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1. Introduction

In the last years, many authors have been studied several questions about the following Schrödinger elliptic equation{−ε2�u + V (x)u = f (x, u) in Ω,

u ∈ H1(Ω)
(1.1)

with Neumann or Dirichlet boundary conditions, where Ω is a domain in R
N . Motivated by Floer and Weinstein [12],

Rabinowitz in [16] uses a mountain-pass type argument to find ground-state solutions to (1.1) for ε > 0 sufficiently small,
when N � 3, Ω = R

N , f is a subcritical and superlinear nonlinearity function and the potential V is nonnegative and
assumed to satisfy the condition

0 < V 0 = inf
x∈RN

V (x) < lim inf|x|→∞ V (x). (1.2)

In [20], Wang proves that the mountain-pass solutions found in [16] concentrate around a global minimum of V as ε → 0.
In [2,3], Alves and Figueiredo consider the problem (1.1) for the p-Laplace operator obtaining existence, multiplicity and
concentration of positive solutions. In the celebrated paper [10], del Pino and Felmer obtained existence and concentration
of solutions for the problem (1.1), where N � 3, f is a subcritical and superlinear nonlinearity function and the potential V
is nonnegative and it is assumed to satisfy the following condition

inf
x∈Λ

V (x) < inf
x∈∂Λ

V (x),

where Λ is a bounded domain compactly contained in Ω . They developed a penalization-type method in order to over-
come the lack of compactness and used the Mountain Pass Theorem to get existence and concentration of solutions. These
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arguments have inspired many authors in the last years, among them we could cite [4] and [11], where the authors have
obtained multiplicity and concentration of nodal and positive solutions, respectively, to an equation related to (1.1). In [8],
Alves and Soares obtain existence and concentration of nodal solutions of (1.1) for the case where N = 2 and the function
f has critical exponential growth.

Although there are many works dealing with problem (1.1) and with related p-Laplacian ones, just a few works can be
found dealing with biharmonic or even polyharmonic Schrödinger equations. Among them we could cite [5] and [6], where
the authors have obtained nontrivial solutions to semilinear biharmonic problems with critical nonlinearities and also [18],
where the authors obtained infinitely many solutions for a polyharmonic Schrödinger equation with non-homogeneous
boundary data on unbounded domains.

Motivated by the results just described, a natural question is whether the same phenomenon of concentration occurs for
the following class of fourth order elliptic equations{

ε4�2u + V (x)u = f (u) in R
N ,

u ∈ H2(
R

N)
,

(1.3)

where �2 is the biharmonic operator, ε > 0 and N � 5. The functions f : R → R and V : RN → R satisfy the following
assumptions:

(V 1) V ∈ C0(RN ) ∩ L∞(RN ).
(V 2) There exist a bounded domain Ω ⊂ R

N and x0 ∈ Ω , such that

0 < V (x0) = V 0 = inf
RN

V < inf
∂Ω

V .

( f1) f ∈ C1(R).
( f2) f (0) = f ′(0) = 0.
( f3) There exist constants c1, c2 > 0 and p ∈ (1,2∗ − 1), such that∣∣ f (s)

∣∣ � c1|s| + c2|s|p, ∀s ∈R,

where 2∗ = 2N/(N − 4).
( f4) lim|s|→∞ F (s)

s2 = +∞, where F (s) = ∫ s
0 f (t)dt .

( f5) The function f (s)/s is increasing for s > 0 and decreasing for s < 0.

Our main result is the following:

Theorem 1.1. Assume that conditions (V 1), (V 2) and ( f1)–( f5) hold. Then for each sequence εn → 0, there exists a subsequence,
still denoted by {εn}, such that, for all n ∈ N, there exists a nontrivial weak solution un of (1.3) (with ε = εn). Moreover, if xn is the
maximum point of |un|, then xn ∈ Ω and

lim
n→∞ V (xn) = inf

RN
V .

Although the principal arguments used here can be found in [10], the proofs have to be deeply modified because of
some natural difficulties that the study of the biharmonic operator gives rise. For instance, in [10], in order to prove that
the solutions of the penalized problem in fact are solutions of the original one, the authors use an argument that relies on
the strong maximum principle to the Laplace operator and also on the fact that u+ = max{u,0} and u− = min{u,0} belong
to H1(Ω) for every u in H1(Ω). In [7], to prove the same to a quasilinear problem, the authors combine a comparison
principle together with Moser’s iteration technique. However, all these arguments have severe limitations to deal with the
biharmonic equation, because of the lack of a general form of the maximum principle to the biharmonic operator and the
impossibility of splitting u = u+ +u− in H2(Ω). To overcome these problems, our argument relies on proving that rescalings
of solutions of the penalized problem exhibit a uniform decay in infinity. To prove this we use some compactness results in
Nehari manifolds found in [7] together with a priori L p estimates found in [1] and L∞ estimates proved by Ramos in [15].

It is worth to point out that we provide our results assuming a weaker version of the famous Ambrosetti–Rabinowitz
condition (see ( f4)). The use of this weaker condition brings some difficulty to prove that the (PS) sequences are bounded,
which required some arguments found in [13] (see also [17]). Moreover, this weak condition represents a difficulty to prove
that the Nehari manifold is homeomorphic to the unitary sphere in H2(RN ). This last problem can be dropped out using
similar arguments of Szulkin and Weth in [19].

The article is organized in the following way: In the second section, we use the argument given by [10] and [13] to
modify the function f to get the Palais–Smale condition for the functional associated with the respective modified equation.
The existence and concentration of solutions to the modified problem are established. Finally, in the third section we prove
that these solutions have a kind of uniform decay at infinity.
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2. Preliminary results

We start by observing that the following problem{
�2 v + V (εx)v = f (v) in R

N ,

v ∈ H2(
R

N) (2.1)

is equivalent to (1.3). In fact, the solutions vε of (2.1) and uε of (1.3) are related by

vε(x) = uε(εx).

