 ) is in N , and the point (q|−1
[0,rc ](M),0) is in P since q is bijective

from [0, rc] to [0,qc] and M � qc for all (ρ̂1, ρ̂2) ∈ N . Now, we need to maximise the flows of ρ1, ρ2 and ρ3 on
N and P . The question is: is the maximum uniquely attained?

First, we maximise the flow of ρ̂2 on N ∩ {ρ1 + ρ2 � rc}, which is the same as maximising the function
f2 : (t �→ tρ−

2 v(tr−)), with t � rc/r− .

If ρ−
2 �= 0, we can write f2(t) = ρ−

2
r− q(tr−), and we obtain a unique maximum for this function as we have here

tr− � rc and q is strictly decreasing on [rc,1]. Moreover, we have f2(t0) = o ⇔ t0 = 1
r− q|−1

[rc ,1](
or−
ρ−

2
). Thus

we take ρ̂ = tρ− with t = max{ σ(r−)
r− , rc

r− , t0}.
Throughout, we can remark that the maximum of the flow of ρ̂1 is attained at the same point that

realises also the maximum of the flow of ρ̂2. This comes from the fact that we obtain the maximum of
the flow of ρ̂1 by maximising f1 : (t �→ tρ−

1 v(tr−)), f1 and f2 being defined on the same set.
If ρ−

2 = 0,ρ−
1 �= 0, then we have f2 ≡ 0 and we cannot maximise the flow of ρ2. Instead we maximise the flow

of ρ1. We get that f1 is maximised for t1 = rc

ρ−
1

and then we take t = max{ σ(r−)
r− , rc

r− }.

If ρ−
1 = ρ−

2 = 0, then we take ρ̂ = ρ− or ρ̂ ∈ Δ1 = {ρ ∈ S; r = 1}. It seems here that the maximum is not
uniquely defined, but in fact from (0,0) to whatever point in Δ1, there is a shock of speed zero, hence
it does not appear as this shock is located on the axis x = 0. Finally all these points correspond to the
same solution.
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Now, we would like to know if we have continuity of the solution with respect to the initial conditions. Essentially,
we have to examine what happens when ρ−

2 → 0, since the definition of t in the cases ρ �= 0 differs in respect
to t0, and more generally what happens when ρ− → 0.

We assume at first that o > 0; then, t0 is well defined when or−
ρ−

2
� qc .

If ρ−
1 = 0, then or−

ρ−
2

= o and t0 is invariant when ρ−
2 → 0; thus we have r̂ = tr− = max{σ(ρ−

2 ), rc,q−1(o)} =
σ(ρ−

2 ) for ρ−
2 small enough. Consequently, r̂ → 1 when ρ−

2 → 0 and we find the same solution as in the case
ρ− = 0.

If ρ−
1 �= 0, we have that t0r− → rc when ρ−

2 → 0, and even, for ρ−
2 small enough, t0 is no longer well defined:

for example for ρ−
2 <

ρ−
1 o
qc

, we have f2(t) < o ∀t � rc/r− , and the condition is automatically verified. Hence, o does

not intervene any longer. In this case, we have t = max{ σ(r−)
r− , rc

r− } and we have the same solution as in the case
ρ−

2 = 0,ρ−
1 �= 0.

Finally, let us see what happens if we make r− → 0. As before, t0 will not realise the maximum and we have
only to see that t becomes σ(r−)

r− for r− small enough. Consequently, ρ̂ tends to a point of Δ1, and we are done
since all the points of Δ1 correspond to the same solution ρ̂ = 0.

Finally, in the case o > 0, there is no problem of discontinuity when ρ− → 0.
Now, if o = 0 we have t0 = 1

r− when ρ−
2 �= 0 and then t = t0, ρ̂ ∈ Δ1. But, if ρ−

1 �= 0 and ρ−
2 = 0, then we

obtain a very different solution ρ̂ = max{σ(ρ−
1 )/ρ−

1 , rc/ρ
−
1 }(ρ−

1 ,0), and we have a discontinuity in the solution
when ρ−

2 → 0. That is why we have to impose o > 0 if we want to have a continuity in the Riemann solver.
At this point there are two cases:

1. if r− � rc , N = N ∩ {ρ1 + ρ2 � rc}, and the work is finished;
2. if r− < rc , either N = N ∩ {ρ1 + ρ2 � rc} and the work is finished, or N = {(ρ−

1 ,ρ−
2 )} ∪ (N ∩ {ρ1 + ρ2 � rc}),

and the maximum could be obtained in two points. We have to observe what happens in this last case: the
maximum is obtained in t(ρ−

1 ,ρ−
2 ) (with t � rc/r−) and in (ρ−

1 ,ρ−
2 ) and we have:

ρ−
2 v(r−) = tρ−

2 v(tr−)

i.e. tr− = σ(r−).

