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Let Q be an acyclic quiver. Associated with any element w of the
Coxeter group of Q , triangulated categories SubΛw were intro-
duced in Buan et al. (2009) [BIRS09]. For any reduced expression
w of w , the categories SubΛw are shown to be triangle equivalent
to generalized cluster categories CΓw associated to algebras Γw of
global dimension � 2 in Amiot et al. (2011) [ART11]. For w sat-
isfying a certain property, called co-c-sortable, other algebras Aw
of global dimension � 2 are constructed in Amiot (2009) [Ami09]
and Amiot et al. (2011) [AIRT11] with a triangle equivalence C Aw �
SubΛw . The main result of this paper is that the algebras Γw and
Aw are derived equivalent when w is co-c-sortable. The proof con-
structs explicitly a tilting module using the 2-APR-tilting theory
introduced in Iyama and Oppermann (2011) [IO09].

© 2011 Elsevier Inc. All rights reserved.

Introduction

Let k be an algebraically closed field. The cluster category C Q associated to an acyclic quiver Q
has been introduced in [BMR+06]. It is defined as the orbit category Db(kQ )/S2, where S2 is the
composition of the Serre functor S of the bounded derived category Db(kQ ) of finitely presented
kQ -modules with the second desuspension [−2]. This is a triangulated category [Kel05], with finite
dimensional spaces of morphisms (Hom-finite for short), and with the 2-Calabi–Yau property: for any
two objects X and Y in C Q there is a functorial isomorphism HomC Q (X, Y ) � D Hom(Y , X[2]) where
D is Homk(−,k). This construction was motivated, via [MRZ03], by the theory of cluster algebras
initiated by Fomin and Zelevinsky [FZ02]. Following another point of view, Geiss, Leclerc and Schröer
have related in [GLS07a] and [GLS06] certain cluster algebras with the stable categories modΛ where
Λ is the preprojective algebra associated with a Dynkin quiver. These categories are also Hom-finite,
triangulated and 2-Calabi–Yau. Cluster categories C Q and stable categories modΛ have both a special
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kind of objects called cluster-tilting. These are defined to be objects without selfextension and maximal
with respect to this property. They are very important since they are the analogs of clusters.

Therefore it is interesting to study Hom-finite, 2-Calabi–Yau triangulated categories with cluster-
tilting objects in general, and to find new such categories. To an acyclic quiver Q and to an element w
of the Coxeter group of Q , Buan, Iyama, Reiten and Scott have associated in [BIRS09] (see also [GLS08,
GLS07b]) a triangulated category SubΛw where SubΛw is a subcategory of the category of finite
length modules over the preprojective algebra Λ associated with Q . These categories are Hom-finite,
2-Calabi–Yau and have cluster-tilting objects. Moreover they generalize the previous categories: If Q is
Dynkin and w is the element of maximal length of the Coxeter group, SubΛw is equivalent to modΛ.
For any acyclic Q (which is not An with the linear orientation), if w = cc where c is the Coxeter
element associated with the orientation of Q then SubΛw is equivalent to the cluster category C Q .

More recently cluster categories have been generalized in [Ami09], replacing the finite dimensional
hereditary algebras kQ by finite dimensional algebras A of global dimension � 2. The orbit category
Db(A)/S2 is not triangulated in general. Therefore the generalized cluster category C A is defined to be
the triangulated hull of the orbit category Db(A)/S2. This construction generalizes again the previous
constructions. Indeed in [ART11] given an acyclic quiver Q and a reduced expression w of an ele-
ment w in the Coxeter group, an algebra Γw of global dimension � 2 is constructed with a triangle
equivalence

CΓw � SubΛw .

The algebra Γw is constructed by using a natural grading on the preprojective algebra Λ.
With a very different point of view, it is shown in [Ami09,AIRT11] that for a certain kind of words

called co-c-sortable, where c is a Coxeter element (containing the adaptable words w in the sense
of [GLS07b]), it is possible to construct a triangle equivalence

C Aw � SubΛw

where Aw is the Auslander algebra of a finite torsion class in modkQ naturally associated with the
word w.