Let V 0 be as in (V 1) and let us choose k > 0 such that k > 2V 0. Let a > 0 be a number such that max{ f (a)
a ,

f (−a)
−a }� V 0

k . Set

f̃ (s) =

⎧⎪⎨
⎪⎩

− f (−a)
a s if s < −a,

f (s) if |s| � a,
f (a)

a s if s > a.

By the continuity of V , there exists a non-empty open set Ω ′ ⊂ Ω , such that:

inf
Ω\Ω ′ V > inf

RN
V and min

∂Ω ′ V > inf
RN

V .

Let χ ∈ C∞(RN ), 0 � χ � 1, be such that

χ(x) =
{

1 if x ∈ Ω ′,
0 if x ∈R

N\Ω,

and define

g(x, s) = χ(x) f (s) + (
1 − χ(x)

)
f̃ (s). (2.2)

By ( f1)–( f5), g satisfies

(g1) g(x, s) = o(|s|) as s → 0.
(g2) There exist c1, c2 > 0 and p ∈ (1,2∗ − 1), such that |g(x, s)|� c1|s| + c2|s|p , for all s ∈R and x ∈ R

N .

(g3)

2G(x, s) � g(x, s)s, for all x ∈R
N and s ∈R,

g(x, s)s � 1

k
V (x)s2, for all x /∈ Ω and s ∈ R.

(g4) g(x, s)/s is nondecreasing for s > 0 and nonincreasing for s < 0, where x ∈ R
N .

The problem we now consider is the following:{
�2 v + V (εx)v = g(εx, v) in R

N ,

v ∈ H2(
R

N)
.

(2.3)

Let Eε = (H2(RN ), 〈·,·〉ε) be the Hilbert space endowed with the inner product

〈u, v〉ε =
∫
RN

(
�u�v + V (εx)uv

)
dx.

Denote by ‖ · ‖ε the norm associated with this inner product. We consider the functional Iε defined on Eε by

Iε(u) = 1

2

∫
RN

(|�u|2 + V (εx)u2)dx −
∫
RN

G(εx, u)dx,

where G(x, s) = ∫ s
0 g(x, t)dt . The functional Iε ∈ C1(Eε,R

N ) and

I ′ε(u)v =
∫
RN

(
�u�v + V (εx)uv

)
dx −

∫
RN

g(x, u)v dx,

for all u, v ∈ Eε . Hence, critical points of Iε are weak solutions of the Euler–Lagrange equation (2.3).
Our first lemma provides conditions under which Iε satisfies the hypotheses of the Mountain Pass Theorem.
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Lemma 2.1. Assume that conditions (g1)–(g3) and (V 1) hold. Then, for each ε > 0, there exist positive constants ρ,β and φ ∈ Eε

with ‖φ‖ε > ρ , such that

1. Iε(u) � β for all ‖u‖ε = ρ .
2. Iε(φ) < 0.

Proof. Using (g1) and (g2) and the Sobolev imbedding, we can prove that for all η > 0, there exists a constant C(η) > 0
such that∫

RN

∣∣G(εx, u)
∣∣dx � η‖u‖2

ε + C(η)‖u‖p+1
ε .

Hence, by choosing η ∈ (0,1/2), there exists a small ρ > 0 such that

Iε(u) � β > 0, for all ‖u‖ε = ρ,

where ρ = [(1/2 − η) − C(η)r p−1]r2. This establishes 1.
In order to prove 2, fix ϕ ∈ C∞

0 (Ω ′
ε) with ϕ > 0, where Ω ′

ε = ε−1Ω ′ . By ( f4), for every M � ‖ϕ‖2
ε/2‖ϕ‖2

L2 , there exists a
constant c0 > 0 such that

F (s) � M|s|2 − c0, for all s ∈R.

Then,

Iε(tϕ) = t2

2
‖ϕ‖2

ε −
∫
RN

F (tϕ)dx

� t2

2
‖ϕ‖2

ε − t2M

∫
RN

|ϕ|2 dx + c0
∣∣supp(ϕ)

∣∣

= t2
(‖ϕ‖2

ε

2
− M

∫
RN

|ϕ|2 dx

)
+ c0

∣∣supp(ϕ)
∣∣.

Therefore, Iε(tϕ) → −∞ as t → +∞ and the proof is complete. �
Lemma 2.2. Assume that conditions (g1)–(g3) and (V 1) hold. Then, the functional Iε satisfies the Palais–Smale condition, that is, if
{un} is a sequence in Eε such that {Iε(un)} is bounded and I ′ε(un) → 0, then {un} contains a strongly convergent subsequence in Eε .

Proof. We start by claiming that {un} is a bounded sequence in Eε . Let us suppose that Iε(un) → d and I ′(un)un → 0.
Suppose by contradiction that ‖un‖ε → +∞. Let wn = un/‖un‖ε . Analogously to the proof of Lemma 2.5 below, one can
prove that wn ⇀ 0 in Eε . Let tn ∈ [0,1] be such that

Iε(tn wn) = max
t∈[0,1] Iε(t wn).

Letting n0 ∈N be such that R/‖un‖ε � 1 for all n � n0, using the definition of tn and the condition (g3), it follows that

Iε(tnun) � Iε

(
R

‖un‖ε
un

)

= R2

2
‖wn‖2

ε −
∫
Ωε

G(εx, R wn)dx −
∫

RN \Ωε

G(εx, R wn)dx

� R2

2
‖wn‖2

ε −
∫
Ωε

G(εx, R wn)dx − R2

2

∫
RN

V (εx)

k
w2

n dx

� R2(k − 1)

2k
−

∫
Ωε

G(εx, R wn)dx.