Finally, in this case, we have two solutions:
• (ρ̂1, ρ̂2) = (ρ−

1 ,ρ−
2 ),

• (ρ̂1, ρ̂2) = σ(r−)
r− (ρ−

1 ,ρ−
2 ), and we have between (ρ−

1 ,ρ−
2 ) and (ρ̂1, ρ̂2) a shock of speed c = q(σ (r−))−q(r−)

σ (r−)−r− = 0,
so this shock is in fact fictitious as it is on the axis x = 0.

Moreover, the flows of ρ̂1 are the same in the two cases. Consequently, we have in fact two times the same
half solution in the quarter {x � 0, t � 0}.
Secondly, we maximise the flow of ρ̌3 on P . As v is strictly non-increasing, when M �= 0 the elements of P

can be written as (ρ̌1, v−1( M
ρ̌1

) − ρ̌1) so that the flow of ρ̌3 is:

f3(ρ1) = v−1
(

M

ρ1

)
M

ρ1
− M

= q

(
v−1

(
M

ρ1

))
− M.

As we are on Trc and q is strictly increasing on [0, rc], we obtain a unique maximum for f3 that is attained when
ρ1 is maximum.

Besides, f3(ρ1) = i ⇔ ρ1 = M
i+M q|−1

[0,rc ](i + M), which is defined when M + i is small enough, more precisely

when M + i � qc . For M + i larger we take ρ̌ ∈ Δrc and in this case, we have ρ1 = M
v(rc)

.
If M = 0, then we have ρ1 = 0 and f3(ρ3) = q(ρ3), or r = 1 and f3 = 0. As we want to maximise f3, we take

ρ1 = 0 and ρ3 = min{q|−1
[0,rc ](i), rc}. We see here that the choice of ρ̌ is then continuous, if we assume that M

varies continuously.
If r+ > rc the ideas are the same, but we now denote

N = N
(
ρ−

1 ,ρ−
2

) = N
(
ρ−

1 ,ρ−
2

) ∩ {
(ρ1,ρ2), ρ2 v(ρ1 + ρ2) � o

} ∩ {
(ρ1,ρ2), ρ1 v(ρ1 + ρ2) � q(r+)

}
,

whereas the definition of P is unchanged. This new definition guarantees that these sets are non-empty. Indeed,
if we reconsider the same examples as in the first case, we see now that M � q(r+) ⇒ q|−1

[0,rc ](M) � σ(r+) and the

point (q|−1
[0,rc ](M),0) is in Tσ(r+) , thus it is in P .

The way to maximise the flows of ρ̂1 and ρ̂2 is the same as in the first case, so we will not rewrite all. Now

we have ρ̂ = tρ− , with tr− = max{σ(r−), rc, t0r−, t1r−} and t0r− = q|−1
[rc ,1](

or−
− ), t1r− = q|−1

[rc ,1](
q(r+)r−

− ). We have

ρ2 ρ1



M. Mercier / J. Math. Anal. Appl. 350 (2009) 369–383 379
Fig. 8. Maximisation of the flows of ρ2 and ρ1 (left) and of ρ3 (right), when r− � rc and r+ � rc .

seen before that there is a lack of continuity when o,ρ−
2 → 0. This phenomenon is always to consider, but slightly

changed: when o,ρ−
2 → 0, ρ̂ → q−1+ (κ)(1,0),∀κ ∈ [0,min{q(r+),qc,q(ρ−

1 )}] when ρ−
1 �= 0 and ρ̂ tends to (0,0) if

also ρ−
1 → 0.