The aim of this paper is to link the algebras Γw and Aw when w is co-c-sortable. By definition
of the generalized cluster category, if two algebras of global dimension � 2 are derived equivalent
their generalized cluster categories are triangle equivalent. However the converse is not true. Two
algebras of global dimension � 2 can have the same generalized cluster categories without being
derived equivalent. We say in this case that they are cluster equivalent. The main result of this paper
is that the algebras Γw and Aw are derived equivalent (Theorem 2.6). Moreover we explicitly describe
a tilting module yielding this equivalence using 2-APR-tilting introduced in [IO09].

The paper is organized as follows. Section 1 is devoted to background definitions and results
from [Ami09,BIRS09,BIRS11]. We recall the definitions of the generalized cluster categories and of
the categories SubΛw and state some of their properties. In Section 2 we recall results of [ART11]
and [AIRT11]: We give the explicit construction of the algebra Γw of global dimension � 2 and we
describe the finite torsion class associated to a co-c-sortable word w. Sections 3 and 4 are devoted to
the proof of the main theorem. We construct a tilting module over the algebra Aw in Section 3, and
we prove that its endomorphism algebra is isomorphic to Γw in Section 4. In Section 5 we give an
example to illustrate the main theorem.

1. Background: preprojective algebras and generalized cluster categories

We assume all our algebras to be finite dimensional algebras over an algebraically closed field k.
All modules are finite dimensional right modules unless otherwise stated, and the composition of
arrows in a quiver is from right to left.
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1.1. Generalized cluster categories

This subsection is devoted to recalling some results of [Ami09].
Let Γ be a finite dimensional k-algebra of global dimension � 2. We denote by Db(Γ ) the bounded

derived category of finite dimensional right Γ -modules. It has a Serre functor − L⊗Γ DΓ that we
denote by S. We denote by S2 the composition S[−2].

The generalized cluster category CΓ of Γ has been defined in [Ami09] as the triangulated hull of the
orbit category Db(Γ )/S2. We will denote by πΓ (or π if there is no danger of confusion) the triangle
functor

πΓ : Db(Γ ) Db(Γ )/S2 CΓ .

The case when EndC (πΓ ) is finite dimensional is especially nice since in this case the generalized
cluster category contains special objects called cluster-tilting (that is objects T ∈ C satisfying add(T ) =
{X ∈ C, HomC (X, T [1]) = 0} where add T is the additive closure of T ).

Theorem 1.1. (See Theorem 4.10 of [Ami09].) Let Γ be a finite dimensional algebra of global dimension � 2,
and assume that the endomorphism algebra EndC (πΓ ) is finite dimensional. Then CΓ is a Hom-finite, trian-
gulated 2-Calabi–Yau category and π(Γ ) is a cluster-tilting object.

The construction of CΓ depends only on the derived category Db(Γ ).

Proposition 1.2. (See [AO10, Corollary 7.16].) Let Γ and Γ ′ be two derived equivalent finite dimensional
k-algebras of global dimension � 2 and assume that the endomorphism algebra EndCΓ

(πΓ ) is finite dimen-
sional. Then the categories CΓ and CΓ ′ are triangle equivalent.

However, the converse is not true in general (see Example 5.7 in [AO10]). This leads us to state
the following definition.

Definition 1.3. Two finite dimensional algebras A and B of global dimension � 2 are called cluster
equivalent if there exists a triangle equivalence between their generalized cluster categories C A and C B .

1.2. Categories associated to elements in the Coxeter group

This subsection is devoted to recalling some results of [BIRS09] and [BIRS11].
Let Q be a finite quiver without oriented cycles. We denote by Q 0 = {1, . . . ,n} the set of vertices

and by Q 1 the set of arrows. The preprojective algebra associated to Q is the algebra

kQ
/〈 ∑

a∈Q 1

aa∗ − a∗a

〉

where Q is the double quiver of Q , which is obtained from Q by adding to each arrow a : i → j ∈
Q 1 an arrow a∗ : i ← j pointing in the opposite direction. We denote by Λ the completion of the
preprojective algebra associated to Q and by f.l.Λ the category of right Λ-modules of finite length.