Since wn ⇀ 0 in Eε we have that wn → 0 in Lr
loc(R

N ) for all 2 < r < 2∗ . By (g2),

lim inf I(tnun) �
R2(k − 1)
n→+∞ 2k
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and since R > 0 is arbitrary we get

lim
n→+∞ I(tnun) = +∞.

This together with the fact that Iε(0) = 0 and Iε(un) → d implies that tn ∈ (0,1). Therefore

I ′ε(tnun)un = 0.

Since by (g4), H(x, s) = g(x, s)s − 2G(x, s) is nondecreasing in s > 0 and nonincreasing in s < 0, we have

2Iε(tnun) =
∫
RN

(
g(εx, tnun)tnun − 2G(εx, tnun)

)
dx

�
∫
RN

(
g(εx, un)un − 2G(εx, un)

)
dx,

which implies that

lim
n→+∞

∫
RN

(
g(εx, un)un − 2G(εx, un)

)
dx = +∞. (2.4)

On the other hand,∫
RN

(
g(εx, un)un − 2G(εx, un)

)
dx = 2Iε(un) − I ′ε(un)un = 2d + on(1),

which contradicts (2.4) and proves the claim. Then, we can assume that

un ⇀ u in Eε,

un → u in Lq
loc

(
R

N
)
, for all 1 � q < 2∗,

un → u a.e. in R
N (2.5)

as n → ∞. By Lebegue’s convergence theorem, it is a simple matter to verify that u is a weak solution of (2.3). We now
take advantage of the Hilbertian structure of Eε to prove that un → u, as n → ∞, by proving that ‖un‖ε → ‖u‖ε as n → ∞.
As we will see, this follows from the following claim.

Claim. Given δ > 0, there exists R = R(δ) > 0 such that

lim sup
n→∞

∫
RN\B R

(|�un|2 + V (εx)u2
n

)
dx < δ.

Effectively, for each R > 0 let ηR ∈ C∞(RN ) be a cut-off function such that 0 � ηR � 1, ηR = 0 in B R/2(0), ηR = 1 in
B R(0)c , |∇ηR | � C/R and |�ηR | � C/R2. From (g3) and the Hölder inequality, for R > 0 such that Ωε ⊂ B R/2(0), we have(

1 − 1

k

) ∫
B R (0)c

(|�un|2 + V (εx)u2
n

)
dx � I ′ε(un)(ηR un) + C

R
,

and the claim follows taking the supremum limit.
Combining the claim with the Sobolev imbedding theorem and the integrability of x �→ g(εx, u(x))u(x), we have that

given δ > 0 there exists Rδ > 0 such that

lim sup
n→∞

∫
B R (0)c

g(εx, un)un dx <
δ

2
,

and ∫
B R (0)c

g(εx, u)u dx <
δ

2
,

for all R > Rδ . By (2.5) and (g2), we get∣∣∣∣
∫

N

(
g(εx, un)un − g(εx, u)u

)
dx

∣∣∣∣ < δ,
R
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provided n is sufficiently large. Therefore,

‖un‖ε − ‖u‖ε =
∫
RN

(
g(εx, un)un − g(εx, u)u

)
dx + on(1) < δ + on(1)

for all δ > 0. The proof of Lemma 2.2 is complete. �
By the Moutain Pass Theorem [9], for any ε > 0 there exists vε ∈ Eε a weak solution of (2.3) such that Iε(vε) = cε ,

where

cε = inf
γ ∈Γε

max
t∈[0,1] Iε

(
γ (t)

)
and Γε = {γ ∈ C0([0,1], Eε); γ (0) = 0 and Iε(γ (1)) < 0}. From (g4), the minimax level cε can be characterized as (see
[16])

cε = inf
u∈Eε\{0} max

t�0
Iε(tu) = inf

Nε

Iε,

where Nε is defined by

Nε = {
u ∈ Eε\{0}; I ′ε(u)u = 0

}
.

We note that unlike in [16], there is an additional difficult to prove that Nε is homeomorphic to the unitary sphere in Eε

when f does not satisfy the Ambrosetti–Rabinowitz condition. However, the proof of this fact under the condition ( f4)

proceeds along the same lines as in [19].
We now consider a sequence {εn} with εn → 0 as n → ∞. We claim that there exists a subsequence, still denoted by

{εn}, such that vn := vεn is a solution of (2.1). The proof will be carried out by a series of lemmas. The first one states the
existence of a ground-state solution to the limit problem.

Lemma 2.3. Suppose that f satisfies ( f1)–( f5). Then, there exists a ground-state solution to the following problem

�2 w + V 0 w = f (w) in R
N , (2.6)

at the level

c0 = inf
γ ∈Γ0

sup
0�t�1

I0
(
γ (t)

)
,

where I0 is the energy functional associated to (2.6) and

Γ0 = {
γ ∈ C0([0,1], H2(

R
N)); γ (0) = 0 and I0

(
γ (1)

)
< 0

}
.

Proof. Let E0 be the space H2(RN ) endowed with the following norm ‖u‖2
0 = ∫

RN (|�u|2 + V 0u2)dx. In the same way as
that in Lemma 2.1 we can prove that I0 satisfies the geometric conditions of Mountain Pass Theorem. Then there exists
{wn} ⊂ E0, such that

I0(wn) → c0 and I ′0(wn) → 0, as n → ∞.