Besides, here an other phenomenon of discontinuity can appear when we make r+ → 1 and ρ−
1 → 0, when

ρ−
2 tends to something strictly positive. In this case, t = t1 for q(r+) and ρ−

1 small enough, and we obtain that
for ρ−

2 �= 0, ρ̂ → q−1+ (κ)(0,1), ∀κ ∈ [0,min{o,q(ρ−
2 ),qc}]. However, the flow of ρ̂2 is not maximised for all these

solutions, but only for κ = min{o,q(ρ−
2 ),qc}. We obtain these limits by making

q(r+)ρ−
2

ρ−
1

→ κ . However, the discon-

tinuity disappears if we make also ρ−
2 → 0, since in this case the only choice possible for ρ̂ is (0,0).

The way to maximise the flow of ρ̌3 on P is slightly changed.
As before, we obtain a unique maximum of the flow of ρ̌3 on P ∩ {ρ1 + ρ3 � rc}. However an other point may

attain the maximum on the line Δr+ . In this case, we have (ρ̌1
1 , ρ̌1

3 ) ∈ P ∩ {ρ1 +ρ3 � rc} and (ρ̌2
1 , ρ̌2

3 ) = (ρ̃2
1 , ρ̃2

3 ) ∈
Δr+ , so we have

ρ̌1
1 v

(
ř1) = M,

ρ̌1
3 v

(
ř1) � i,

ř1 � σ(r+)

and ρ̌2
1 v(ř2) = M , ρ̌2

3 v(ř2) = ρ̌1
3 v(ř1), this last condition giving:

(
ř1 − ρ̌1

1

)
v
(
ř1) = (

ř2 − ρ̌2
1

)
v
(
ř2)

i.e. q
(
ř1) − M = q(r+) − M

so ř1 = σ(r+).

Thus, we have between (ρ̌1
1 , ρ̌1

3 ) and (ρ̃1
1 , ρ̃1

3 ) = r+
σ(r+)

( M
v(σ (r+))

, σ (r+) − M
v(σ (r+))

) a shock of speed c′ = 0, meaning

that it is fictitious. Moreover (ρ̃1
1 , ρ̃1

3 ) = (ρ̃2
1 , ρ̃2

3 ), and we have in fact the same solution. �
Remark 3.7. Here, we have given two different definitions of the set N , depending on r+ greater or less than rc . In fact,
this corresponds to giving only one definition:

N
(
ρ−

1 ,ρ−
2

) = N
(
ρ−

1 ,ρ−
2

) ∩ {
(ρ1,ρ2), ρ2 v(ρ1 + ρ2) � o

} ∩ {
(ρ1,ρ2), ρ1 v(ρ1 + ρ2) � d(r+)

}
,

where d is a function equal to qc on [0, rc] and coinciding with q on [rc,1].

3.3.2. Study of the point of discontinuity
We observed in the proof just above that there is a lack of continuity of the Riemann solver when o and ρ−

2 tend
together to 0. We have obtained the following:

Proposition 3.8. Some discontinuities appear when o and ρ−
2 tend together to 0, and also when r+ → 1, ρ−

1 → 0.

Now, we would like to see what are the different limits obtained, depending on the manner that ρ−
2 and o tend to 0

and how we can have access to them in the (ρ−,o) plane.
2
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Fig. 9. Example of an invariant set.

Proposition 3.9. In the case r+ � rc , when o and ρ−
2 tend together to 0, we have the following:

• if ρ−
1 � rc and o

ρ−
2

→ κ
ρ−

1
, with κ � qc , then ρ̂ → q|−1

[rc ,1](κ)(1,0);

• if 0 < ρ−
1 < rc and o

ρ−
2

→ κ
ρ−

1
, with κ � q(ρ−

1 ), then ρ̂ → q|−1
[rc ,1](κ)(1,0);

• if o,ρ−
2 and ρ−

1 tend together to 0, then ρ̂ → 0.

Proof. We have seen that, when ρ−
2 �= 0 the solution is given by

ρ̂ = t

r− ρ− with t = max

{
σ(r−), rc,q−1+

(
or−

ρ−
2

)
,q−1+

(
d(r+)r−

ρ−
1

)}
,

where we have denoted q−1+ = q|−1
[rc ,1] , and the definition of t has been slightly changed by a multiplicative constant.