For a vertex i in Q 0 we denote by Ii the two-sided ideal Λ(1 − ei)Λ, where ei is the primitive
idempotent of Λ associated to the vertex i. Let C Q be the Coxeter group associated to Q . It is defined
by the generators si , where i ∈ Q 0, and by the relations

• s2
i = 1,

• si s j = s j si if there is no arrow between i and j,
• si s j si = s j si s j if there is exactly one arrow between i and j.
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A reduced expression w = su1 . . . sul of an element w of C Q is an expression of w with l as small as
possible. When w = su1 . . . sul is reduced, the integer l is said to be the length l(w) of w .

Let w = su1 . . . sul be a reduced expression of an element in C Q . For p � l we denote by Iwp the
two sided ideal Iup Iup−1 . . . Iu1 . We denote by Λw the algebra Λ/Iwl . As shown in [BIRS09], the
algebra Λw depends only on the element w and not on the choice of the reduced expression. We
denote by SubΛw the category of submodules of finite dimensional free Λw -modules.

Let us recall Theorem III.2.8 of [BIRS09].

Theorem 1.4 (Buan–Iyama–Reiten–Scott). The category SubΛw is a Hom-finite Frobenius category and its
stable category SubΛw is 2-Calabi–Yau. For any reduced expression w of w, the image C w of the object
Cw = ⊕l

p=1 eup (Λ/Iwp ) ∈ SubΛw through the stabilisation SubΛw → SubΛw is a cluster-tilting object
in SubΛw .

The endomorphism algebra of Cw is described in terms of a quiver with relations in [BIRS11].
Let us define the quiver Q w as follows:

• vertices: 1, . . . , l(w);
• for each i ∈ Q 0, one arrow t ← s if t and s are two consecutive vertices of type i (i.e. us = ut = i)

and t < s (we call them arrows going to the left);
• for each a : i → j ∈ Q 1, put a : t → s if t is a vertex of type i, s of type j, and if there is no vertex

of type i between t and s and if s is the last vertex of type j before the next vertex of type i in
the expression w = su1 . . . sul (we call them Q -arrows);

• for each a : i → j ∈ Q 1, put a∗ : t → s if t is of type j, s is of type i, if there is no vertex of type
j between t and s and if s is the last vertex of type i before the next vertex of type j in the
expression w = su1 . . . sul (we call them Q ∗-arrows).

For i in Q 0 we define li to be the maximal integer such that uli = i. We denote by Q ′
w the full

subquiver of Q w whose vertices are not li .
For each Q -arrow a : t → s in Q ′

w we denote by Wa the composition aa∗ p if there is a (unique)
Q ∗-arrow a∗ : r → t in Q ′

w where ur = us and where p is the composition of arrows going to the left
r ← ·· · ← s. Otherwise we put Wa = 0. For each Q ∗-arrow a∗ : t → r in Q ′

w , we denote by Wa∗ the
composition a∗ap if there exists a (unique) Q -arrow a : s → t in Q ′

w with us = ur and where p is the
composition of arrows going to the left s ← ·· · ← r. Otherwise we put Wa∗ = 0. Then let Ww be the
sum

Ww =
∑

a Q -arrow

Wa −
∑

a∗ Q ∗-arrow

Wa∗ .

It is a potential in the sense of [DWZ08], that is, a linear combination of cycles in Q ′
w . For a cycle

p in Q ′
w and an arrow a in Q ′

w , it is possible to define the partial derivative ∂a p as the sum ∂a p :=∑
p=uav vu. The definition of the partial derivative can be extended by linearity to any potential.
The Jacobian algebra (see [DWZ08]) is defined as the algebra

Jac
(

Q ′
w, Ww

) := kQ ′
w/

〈
∂a Ww, a ∈ (

Q ′
w

)
1

〉
.

Let us recall Theorem 6.6 of [BIRS11].

Theorem 1.5 (Buan–Iyama–Reiten–Smith). Let w = su1 . . . sul be a reduced expression of an element w of the
Coxeter group C Q . Let Cw ∈ SubΛw be the cluster-tilting object (defined in Theorem 1.4) associated to this
reduced expression. Then there is an algebra isomorphism

Jac
(

Q ′
w, Ww

) � EndSubΛw (C w).
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2. Categories associated to a word as generalized cluster categories

In this section we recall some results of [ART11] and [AIRT11] which describe some categories
SubΛw as generalized cluster categories.