Using the same arguments as that in Lemma 2.2, one can prove that {wn} is a bounded sequence in E0. By Lions’s
lemma, it follows that there exist {yn} ⊂ R

N , R, β > 0 such that

lim inf
n→∞

∫
B R (yn)

w2
n dx > β.

Defining un(x) = wn(x+ yn), note that (un) is bounded in E0. Since I0 is invariant by translations, it follows that I0(un) → c0,
I ′0(un) → 0 and

lim inf
n→∞

∫
B R (0)

u2
n dx > β.

Hence un converges weakly to u ∈ E0\{0} and strongly in Lr
loc(R

N ) for 2 < r < 2∗ , where u is a weak nontrivial solution
of (2.6). What is left is to show that I0(u) = c0. Trivially we have that c0 � I0(u). By the other inequality, let ρ > 0. Note
that
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I0(un) − 1

2
I ′0(un)un =

∫
RN

(
1

2
f (un)un − F (un)

)
dx

�
∫

Bρ(0)

(
1

2
f (un)un − F (un)

)
dx

and then, by Fatou’s lemma it follows that

c0 �
∫

Bρ(0)

(
1

2
f (u)u − F (u)

)
dx.

Since the last inequality holds for all ρ > 0, it follows by the Lebesgue Dominated Convergence Theorem that

c0 �
∫
RN

(
1

2
f (u)u − F (u)

)
dx = I0(u)

and this implies that I0(u) = c0. �
Lemma 2.4. Suppose that g satisfies (g1)–(g4) and V satisfies (V 1)–(V 2). Then

lim sup
n→∞

cεn � c0.

Proof. We assume without loss of generality that x0 = 0, for x0 given by condition (V 2). Let w be a solution of (2.6)
such that I0(w) = c0. Let ψ ∈ C∞(RN ) be a cut-off function such that ψ ≡ 1 in Bρ(0) and ψ ≡ 0 in Bc

2ρ(0), where

B2ρ(0) ⊂ Ω ′ . Set wn(x) = ψ(εnx)w(x) and note that supp(wn) ⊂ Ω ′
εn

, wn → w in H2(RN ) and in Lr(RN ) where 2 < r < 2∗ .
Let ϕεn (wn) > 0 be such that ϕεn (wn)wn ∈Nεn . Suppose that ϕεn (wn) → 1 as n → ∞. Then

cεn � Iεn

(
ϕεn (wn)wn

)
= I0

(
ϕεn (wn)wn

) + 1

2

∫
RN

(
V (εnx) − V (0)

)(
ϕεn (wn)wn

)2
dx,

and the result follows by the Lebesgue Dominated Convergence Theorem. It remains to prove that ϕε(wε) → 1 as ε → 0.
Since I ′ε(ϕε(wε)wε)wε = 0, it follows that

ϕε(wε)

∫
RN

(|�wε |2 + V (εx)w2
ε

)
dx =

∫
RN

f
(
ϕε(wε)wε

)
wε dx.

We claim that {ϕε(wε)} is bounded. In fact, on the contrary, there exists εn → 0 such that ϕεn (wεn ) → +∞. Let Σ ⊂ R
N

be such that |Σ | > 0 and w(x) �= 0 for all x ∈ Σ . Since H(s) = f (s)s − 2F (s) is positive, it holds for all n ∈ N that

‖wεn‖2
εn

=
∫
RN

f (ϕεn(wεn )wεn )ϕεn (wεn )wεn

ϕεn (wεn )
2

dx

�
∫
Σ

2F (ϕεn (wεn )wεn )

ϕεn (wεn )
2

dx

=
∫

Σ\w−1
εn (0)c

2F (ϕεn (wεn )wεn )

(ϕεn (wεn )wεn )
2

w2
εn

dx.

On the other hand, by ( f4) and Fatou’s lemma it follows that

lim inf
n→∞

∫
Σ\w−1

εn (0)c

2F (ϕεn (wεn )wεn )

(ϕεn (wεn )wεn )
2

w2
εn

dx = +∞,

which implies that

‖wεn‖2
ε → +∞, as n → ∞,
n
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which contradicts the fact that wεn → w as n → ∞. We can now verify that ϕε(wε) � 0 as ε → 0. In fact, on the contrary
there exists εn → 0 such that ϕεn (wεn ) → 0 as n → ∞. By ( f2)–( f3) and the Sobolev imbedding one can prove that

lim
n→∞

∫
RN

f (ϕεn (wεn )wεn )w2
εn

ϕεn (wεn )wεn

dx = 0. (2.7)

On the other hand,

‖wεn‖2
εn

=
∫
RN

f (ϕεn(wεn )wεn )w2
εn

ϕεn (wεn )wεn

dx. (2.8)

Hence by (2.7) and (2.8), one can see that ‖wεn ‖εn → 0, which contradicts the fact that wεn → w and I V 0(w) = cV 0 > 0.
Then there exist α,β > 0 such that

α � ϕε(wε) � β.

Using that wεn → w in H2(RN ) and w is a solution of (2.6), it follows by ( f5) that ϕε(wε) → 1. �
The proof of the next result is based upon ideas found in [13].

Lemma 2.5. {vn} is a bounded sequence in H2(RN ).

Proof. By Lemma 2.4, we have that {Iεn (vn)} is bounded and I ′εn
(vn) = 0 for all n ∈ N. Let us suppose that {vn} ⊂ H2(RN )

is such that Iεn (vn) → d � c0. Assume by contradiction that {vn} is such that ‖vn‖H2(RN ) → +∞ along a subsequence. Let
wn = vn/‖vn‖εn . Note that w satisfies the following problem

�2 wn + V (εnx)wn = χ(εnx)
f (vn)

vn
wn + (

1 − χ(εnx)
) f̃ (vn)

vn
wn in R

N . (2.9)

We claim that one of the following conditions holds:

i) lim sup
n→∞

sup
y∈RN

∫
B1(y)

∣∣χ(εnx)wn(x)
∣∣2

dx > 0;

ii) lim
n→∞ sup

y∈RN

∫
B1(y)

∣∣χ(εnx)wn(x)
∣∣2

dx = 0.