We assume first that ρ−
1 stays strictly positive, so the problem is essentially the behaviour of t when o,ρ−

2 → 0. If

q−1+ ( or−
ρ−

2
) has not to be taken into account at the limit (so that the maximum has to be taken between σ(r−) and rc), then

the solution will be ρ̂ = max{σ(ρ−
1 ), rc}(1,0). The question is now to know if this are the only possible limits.

We can see that the limit of t will be limρ−
2 →0 q−1+ ( or−

ρ−
2

) if limρ−
2 →0 q−1+ ( or−

ρ−
2

) � max{σ(r−), rc}. Here we have to study

two different cases depending on the situation of ρ−
1 with respect to rc .

• If ρ−
1 � rc , then the condition is o(1 + ρ−

1
ρ−

2
) < qc . Consequently, if o

ρ−
1

ρ−
2

→ κ � qc , the limit will be ρ̂ = q−1+ (κ)(1,0).

• If 0 < ρ−
1 < rc , then for ρ−

2 small enough, we have also r− < rc and the condition is o < ρ−
2 v(r−). Then, if o

ρ−
2 v(r−)

→
κ

q(ρ−
1 )

� 1, we get ρ̂ → q−1+ (κ)(1,0).

Now, we want to see what happens when we have also ρ−
1 → 0 (and so r− → 0). In this case, 1

r− ρ− tends to whatever
points in Δ1. Besides, t > σ(r−) ⇒ o < ρ−

2 v(r−) and as before, we take o,ρ−
2 , r− such that o

ρ−
2 v(r−)

→ κ � 1. In this case

we have o
ρ−

2 v(r−)
r−v(r−) ∼ κq(r−) → 0, because q(0) = 0 and r− → 0. Then t → 1 and ρ̂ tends to whatever point in Δ1,

which corresponds in fact to the same solution and it is equivalent to take ρ̂ = (0,0). So, we keep continuity by making ρ−
1

tend to 0. �
Remark 3.10. Among all the possible limits, only one limit realises the maximum condition on the flow.

Remark 3.11. We have not treated here the cases r+ > rc and r+ → 1 because they are very similar.

3.4. Invariant sets

We would like to describe here some invariant sets of this problem, that is to say that we want to find the sets U ⊂ S
such that (ρ−,ρ+) ∈ U 2 ⇒ (ρ̂, ρ̌, ρ̃) ∈ U 3. We will prove the following:

Proposition 3.12. We assume that o, i > 0 and we introduce m = q|−1
]0,rc [(i), M = q|−1

]rc ,1[(o) and Ta,b = {ρ ∈ S; a � r � b} for
0 � a � b � 1. Then ∀a � m and ∀b � M, Ta,b is an invariant set for the Riemann problem (2.2)–(2.3)–(2.4), see Fig. 9.
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Proof. First, we highlight that we have automatically a � rc and b � rc . Then, we have seen before that there are in fact
only few cases for ρ̂: r̂ � rc and ρ̂ = ρ−; otherwise r̂ � rc and ρ̂ ∈ Δrc or ρ̂ ∈ H(2)

o = {ρ, ρ2 v(ρ1 +ρ2) = o} or ρ̂ ∈ H(1)

q(r+)
=

{ρ, ρ1 v(ρ1 + ρ2) = q(r+)}. Now we examine these cases:

1. if ρ̂ = ρ− , it is obvious as we have taken ρ− ∈ Ta,b;
2. if ρ̂ ∈ Δrc : we have Δrc ⊂ Ta,b , since a � rc and b � rc so ρ̂ ∈ Ta,b;

3. if ρ̂ ∈ H(2)
o : here we have ρ̂2 v(ρ̂1 + ρ̂2) = o so r̂ v( r̂ ) � o. As r̂ � rc and q decreases on ]rc,1[, then r̂ � M , and we are

done;
4. if ρ̂ ∈ H(1)

q(r+)
: as above, we see that ρ̂1 v( r̂ ) = q(r+) implies q( r̂ ) � q(r+) and consequently r̂ � r+ � M , and we have

finished.