2.1. General words: results of [ART11]

For any reduced expression w of any element w of the Coxeter group, the authors construct
in [ART11] an algebra Γw of global dimension 2 and an equivalence of triangulated categories
SubΛw � CΓw . We recall here the construction of Γw .

Let Q and Λ be as in the previous section. Let w = su1 . . . sul be a reduced expression of an
element w in the Coxeter group C Q . Since the category SubΛw and the object Cw do not depend on
the orientation of Q , we can assume that the orientation of Q satisfies the property

(∗) if there exists i → j, then li < l j ,

where li is the maximal integer such that uli = i.
We define a grading on the quiver Q ′

w . All arrows going to the left and all Q -arrows are defined
to have degree 0. All Q ∗-arrows are defined to have degree 1. It is then easy to see that the potential
Ww is homogeneous of degree 1. Hence we get a grading on the Jacobian algebra Jac(Q ′

w, Ww), and
therefore on the algebra EndSubΛw (Cw) by Theorem 1.5. We denote by Γw its part of degree zero.

Theorem 2.1. (See Theorem 4.4 of [ART11].) For any acyclic quiver Q and any element w in the Coxeter group
of Q , the algebra Γ = Γw is of global dimension � 2 and there exists a commutative diagram of triangle
functors:

Db(Γ )
FΓ

πΓ

SubΛw ,

CΓ

fΓ

where CΓ is the generalized cluster category associated to Γ . The functor fΓ is an equivalence, and we have
FΓ (Γ ) = Cw .

2.2. Co-c-sortable words

This subsection is devoted to recalling some results of [AIRT11].
Let Q be a quiver without oriented cycles with n vertices. We assume that the orientation of Q

satisfies

(∗∗) if there exists i → j, then i < j.

We denote by c the Coxeter element s1 . . . sn .

Definition 2.2. An element w of the Coxeter group of Q is called co-c-sortable if there exists a reduced
expression w of w of the form w = c(m) . . . c(1)c(0) , where all c(t) are subwords of c whose supports
satisfy

supp
(
c(m)

) ⊆ supp
(
c(m−1)

) ⊆ · · · ⊆ supp
(
c(1)

) ⊆ supp
(
c(0)

) ⊆ Q 0.

If i ∈ Q 0 is in the support of c(t) , by abuse of notation, we will write i ∈ c(t) .
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Remark 2.1.

(1) The word w is co-c-sortable if and only if w−1 is c−1-sortable in the sense of [Rea07].
(2) The co-c-sortable expression w is unique for a co-c-sortable element w (cf. [Rea07]).
(3) If w is co-c-sortable, the conditions (∗) and (∗∗) for the orientation of Q are the same.

Let w = c(m) . . . c(1)c(0) be a co-c-sortable word. Let Q (1) be the full subquiver of Q whose support
is the same as c(1) . Then the word w′ = c(m) . . . c(1) is co-c(1)-sortable as an element of the Coxeter
group C Q (1) .

Construction 2.3. For t � 1 and i in c(t) , we define kQ (1)-modules T(i,t) by induction as follows:

• We put T(i,1) = ei D(kQ (1)) for all i ∈ c(1) .
• For t � 2, assume that we have defined T( j,s) for 1 � s � t − 1 and j ∈ c(s) , and T(n,t), . . . , T(i+1,t) . Then

T(i,t) is defined to be the kernel of the map

f : E → T(i,t−1)

where f is a minimal right add(
⊕

j<i T( j,t−1) ⊕ ⊕
j>i T( j,t))-approximation.

For i in Q (1)
0 , we define mi such that i is in c(mi) but not in c(mi+1) . We define the kQ (1)-module

T :=
⊕

i∈Q (1)
0

T(i,mi).

Here are some results shown in [AIRT11].

