Right 2-Engel Elements and Commuting Automorphisms of Groups

Marian Deaconescu

Department of Mathematics and Computer Science, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait

and

Gary L. Walls

Department of Mathematics, University of Southern Mississippi, Hattiesburg, Mississippi 39401

Communicated by Georgia Benkart

Received December 13, 1999

It is shown that there is a close connection between the right 2-Engel elements of a group and the set of the so-called commuting automorphisms of the group. As a consequence, the following general theorem is proved: If G is a group and if $R(G)$ denotes the subgroup of right 2-Engel elements, then the factor group $R(G) \cap C_G(G')/Z_2(G)$ is a group of exponent at most 2.

Key Words: commuting automorphisms; central automorphisms; right 2-Engel elements

INTRODUCTION

Let G be a group and consider the set $R_2(G) = \{g \in G \mid [g, x, x] = 1$ for all $x \in G\}$ of right 2-Engel elements of G. It is well known, see Kappe [5], that $R_2(G)$ is a characteristic subgroup of G. It is also known, see Heineken [3], that the inverse of a right 2-Engel element is a left 3-Engel element.

1 While working at this paper, the first named author was supported by Research Grant SM 09/00 from Kuwait University Research Administration.
In this paper we are interested in the structure of the subgroup $R_2(G)$ for centerless groups G. Results from [1] and [2] imply that if G is a finite group with trivial center, then $R_2(G) = 1$. One would expect that whenever G is a group with trivial center $R_2(G)$ is either trivial, or has a structure which is hard to control; indeed, the structure of $R_2(G)$ is known to be under control provided that some rather strong conditions are imposed on G, as, for example, the condition that G satisfies the maximum condition on subgroups—see, for example, Baer [1] or the discussion in [9, Sect. 12.3]. In a certain sense, centerless groups are as far from being nilpotent as one could get; recent results, see [7], show that even in nilpotent groups there may exist 5-Engel elements none of whose powers is a left 5-Engel element. The following result comes then as a surprise; it asserts that all groups possess a certain canonic section which has a very special structure:

Theorem 1.1. Let G be a group. Then $R_2(G) \cap C_G(G')/Z_2(G)$ is a group of exponent at most 2. In particular, if $Z(G) = 1$, then $R_2(G)$ is a subgroup of G of exponent at most 2.

The above theorem is a consequence of results related to the so-called commuting automorphisms of groups. An automorphism α of a group G is called a commuting automorphism if $g\alpha(g) = \alpha(g)g$ for all $g \in G$. The set of all commuting automorphisms of G is denoted here by $\mathcal{A}(G)$ and it is clear that set $\mathcal{A}(G)$ contains the group $Aut_c(G)$ of central automorphisms of G. The converse inclusion does not hold in general; in fact, see [2], there exist finite nonabelian 2-groups G such that $\mathcal{A}(G)$ is not a subgroup of $Aut(G)$. Previous results suggest, however, the following:

Conjecture. If G is a group and if $Aut_c(G) = \{id_G\}$, then $\mathcal{A}(G) = \{id_G\}$.

This conjecture was shown to be true in the following particular cases: G is a simple nonabelian group (I. N. Herstein [4]), or G has no nontrivial abelian normal subgroups (T. J. Laffey [6]), or $G = G'$ and $Z(G) = 1$ (M. Pettet [8]), or G is finite (Deaconescu et al. [2]).

The second main result of this paper shows that the above conjecture is false:

Theorem 1.2. There exist infinite groups G such that $Z(G) = 1$ and $\mathcal{A}(G) \neq \{id_G\}$.

More information about the groups whose existence is ensured by Theorem 1.2 is contained in

Theorem 1.3. Let G be a group such that $Z(G) = 1$ and $\mathcal{A}(G) \neq \{id_G\}$.

(i) $\mathcal{A}(G)$ is a subgroup of $Aut(G)$ and $exp(\mathcal{A}(G)) = 2$.