Then we have to do the same thing for ρ̌ . Either ř > rc and ρ̌ ∈ Δr+ ; or ř � rc and ρ̌ ∈ H(2)
i = {ρ; ρ2 v(ρ1 + ρ2) = i} or

ρ̌ ∈ Δrc . As before, we examine very briefly the different cases:

1. if ρ̌ ∈ Δr+ , then ř = r+ and then ρ̌ ∈ Ta,b;

2. if ρ̌ ∈ H(2)
i , then ρ̌2 v(ř) = i so q(ř) � i and consequently, as ř � rc then ř � m.

In order to finish the proof, we have only to say that ρ̃ ∈ Δr+ , and we have directly that ρ̃ ∈ Ta,b . �
3.5. Particular case

In the case v(r) = Vmr(1 − r), we have q(r) = Vmr(1 − r); and ρ1 v(ρ1 +ρ3) = i becomes ρ2
1 +ρ1ρ3 −ρ1 + i/Vm = 0. We

are thus led to study the curve H of equation x2 + xy − x + C/Vm = 0 in the plane (x, y). This is the equation of a hyperbola
of centre (0,1) and of asymptotes the lines of equations x = 0 and y = 1 − x; and if C/Vm � 1/4, then H ∩ S �= ∅.

If r− � rc and r+ � rc , then we obtain Fig. 8.

4. Resolution of the ‘n-T ’ problem

We want to consider an infinite road with only one point of entry and exit. That is why, in order to treat the half-
Riemann problems, we first deal with a Riemann problem on a road without extra entry or exit but with M types of
vehicles, with the same speed law.

4.1. Riemann problem with M types of vehicles on an infinite road

Proposition 4.1. The Riemann problem with M types of vehicles:

∀i ∈ �1, M �, ∂tρi + ∂x

(
ρi v

( ∑
1�i�M

ρi

))
= 0 (4.12)

with constant initial conditions:

∀i ∈ �1, M �,

{
ρi(0, x) = ρ−

i for x < 0,

ρi(0, x) = ρ+
i for x > 0,

(4.13)

where ρ−,ρ+ ∈ SM admits a unique solution.

Proof. Let r = ∑
1�i�M ρi , si = ρ1

ρi
, for i ∈ �2, M �. For regular solutions, the system is equivalent to:

{
∂tr + ∂x

(
rv(r)

) = 0,

∂t si + v(r)∂xsi = 0 for i ∈ �2, M �.

We see here that the characteristic speeds of the system are λ1 = v(r)+ rv ′(r), which is of order 1, and λ2 = v(r) � 0, which
is of order M − 1. We also obtain the wave set:

O1(ρ) = {tρ, 0 � t � 1/r},
O2(ρ) = {r = r}.

The solution of the Riemann problem consists consequently of a 1-wave followed by a 2-wave, the intermediate state being
ρ̃ = r+

r− ρ− . �
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4.2. Half-Riemann problem

We use the same ideas as for the half-Riemann problem with only two types of vehicles, as the second characteristic
speed is always positive, so we have only to take the first characteristic speed into account: only the total density is seen.

Lemma 4.2. Fix ρ− ∈ S(n+1)2 and denote r− = ∑
i, j ρ

−
i, j . Then the set N(ρ−) of points ρ̂ ∈ S(n+1)2 such that the solution to the

Riemann problem (4.12)–(4.13) contains only waves with negative speed is:

If r− � rc : the segment with extreme points rc
r− ρ− and 1

r− ρ−;

If r− < rc : the segment with extreme points σ(r−)
r− ρ− and 1

r− ρ− , together with the point ρ− .

Lemma 4.3. Fix ρ+ ∈ S(n+1)2 and denote r+ = ∑
i, j ρ

+
i, j . Then, the set P (ρ+) of points ρ̌ ∈ S(n+1)2 such that the solution to the

Riemann problem (4.12)–(4.13) contains only waves with positive speed is:

If r+ � rc : the set Trc of points ρ̌ ∈ S(n+1)2 such that r � rc ;
If r+ > rc : the set Tσ(r+) of points ρ̌ ∈ S(n+1)2 such that r � σ(r+), together with the line Δ = {r = r+}.

4.3. Local resolution in xk

We have now to stick the two half problems in x = xk , taking the boundary conditions into account.