However, we will show that both conditions in fact do not occur and this will give us a contradiction. Suppose that i) holds.
Then there exists {yn} ⊂R

N such that

lim sup
n→∞

∫
B1(yn)

∣∣χ(εnx)wn(x)
∣∣2

dx > 0. (2.10)

Then note that B1(yn) ∩ Ωεn �= ∅ and we can suppose that εn yn → x0 ∈ Ω . Let w̄n(x) := wn(x + yn) and note that {w̄n} is
bounded in H2(RN ). Then there exists w0 ∈ H2(RN ) such that w̄n ⇀ w0 in H2(RN ). Hence,

χ(εn · +εn yn)w̄n(·) ⇀ χ(x0)w0, in H2
(
R

N
)
.

By (2.10),∫
B1(0)

∣∣χ(x0)w0
∣∣2

dx > 0, (2.11)

which implies that χ(x0) �= 0 and there exists Γ ⊂ B1(0), |Γ | > 0, such that

w0(x) �= 0 for all x ∈ Γ . (2.12)

By multiplying (2.9) by wn and integrating by parts, we have that

1 =
∫

N

(
χ(εx)

f (vn)

vn
w2

n + (
1 − χ(εx)

) f̃ (vn)

vn
w2

n

)
dx,
R
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and then

lim sup
n→∞

∫
RN

χ(εx)
f (vn)

vn
w2

n dx � 1,

which implies that

lim sup
n→∞

∫
RN

χ(εx + εn yn)
2F (vn(x + yn))

vn(x + yn)2
wn(x + yn)

2 dx � 1. (2.13)

By (2.12), vn(x + yn) → +∞ as n → ∞, for all x ∈ Γ . Fatou’s lemma implies that

lim inf
n→∞

∫
Γ

χ(εx + εn yn)
2F (vn(x + yn))

vn(x + yn)2
wn(x + yn)

2 dx = ∞,

which contradicts (2.13). Therefore i) does not hold. On the other hand, assuming ii) note that χ(εn·)wn ∈ H1(RN ) and
{χ(εn·)wn} is a bounded sequence in H1(RN ). Then we can use Lemma I.1 [14] to conclude that∥∥χ(εn·)wn

∥∥
Lr(RN )

→ 0, as n → ∞, for all 2 < r < 2∗. (2.14)

Let tn ∈ [0,1] be such that

Iεn (tn vn) = max
t∈[0,1] Iεn (tvn).

As ‖vn‖εn → +∞, for a given R > 0 there exists n0 ∈N such that R/‖vn‖εn � 1 for all n � n0. Then, (g3) implies that

Iεn (tn vn) � Iεn

(
R

‖vn‖εn

vn

)

� R2

2
‖wn‖2

εn
−

∫
RN

χ(εnx)F (R wn)dx − R2

2

∫
RN

V (εnx)

k
w2

n dx

� R2(k − 1)

2k
−

∫
RN

χ(εnx)F (R wn)dx.

By ( f2) and ( f3), for η > 0,∫
RN

χ(εnx)F (R wn)dx � ηR2‖wn‖2
L2(RN )

+ Cη R p+1
∫
RN

χ(εnx)|wn|p+1 dx.

From (2.14),∫
RN

χ(εnx)F (R wn)dx � ηR2‖wn‖2
Eε

+ Cη R p+1
∥∥χ(εn·)wn

∥∥
L p+1(RN )

‖wn‖p
L p+1(RN )

� ηR2‖wn‖2
Eε

+ on(1) = ηR2 + on(1).

Since η > 0 is arbitrary we have that

lim inf
n→+∞ Iεn (tn vn) �

R2(k − 1)

2k
,

for all R > 0 and then

lim
n→+∞ Iεn (tn vn) = +∞.

Since Iεn (0) = 0 and Iεn (vn) → d, we have that tn ∈ (0,1). Then

I ′εn
(tn vn)vn = 0.

By (g4) we have that
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2Iεn (tn vn) = 2Iεn (tn vn) − I ′εn
(tn vn)tn vn

=
∫
RN

(
g(εx, tn vn)tnun − 2G(εx, tn vn)

)
dx

�
∫
RN

(
g(εx, vn)un − 2G(εx, vn)

)
dx,

which implies that

lim
n→+∞

∫
RN

(
g(εx, vn)vn − 2G(εx, vn)

)
dx = +∞. (2.15)

On the other hand∫
RN

(
g(εnx, vn)vn − 2G(εnx, vn)

)
dx = 2Iεn (vn) − I ′εn

(vn)vn = 2d + on(1),

which contradicts (2.15). Therefore the result follows. �
Lemma 2.6. There exist {yn} ⊂ R

N and R, β > 0 such that

lim inf
n→∞

∫
B R (yn)

v2
n dx � β > 0.

Proof. Suppose the assertion of the lemma is false. Then by Lemma I.1 of [14] (with q = 2 and p = 2N
N−2 ), vn → 0 in Lr(RN )

where 2 � r � 2∗ . Hence by the Lebesgue Dominated Convergence Theorem, we get∫
RN

g(εnx, vn)vn dx = on(1) and
∫
RN

G(εnx, vn)dx = on(1).

Then cεn → 0 as n → ∞. On the other hand, since the minimax value is an increasing function of the potential we have
cεn � d, ∀n ∈ N, where d > 0 is the minimax value associated to the problem

�2 v + V 0 v = g(εnx, v) in R
N .