(ii) $1 < R_2(G) \leq C_G(G')$ and $exp(R_2(G)) = 2$.
(iii) If $\alpha \in \mathcal{A}(G)$, then α fixes $G^2R_2(G)$, where G^2 is the subgroup of G generated by the set of squares of elements in G.

The above result has an immediate consequence which shows that if a group G has no nontrivial central automorphisms, then the structure of the set $\mathcal{A}(G)$ is very simple:

Corollary 1.4. If G is a group such that $\text{Aut}_c(G) = \{id_G\}$, then $\mathcal{A}(G)$ is a subgroup of $\text{Aut}(G)$ of exponent at most 2.

It is well known that if G is a group with trivial center, then the center of $\text{Aut}(G)$ is trivial too. Our last result shows that the same property holds for $R_2(G)$:

Theorem 1.5. If G is a group such that $R_2(G)$ is trivial, then $R_2(\text{Aut}(G))$ is trivial.

PRELIMINARY LEMMAS

The first lemma is due to T. J. Laffey [6] and is very useful in computations:

Lemma 2.1. Let $\alpha \in \mathcal{A}(G)$. Then $[\alpha(x), y] = [x, \alpha(y)]$ for all $x, y \in G$.

The next result bridges together the right 2-Engel elements and the commuting automorphisms of a group:

Lemma 2.2. (i) If $\alpha \in \mathcal{A}(G)$ and if $x \in G$, then $x^{-1}\alpha(x) \in R_2(G)$.

(ii) Let $g \in G$ and denote by T_g the inner automorphism induced by g. Then $T_g \in \mathcal{A}(G)$ if and only if $g \in R_2(G)$. In particular, $\text{Inn}(G) \cap \mathcal{A}(G)$ is isomorphic to $R_2(G)/Z(G)$.

Proof. The proofs of both assertions are elementary and can be found in [2].

The following properties of commuting automorphisms are essential for what follows:

Lemma 2.3. Let $\alpha \in \mathcal{A}(G)$.

(i) If $x \in G'$, then $x^{-1}\alpha(x) \in Z(G)$.

(ii) $G' \subseteq C_G(\alpha)$ if and only if $\alpha^2 \in \text{Aut}_c(G)$.

Proof. See [2].
The following result provides a criterion for \(\mathcal{A}(G) \) to be trivial:

Lemma 2.4. Let \(G \) be a group with no nontrivial central automorphisms. Then \(\mathcal{A}(G) = \{ \text{id}_G \} \) if and only if \(R_2(G) = Z(G) \). In particular, if \(G = G' \), then \(R_2(G) = Z(G) \).

Proof. If \(\mathcal{A}(G) = \{ \text{id}_G \} \), then \(R_2(G) = Z(G) \) by Lemma 2.2(ii). If \(R_2(G) = Z(G) \), it follows from Lemma 2.2(i) that \(\mathcal{A}(G) \subseteq \text{Aut}_c(G) \), whence \(\mathcal{A}(G) = \{ \text{id}_G \} \).

To prove the last assertion assume that \(G = G' \). Then \(\text{Aut}_c(G) \) is trivial since central automorphisms of \(G \) fix \(G' \) elementwise. Lemma 2.3(i) implies that \(\mathcal{A}(G) \) is trivial. Thus \(R_2(G) = Z(G) \) by the above paragraph.

Proofs of the Main Results

Proof of Theorem 1.2. We will construct an infinite group \(G \) with trivial center and such that \(R_2(G) \) is nontrivial. Since \(Z(G) = 1 \), it follows at once that \(\text{Aut}_c(G) \) is trivial; the fact that \(R_2(G) \) is nontrivial implies, via Lemma 2.4, that \(\mathcal{A}(G) \) is not trivial.