Proof of Theorem 2.8. Locally in a neighbourhood of xk , the solution consists of:

1. the state ρ−;
2. a (possibly null) 1-wave with negative speed;
3. the state ρ̂ in N(ρ−);
4. a non-classical discontinuity with 0 speed;
5. the state ρ̌ in P (ρ+);
6. a (possibly null) 1-wave with positive speed;
7. the state ρ̃;
8. a (possibly null) 2-wave with positive speed.

The first wave and the last two waves are a standard solution to the Riemann problem; the states ρ̂ , ρ̌ are obtained thanks
to Lemma 4.2 and Lemma 4.3. Now we only have to stick these states in x = xk , which is possible if the boundary conditions
(2.7)–(2.8) are realised. The uniqueness will come from the maximisation of these conditions.

In order to do this we are coming back to a Riemann problem for a ‘one-T’ road with only three types of vehicles.
Let ρ1 = ∑

i �=k, j �=k ρi, j , ρ2 = ∑
0�i�n ρi,k and ρ3 = ∑

1�i�n+1 ρk, j . Thanks to the preceding work, we obtain (ρ̂1, ρ̂2) and
(ρ̌1, ρ̌3).

We get:

ρ̂1 =
∑

i �=k, j �=k

ρ̂i, j, ρ̌1 =
∑

i �=k, j �=k

ρ̌i, j,

ρ̂2 =
∑

0�i�n

ρ̂i,k, ρ̌3 =
∑

1� j�n+1

ρ̌k, j .

In particular, we know r̂ = ∑
i, j ρ̂i, j = ρ̂1 + ρ̂2. The ρ̂k, j , for j �= k, seem to miss, but in fact the correspondent vehicles are

disappearing before the road k − 1; their densities are consequently null. Otherwise, it is sufficient to know r̂ in order to
know ρ̂ , as ρ̂ ∈ N(ρ−) and so it is proportional to ρ− . Hence we have: ρ̂ = r̂

r− ρ− .
It is the same for ř = ∑

i, j ρ̌i, j = ρ̌1 + ρ̌3. The missing species have indeed their densities null, as they disappear in xk .

This fact allows us to determine the ρ̌i, j for i �= k, j �= k, if ř �= 1, as the flow conservation gives: ρ̌i, j = v( r̂ )

v(ř)
ρ̂i, j .

We now have only to determine the ρ̌k, j for j ∈ �1,n + 1�, knowing that ρ̌3 = ∑
1� j�n+1 ρ̌k, j . As we know the numbers

pk, j giving the probability for a vehicle entering in k to go in j, we can conclude:

ρ̌k, j = pk, jρ̌3,

and we are done.
The case ř = 1 arrives if and only if r+ = 1, so nothing happens on the right because the traffic is blocked. That is why,

in this case, we take ρ̌ = ρ+ . In fact, all the points of maximal densities are equivalent, as they are linked by a 2-wave of
speed v(1) = 0.
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Then, it remains to collate these local solutions, which is possible as long as the waves do not cross each other. As the
points of discontinuity are separated by at least L, the time of existence is T � L/(2V ), where V = v(0). �
5. Conclusion

Thanks to this work, we have obtained a new modellisation of the traffic on a roundabout. The main point in this new
modellisation is the introduction of special boundary conditions in order to treat the points of entry and exit. Thanks to
classical tools of hyperbolic systems and maximisation of the boundary conditions, we first obtain a result of existence and
uniqueness of a weak entropy solution in the case of the one-T road. Then, collating the solutions obtained locally, we have
been able to derive a result of existence and uniqueness of a weak entropy solution for the Riemann problem in the case
of a roundabout; the time of existence of this solution is finite, but we can give a lower bound on it. A more painful result
is that the obtained Riemann solver is not continuous, essentially in two points that correspond to the fact that a road is
blocked, and for example the maximal densities lead us to discontinuity phenomena. However, there exists some invariant
sets, that can avoid these maximal densities.

Qualitatively, this model seems quite coherent, and the points of discontinuity can be understood since we have not
at all the same behaviour in two very close situations: if a road is jammed and nobody wants to enter it, the problem is
ignored, but if only one car wants to go there, then it will stop and block all the traffic.

Finally, we can consider some new problems: if we never consider maximal density in the initial condition, and if the
output functions have a lower bound strictly positive, then we are allowed to think to methods such as front tracking (see
[5,8,13]) in order to address the Cauchy problem, and perhaps prolong the time of existence.
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