This contradiction proves the lemma. �
For R > 0 given by Lemma 2.6, we have:

Lemma 2.7. The sequence {εn yεn } is bounded and dist(εn yεn ,Ω) � εn R.

Proof. Let Kδ denote a δ-neighborhood of Ω , where δ > 0. Let φ ∈ C∞(RN ) be a cut-off function such that φ = 0 in Ω ,
φ = 1 in R

N\Kδ , 0 � φ � 1, |∇φ| � C/δ and |�φ| � C/δ2. Setting φε(x) = φ(εx) and using vεn φεn as test function in (2.3)
we have∫

RN

(
�vεn�(vεnφεn ) + V (εnx)v2

εn
φεn

)
dx =

∫
RN

g(εnx, vεn )vεnφεn dx,

which gives

V 0

(
1 − 1

k

) ∫
RN

v2
εn

φεn dx � Cεn

δ
‖vεn‖2

H2(RN )
+ Cε2

n

δ2
‖vεn‖2

H2(RN )

� Cεn

δ
‖vεn‖2

H2(RN )
.

If there is {εk} subsequence such that B R(yεk ) ∩ Kδ/εk = ∅, then

V 0

(
1 − 1

k

) ∫
B R (yεk )

v2
εk

dx � V 0

(
1 − 1

k

) ∫
RN

v2
εk

φεk dx

� Cεk ‖vεk ‖2
H2(RN )

→ 0

δ
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as k → ∞, which contradicts Lemma 2.6. Hence, for each n ∈ N there exists xn such that εnxn ∈ Kδ and |yεn − xn| < R .
Hence, dist(εn yεn ,Ω) < εn R + δ, for all δ > 0, which completes the proof. �
Remark 2.1. It is worth pointing out that by Lemma 2.7, we can assume that εn yεn ∈ Ω for all n sufficiently large. In fact,
on the contrary, we consider ε−1

n zn instead of yεn , where zn ∈ Ω is such that |εn yn − zn| < εn R . This fact will be used to
guarantee that εn yεn → x′

0 ∈ Ω .

The following result plays a central role in the proof of Theorem 1.1.

Lemma 2.8. The following assertions hold:

(i) limn→∞ cεn = c0 ,
(ii) limn→∞ V (εn yεn ) = V 0 .

Proof. By Lemma 2.7, we can assume that εn yεn → x′
0 ∈ Ω along a subsequence. Let us consider wn(x) = vεn (x + yεn ). Note

that by Lemma 2.6

lim inf
n→∞

∫
B R (0)

w2
n dx � β > 0.

Using that {vεn } is bounded, it follows that there exists w ∈ H2(RN )\{0}, such that

wn ⇀ w in H2
(
R

N
)
,

wn → w in Lr
loc

(
R

N
)

where 2 � r < 2∗,

wn → w a.e. in R
N .

Since wn satisfies

�2 wn + V (εnx + εn yn)wn = g(εnx + εn yn, wn) in R
N , (2.16)

we have that w satisfies

�2 w + V
(
x′

0

)
w = χ(x) f (w) + (

1 − χ(x)
)

f̃ (x) = g̃(x, w) in R
N , (2.17)

where χ(x) = limn→∞ χΩ(εnx + εn yn), almost everywhere in R
N .

Denote by Ĩ the energy functional associated with the problem (2.17) and by c̃ its minimax level. We now consider the
problem

�2 w + V
(
x′

0

)
w = f (w) in R

N (2.18)

and let denote by c̄ the minimax level of the functional Ī associated with the problem (2.18). In the following we show that
c̄ = c̃. Since

G̃(x, s) =
s∫

0

g̃(x, t)dt � F (s),

we have Ī(u) � Ĩ(u) for all u ∈ H2(RN ), which implies that c̄ � c̃. In order to verify that c̃ � c̄, it is sufficient to prove that

Ĩ(w) � lim inf
n→∞ cεn . (2.19)

In fact, if (2.19) holds, then

c̃ � Ĩ(w) � lim inf
n→∞ cεn � lim sup

n→∞
cεn � c0 � c̄. (2.20)

Therefore, c̃ = c̄, which implies that c̃ = c̄ = c0. By (2.20), we have

lim
n→∞ cεn = c0,

which proves (i).
The proof of (2.19) is based on some ideas of [10, Lemma 2.2]. By elliptic estimates we see that wn converges to w in

C2 (RN ). Hence, for all R > 0, we have
loc
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lim
n→∞

[ ∫
B R (0)

(
1

2

(|�wn|2 + V (εnx + εn yn)w2
n

) − G(εnx + εn yn, wn)

)
dx

]

=
∫

B R (0)

(
1

2

(|�w|2 + V
(
x′

0

)
w2) − G̃(x, w)

)
dx.

Since the last integral converges to Ĩ(w) as R → +∞, for all δ > 0 there exists R > 0 sufficiently large such that

lim
n→∞

[ ∫
B R (0)

(
1

2

(|�wn|2 + V (εnx + εn yn)w2
n

) − G(εnx + εn yn, wn)

)
dx

]

� Ĩ(w) − δ.