Let \(H \) denote the direct sum (restricted direct product) of copies of the cyclic group of order two, indexed over the set of positive integers. Let \(G \) denote the standard restricted wreath product of \(Z \) by \(H \). That is, \(G \) is the semidirect product of the base group \(B \) which is the direct sum of \(|H| \) copies of \(Z \) by \(H \) by using the regular representation of \(H \) to define the action of \(H \) on \(B \). In this representation each nontrivial element of \(H \) acts as a formal product of disjoint 2-cycles which fixes no point in \(B \). Also, \(B \) has a \(Z \)-basis (corresponding to the elements of \(H \)) on which \(H \) acts transitively.

It is known that any standard wreath product of an abelian group by an infinite group is centerless, thus \(Z(G) \) is trivial.

Let now \(x = (1, 0, 0, \ldots) \in B \) and let \(y = bh \) be an arbitrary element of \(G \) with \(b \in B \) and \(h \in H \). Assuming that \(h \) contains the 2-cycle \((1, i) \), then \(x^y = x^h = (0, 0, \ldots, 1, 0, 0, \ldots) \) because 1 and 0 are interchanged and all other interchanges are between zeros. Then \([x, y] = (1, 0, 0, 0, \ldots, 1, 0, 0, \ldots) \) and \(y \) commutes with \([x, y]\) since \(b \) does and since \(h \) will interchange the two 1's and a set of zeros. It follows that \((1, 0, 0, \ldots)\) is a right 2-Engel element, as are all tuples with only one nonzero component. But these elements generate \(B \). Thus \(B \) is contained in \(R_2(G) \) and since \(R_2(G) \) is abelian it follows that \(B = R_2(G) \). Thus here \(R_2(G) \) is an infinite group of exponent 2 and this completes the proof of Theorem 2.1.

Remark. The above considerations show that all the elements with exactly two 1's are in \(G' \). These elements generate the subgroup of \(B \) of elements which have an even number of 1's. That is clearly a normal
subgroup of G with abelian quotient. So G' is this subgroup and therefore G' centralizes $B = R_3(G)$. This last property of our example is not accidental; it will turn out that $R_3(G)$ centralizes G' in every group G with trivial center.

Proof of Theorem 1.3. Since $Z(G) = 1$, it follows at once that $Aut(G)$ is trivial. By hypothesis, $A(G)$ is nontrivial, so by Lemma 2.4, $R_3(G) \neq 1$.

Fix a nontrivial automorphism $\alpha \in A(G)$. Since $Z(G) = 1$, Lemma 2.3i implies that α fixes G' and by Lemma 2.3ii one concludes that $\alpha^2 = id_G$. This shows that $exp(A(G)) = 2$.

For $x \in G$, we have that $x^{-1} \alpha(x) \in R_3(G)$ by Lemma 2.2(i). Now since $T_{x^{-1} \alpha(x)} \in A(G)$ by Lemma 2.2(ii), one obtains that the order of this inner automorphism is at most 2. Hence $(x^{-1} \alpha(x))^2 = 1$ and since $x \alpha(x) = \alpha(x)x$ it follows that $\alpha(x^2) = x^2$. Thus the subgroup $G^2 = \langle \{g^2 \mid g \in G \} \rangle$ is fixed by α.

Take now $r \in R_3(G)$, so that $T_r \in A(G)$ by Lemma 2.2(ii) and $T_r^2 = id_G$. Then $r^2 \in Z(G) = 1$ and we obtain that $exp(R_3(G)) = 2$. Moreover, Lemma 2.3(ii) implies that T_r fixes G', whence $r \in C_G(G')$. Hence $R_3(G) \leq C_G(G')$ and the proof of part (ii) of the theorem is complete.

To finish the proof of part (i), note that $A(G)$ is closed with respect to taking inverses. Let $\alpha, \beta \in A(G)$ and let $x \in G$. Then, since $x^{-1} \alpha(x), x^{-1} \beta(x) \in R_3(G)$ and since $R_3(G)$ is abelian, we derive, using Lemma 2.1, that $1 = [x^{-1} \alpha(x), x^{-1} \beta(x)] = [\alpha(x), \beta(x)] = [x, \alpha \beta(x)]$, which shows that $\alpha \beta \in A(G)$. Thus $A(G)$ is a subgroup of $Aut(G)$, which proves (i).