Theorem 2.4. (See [AIRT11, Theorem 3.20].) Let w′ , Q (1) and T be as above. Then the following hold:

(a) the modules T(i,t) are indecomposable and pairwise non-isomorphic;
(b) T is a tilting kQ (1)-module with finite torsion class;
(c) the torsion class Fac T = {X ∈ modkQ s.t. Ext1

kQ (1) (T , X) = 0} is the additive category add{T(i,t), t � 1,

i ∈ c(t)};

(d) the sequences 0 T(i,t) E
f

T(i,t−1) 0 are exact and are the almost split

sequences of Fac(T ).

We have also the following result which is a generalization of Theorem 5.21 of [Ami09].

Theorem 2.5. (See [AIRT11, Theorem 3.23].) Let Q , w = c(m) . . . c(0) , w′ = c(m) . . . c(1) , Q (1) and T(i,t) (for
t � 1 and i ∈ c(t)) be as above. Define the endomorphism algebra

A := EndkQ (1)

(⊕
t�1

⊕
i∈c(t)

T(i,t)

)
.

Then the algebra A is of global dimension � 2 and there exists a commutative diagram of triangle functors:
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Db(A)
F A

πA

SubΛw ,

C A

f A

where C A is the generalized cluster category associated with the algebra A. The functor f A is an equivalence,
and we have F A(A) = Cw .

2.3. Main result

From now on we assume that w = c(m) . . . c(1)c(0) is a co-c-sortable word. Combining Theorems 2.1
and 2.5, we get two algebras A and Γ of global dimension � 2, with the following diagram

Db(A)
?

πA
F A

Db(Γ )

πΓ

FΓ

C A
∼

SubΛw CΓ .
∼

As we have seen in the first section, we do not automatically get a derived equivalence between A
and Γ . The aim of this paper is to prove that there is an equivalence in this case and that this derived
equivalence is given by a tilting module which is easy to describe. More precisely we will show the
following in the next two sections.

Theorem 2.6. Let w = c(m) . . . c(0) be a co-c-sortable element in the Coxeter group of Q . For t � 1 and i in c(t) ,
define kQ (1)-modules T(i,t) as in Construction 2.3. Let A = EndkQ (1) (

⊕
t�1

⊕
i∈c(t) T(i,t)) be the algebra as in

Theorem 2.5. And let Γ be the degree zero part of the graded algebra Jac(Q ′
w, Ww) as defined in Section 2.1.

For p � 1 and j ∈ c(p) define the indecomposable projective A-module

P ( j,p) := HomkQ (1)

(⊕
t�1

⊕
i∈c(t)

T(i,t), T( j,p)

)
,

and the complex

M =
m⊕

p=1

⊕
j∈c(p)

S
−p+1
2 (P ( j,p)) ∈ Db(A),

where S2 is the autoequivalence S[−2] of Db(A). Then the following hold:

(1) M is a tilting module;
(2) EndA(M) � Γ ;
(3) the functor R HomA(M,−) makes the following diagram commute

Db(A)
R HomA(M,−)

F A

Db(Γ )

FΓ

SubΛw .
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Remark 2.2. Note that we have equivalences

gldim A = 1 ⇔ m = 1 ⇔ gldimΓ = 1 ⇔ A � Γ.

Therefore we can assume from now that m � 2.

3. Construction of a tilting module

This section is devoted to the proof of Theorem 2.6(1). We start in Section 3.1 with preliminaries
on module categories over Auslander algebras. Then we state some general lemmas on tilting modules
over hereditary algebras in Section 3.2. In Section 3.3 we describe explicitly the repeated action of
S2 on indecomposable projective A-modules. Finally we recall results on 2-APR-tilting of [IO09] in
Section 3.4 and prove Theorem 2.6(1) in Section 3.5.

3.1. Module categories over Auslander algebras

Let M be an additive k-category with finite dimensional Hom-spaces and with finitely many in-
decomposables up to isomorphism. We denote by ind M a set of representative of each isomorphism
class of indecomposables in M. Let A be the Auslander algebra of M, that is, the endomorphism
algebra A = End(

⊕
X∈ind M X). This is a finite dimensional basic algebra. Denote by mod A the cate-

gory of finite dimensional right A-modules and by mod M the category of finitely presented functors
Mop → modk. Then the functor

Hom

( ⊕
X∈ind Mm

X,−
)

: mod M → mod A

is an equivalence of category. Through this equivalence, indecomposable projective A-modules are
isomorphic to the functors of the form M(−, X) where X is an indecomposable object in M and
indecomposable injective A-modules are isomorphic to the functors of the form D M(X,−) where X
is an indecomposable object in M.