Hence, in order to prove (2.19), it suffices to show that for R > 0 sufficiently large, we have

lim inf
n→∞

[ ∫
BC

R (0)

(
1

2

(|�wn|2 + V (εnx + εn yn)w2
n

) − G(εnx + εn yn, wn)

)
dx

]

� −δ. (2.21)

Consider a smooth cut-off function ηR such that ηR = 1 in Bc
R(0), ηR = 0 in B R−1(0) and |∇ηR |, |�ηR | � C , where C is

independent of R . Using ϕ = ηR wn as a test function in (2.16), yields

0 =
∫
RN

(
�wn�(ηR wn) + V (εnx + εn yn)ηR w2

n − g(εnx + εn yn, wn)ηR wn
)

dx

= A1,n + A2,n + A3,n,

where

A1,n =
∫

Bc
R (0)

(|�wn|2 + V (εnx + εn yn)w2
n − 2G(εnx + εn yn, wn)

)
dx,

A2,n =
∫

Bc
R (0)

(
2G(εnx + εn yn, wn) − g(εnx + εn yn, wn)wn

)
dx

and

A3,n =
∫

AR,R−1

[
�wn�(ηR wn) + V (εnx + εn yn)(ηR wn)

2 − g(εnx + εn yn, wn)ηR wn
]

dx

where AR,R−1 is the annulus B R(0)\B R−1(0). By (g3), A2,n � 0. On the other hand, we can choose R > 0 sufficiently large
such that

lim
n→∞|A3,n| � δ.

Hence, as A1,n = −A2,n − A3,n ,

lim inf
n→∞

1

2
A1,n � − δ

2

which shows that (2.21) holds. Consequently (2.19) holds.
Finally, suppose by contradiction that (ii) is false. Thus, V (x′

0) > V 0 and so c̃ > c0, which is impossible. This concludes
the proof of Lemma 2.8. �

By the proof of Lemma 2.8, we see that εn yn → x′
0 ∈ Ω . Nevertheless, by the definition of Ω ′ and (V 2), it follows that

x′
0 ∈ Ω ′ . Indeed, if x′

0 ∈ Ω\Ω ′ , since

inf
Ω\Ω ′

V > inf
RN

V ,

we have that V (x′ ) > V 0, which contradicts Lemma 2.8ii).
0
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3. Uniform decay

Although we have obtained existence and concentration of solutions to the modified problem, nothing can be said about
the original one. In order to prove that the function vn is in fact a solution of the original problem, we will prove a kind of
uniform decay at infinity of the translations wn(x) = vεn (x + yεn ). We first prove a technical lemma:

Lemma 3.1. Let {un} ⊂ H2(RN ) be a (PS)d sequence to I0 . If un ⇀ 0 and un � 0 in H2(RN ), then d � c0 .

Proof. Let sn > 0 be such that snun ∈N0. Let us show that

lim sup
n→∞

sn � 1. (3.1)

Suppose by contradiction that there exists δ > 0 such that

sn � 1 + δ, ∀n ∈N, (3.2)

along a subsequence. Using the same arguments as that in Lemma 2.5, one can prove that {un} is a bounded sequence in
H2(RN ). Since I ′0(un)un = on(1) and I ′0(snun)snun = 0 it follows that∫

RN

(
f (snun)

snun
− f (un)

un

)
u2

n dx = on(1). (3.3)

By Lemma I.1 in [14], there exist R, β > 0 and {yn} ⊂ R
N such that

lim inf
n→∞

∫
B R (yn)

u2
n dx � β. (3.4)

Let us set ūn(x) = un(x + yn) and note that {ūn} is also a bounded sequence in H2(RN ). Then, ūn ⇀ ū in H2(RN ) and
by (3.4), ū �= 0 in Λ ⊂ B R1 (0), with |Λ| > 0. By ( f5), (3.2), (3.3) and Fatou’s lemma, we have that

0 <

∫
Λ

(
f ((1 + δ)ū)

(1 + δ)ū
− f (ū)

ū

)
ū2 dx = 0,

which give us a contradiction. Then (3.1) holds.
Now we have two cases to consider:

• sn → s < 1 along a subsequence. Without loss of generality, let us suppose that sn < 1 for all n ∈N. Then

c0 � I0(snun)

=
∫
RN

(
1

2
f (snun)snun − F (snun)

)
dx

�
∫
RN

(
1

2
f (un)un − F (un)

)
dx

= I0(un) − 1

2
I ′0(un)un + on(1)

= d + on(1)

and in this case we have the result.
• There exists a subsequence of {sn} such that sn → 1, as n → ∞. In this case,

d + on(1) = I0(un) = I0(snun) + I0(un) − I0(snun).

Then

d + on(1) � c0 + I0(un) − I0(snun). (3.5)

Note that

I0(un) − I0(snun) = (1 − s2
n)

2

∫
N

(|�un|2dx + V 0u2
n

)
dx +

∫
N

(
F (snun) − F (un)

)
dx = on(1), (3.6)
R R
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where the last equality can be verified by using the Mean Value Theorem. Therefore, (3.5) becomes

d + on(1)� c0 + on(1),

which gives us the result. �
Now let us prove a compactness result in Nehari manifolds that will be used to prove the uniform decay.

Lemma 3.2. Let {zn} ⊂ H2(RN ) be such that I0(zn) → c0 and zn ∈ N0 , for all n ∈ N. If zn ⇀ z �= 0, then zn → z in H2(RN ) along a
subsequence.

Proof. By the Ekeland Variational Principle, we can assume that {zn} is a (PS)c0 sequence for I0 in H2(RN ). Then it is
possible to show that I ′0(z) = 0, which implies that z ∈N0. By Fatou’s lemma,

c0 = lim
n→∞

[ ∫
RN

(
1

2
f (zn)zn − F (zn)

)
dx

]

�
∫
RN

(
1

2
f (z)z − F (z)

)
dx = I0(z) � c0,

which implies that

I0(z) = c0. (3.7)

Let un = zn − z and note that by Brezis–Lieb lemma, {un} is (PS)d sequence for I0 where d = c0 − I0(z) = 0. Note that un ⇀ 0
in H2(RN ) and we claim that in fact un → 0 in H2(RN ). Indeed, suppose by contradiction that un � 0. By Lemma 3.1 we
have that d � c0 > 0, which give us a contradiction with the fact that d = 0. Therefore we have the result. �
Lemma 3.3. The sequence {wn} contains a strongly convergent subsequence in H2(RN ).