To complete the proof of part (iii), we only need to show that every $\alpha \in A(G)$ fixes $R_3(G)$. Take $r \in R_3(G)$, so that the inner automorphism $T_r \in A(G)$. Since by part (i), $A(G)$ is abelian, it follows that $[T_r, \alpha] = id_G$. Since $Z(G) = 1$, a short calculation shows that $\alpha(r) = r$.

Proof of Theorem 1.1. Let $r \in R_3(G) \cap C_G(G')$. Then the inner automorphism T_r is a commuting automorphism of G which fixes G', so by Lemma 2.3(ii), $T_r^2 \in Aut(G) \cap Inn(G)$. But then, since $Aut(G) \cap Inn(G) = Z(Inn(G)) \cong Z_3(G)/Z(G)$, it follows at once that $r^2 \in Z_3(G)$.

This proves the first assertion of Theorem 1.1.

If $Z(G) = 1$, then $Z_3(G) = 1$ and by Theorem 1.3(ii), $R_3(G) \leq C_G(G')$.

Thus $R_3(G) \cong R_3(G) \cap C_G(G')/Z(G)$ is a group of exponent at most 2 by the first part of the theorem. The proof is now complete.

Proof of Corollary 1.4. If G has no nontrivial central automorphisms, then necessarily $Z_3(G) = Z(G)$. Set $\overline{G} = G/Z(G)$ and observe that every $\alpha \in A(G)$ induces an automorphism $\overline{\alpha} \in A(\overline{G})$. But since \overline{G} has trivial center, it follows from Theorem 1.3(i) that $\overline{\alpha}^2 = id_{\overline{G}}$. Now the function $\varphi : Aut(G) \rightarrow Aut(\overline{G})$, defined by $\varphi(\alpha) = \overline{\alpha}$, is one-by-one since $\text{Ker} \varphi = Aut(G) = \{id_G\}$. Thus $A(G)$ is embedded into $A(\overline{G})$ and the result follows from Theorem 1.3(i).
Proof of Theorem 1.5. We claim first that if G is a group with $Z(G) = 1$, then $R_2(Aut(G)) \subseteq \mathcal{A}(G)$. Indeed, let $\alpha \in R_2(Aut(G))$. Then $[\alpha, T, T] = id_G$ for every $T \in Inn(G)$. Since $Z(G) = 1$, a short computation shows that $[\alpha, x, x] = 1$ for all $x \in G$. This means that $\alpha \in \mathcal{A}(G)$ and proves the claim.

To prove the theorem, note that if $R_2(G) = 1$ then $\mathcal{A}(G) = \{id_G\}$ by Lemma 2.4. But then $R_2(Aut(G)) = \{id_G\}$ by the above claim since obviously $Z(G) = 1$.

CONCLUDING REMARKS

(1) If G is a group, if α is a nontrivial automorphism in $\mathcal{A}(G)$, and if we form the semidirect product $H = [G] \langle \alpha \rangle$, then it can be shown that $\alpha \in R_2(H)$.

(2) It is easy to prove that if G is a finite group and if $\mathcal{A}(G)$ is trivial, then $\mathcal{A}(Aut(G))$ is also trivial. Indeed, since $\mathcal{A}(G)$ is trivial, it follows that $Aut(G)$ is trivial and since $Aut(G)$ is the centralizer of $Inn(G)$ in $Aut(G)$ one obtains that $Z(Aut(G))$ is trivial. By a result in [2] which applies to finite groups, one infers that $\mathcal{A}(Aut(G))$ is trivial. We were not able to prove the corresponding result for arbitrary groups G.

ACKNOWLEDGMENT

The authors thank the referee for a number of valuable suggestions.

REFERENCES

8. M. Pettet, personal communication.