Proof. By Lemma 2.8, we have

lim
n→∞ Iεn (vn) = lim

n→∞ cεn = c0.

Denote by N0 the Nehari manifold associated to (2.6). Given v ∈ H2(RN )\{0}, from (g4), there exists ϕ0(v) > 0 such that
ϕ0(v)v ∈N0. Set w̃n = ϕ0(wn)wn . Hence,

c0 �
1

2

∫
RN

(|�w̃n|2 + V 0 w̃2
n

)
dx −

∫
RN

F (w̃n)dx

� 1

2

∫
RN

(|�w̃n|2 + V (εnx + εn yn)w̃2
n

)
dx −

∫
RN

G(εnx + εn yn, w̃n)dx

= Iεn

(
ϕ0(wn)vn

)
� Iεn (vn) = cεn = c0 + on(1),

which implies that I0(w̃n) → c0 as n → ∞.
We now prove that ϕ0(wn) → ϕ0 > 0 along a subsequence. We first observe that there exists M > 0 such that

|ϕ0(wn)| � M , ∀n ∈ N. In fact, since wn � 0 there exists δ > 0 such that ‖wn‖H2(RN ) > δ along a subsequence. On the
other hand, it is easy to see that {w̃n} is a bounded sequence in H2(RN ). Then∣∣ϕ0(wn)

∣∣δ <
∥∥ϕ0(wn)wn

∥∥
H2(RN )

� K

which implies that∣∣ϕ0(wn)
∣∣ � K

δ
= M, ∀n ∈N.

Hence, ϕ0(wn) → ϕ0 � 0. We now observe that ϕ0 > 0, otherwise

‖w̃n‖H2(RN ) = ∣∣ϕ0(wn)
∣∣‖wn‖H2(RN ) → 0

as n → ∞, which is impossible. Therefore w̃n = ϕ0(wn)wn ⇀ ϕ0 w �= 0 in H2(RN ). Therefore, we conclude from Lemma 3.2
that the lemma is proved. �
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Combining Lemma 3.3 with the Sobolev imbeddings, it follows that wn → w in L2∗(RN ). Therefore, we obtain∫
Bc

R (0)

|wn|2∗ dx → 0 as R → ∞ uniformly in n. (3.8)

Lemma 3.4. wn(x) → 0 as |x| → ∞, uniformly in n.

Proof. By the uniform L∞ estimates to solutions of subcritical biharmonic equations given in [15], we have

‖wn‖L∞(RN ) � C, ∀n ∈N,

where C is independent of n. Given any x ∈ R
N , the function wn ∈ Lq(B1(x)) for all q � 1. By [1, Theorem 7.1] it follows that

‖wn‖W 4,q(B1(x)) � C
(∥∥ f (wn)

∥∥
Lq(B2(x)) + ‖wn‖Lq(B2(x))

)
� C‖wk‖Lq(B2(x))

� C‖wk‖
q−2∗

q

L∞(RN )
‖wk‖2∗

L2∗ (B2(x))
= C‖wk‖2∗

L2∗(B2(x)) ,

with C > 0 being a constant independent of x and n. If q > N , we have the continuous imbedding W 4,q(B1(x)) ↪→
C3,α(B1(x)) for α ∈ (0,1 − N

q ). Then

‖wk‖C3,α(B1(x)) � ‖wk‖W 4,q(B1(x)) � C‖wk‖2∗
L2∗ (B2(x))

.

By (3.8), it follows that |wn(x)| → 0 as |x| → ∞ uniformly in n. �
Finally, we are ready to prove that vn is in fact a solution of (2.1). Let n0 ∈N and ρ > 0 be such that∣∣wn(x)

∣∣ < a, ∀x ∈ Bρ(0)c, ∀n � n0.

Since x′
0 ∈ Ω ′ and εn yn → x′

0, it is possible to choose n1 ∈ N such that Bρ(0) ⊂ (Ω ′
εn

− yn), for all n � n1. Taking n �
max{n0,n1}, we have

g
(
εnx + εn yn, wn(x)

) = f
(

wn(x)
)
, ∀x ∈R

N .

Hence, for n � max{n0,n1} it follows that wn satisfies

�2 wn + V (εnx + εn yn)wn = f (wn) in R
N ,

which implies that vn satisfies (2.1).
In order to prove the concentration behavior of solutions, we claim that there exists ρ > 0 such that ‖un‖L∞(RN ) =

‖wn‖L∞(RN ) > ρ , for all n ∈ N along a subsequence. In fact, if ‖wn‖L∞(RN ) → 0, then

‖wn‖2
H2(RN )

� C

∫
RN

(|�wn|2 + V (εnx + εn yn)w2
n

)
dx

= C

∫
RN

f (wk)wk dx

� ‖wk‖L∞(RN )

∫
RN

f (wk)dx → 0

as n → ∞, which contradicts the fact that wn → w and w �= 0.
Let xn be the maximum point of |un| in R

N , then

pn := xn − εn yn

εn

is the maximum point of |wn|. By Lemma 3.4, there exists R0 > 0 such that pn ∈ B R0(0) for all n sufficiently large. Then,
along a subsequence pn → p0 as n → ∞. Hence

xn = εn pn + εn yn → x′
0 ∈ Ω ′, as n → ∞,

where V (x′
0) = V 0, which proves Theorem 1.1.
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