For T a full subcategory of M and X an object of M, we define the M-module M(−, X)/[T ] as
the cokernel of

M(−, T ) → M(−, X)

induced by a minimal right T -approximation T → X .
We first state a lemma which describes morphisms between objects in mod M of the form

M(−, X)/[T ] in terms of morphisms in M.

Lemma 3.1. Let M be an additive k-category with finitely many indecomposables. Let T and S be full sub-
categories of M, then we have an isomorphism for any X and Y in M between

Hommod M
(

M(−, X)/[T ], M(−, Y )/[S])
and the space of commutative squares up to homotopy

T
t

X

S
s

Y

where t (resp. s) is a minimal right T (resp. S )-approximation in M.
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Proof. Let t : T → X be a minimal T -approximation of X . Then the projective presentation of the
module M(−, X)/[T ] is

M(−, T )
M(−,t)

M(−, X) M(−, X)/[T ] 0.

Thus the space of morphisms HomA(M(−, X)/[T ], M(−, Y )/[S]) is isomorphic to the space of com-
mutative squares

M(−, T )
M(−,t)

M(−, X)

M(−, S)
M(−,s)

M(−, Y )

up to homotopy, where s : S → Y is a minimal right S -approximation. By the Yoneda lemma, this is
isomorphic to the space of commutative squares

T
t

X

S
s

Y

up to homotopy. �
3.2. The category Fac(T )

In the rest of the section, we assume that w = c(m) . . . c(0) is a co-c-sortable word with m � 2. For
t � 1 and i ∈ c(t) , we define kQ (1)-modules T(i,t) and T := ⊕

i∈c(1) T(i,mi ) , where mi is the maximal
integer such that i ∈ c(mi) as in Construction 2.3. By Theorem 2.4, it is a tilting module and we have

Fac(T ) = {
X ∈ modkQ (1), Ext1kQ (1) (T , X) = 0

} = add
{

T(i,t), 1 � t � m, i ∈ c(t)}.
Define A := EndkQ (1) (

⊕
t�1,i∈c(t) T(i,t)) and M = Fac(T ). Since the T(i,t) are indecomposable and pair-

wise non-isomorphic (Theorem 2.4(a)), A is the Auslander algebra of M.
The category M, as a torsion class, has almost split sequences (cf. Theorem 2.4(d)). We will denote

by τ its Auslander–Reiten translation (which is a functor by [AS81, Section 3]). By Theorem 2.4(d),
for any 1 � t � m − 1 and i ∈ c(t) we have τ T(i,t) = T(i,t+1) if i ∈ c(t+1) and 0 else. Therefore by
Construction 2.3 we have T(i,t) � τ t−1(ei DkQ (1)) and since M = add{T(i,t), 1 � t � m, i ∈ c(t)} any
indecomposable object in M is in the τ -orbit of a direct factor of DkQ (1) .

The following lemma is classical from tilting theory, we include here the proof for the convenience
of the reader.

Lemma 3.2. Let X be an indecomposable object in Fac(T ). Then there exists a short exact sequence

0 T1 T0
f

X 0 where f is a minimal right add(T )-approximation and

T1, T0 ∈ add(T ).
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Proof. Let f : T0 → X be a minimal right add(T )-approximation. It is surjective since Fac(T ) coincide
with the set of modules generated by T . Then form the exact sequence

0 T1 T0
f

X 0. (3.1)

It induces a long exact sequence

0 HomkQ (1) (−, T1) HomkQ (1) (−, T0)
f ∗

HomkQ (1) (−, X)

Ext1
kQ (1) (−, T1) Ext1

kQ (1) (−, T0).

Since f is an add T approximation the map f ∗|add T
is surjective. Moreover Ext1

kQ (1) (T , T0) vanishes.

Hence Ext1
kQ (1) (T , T1) vanishes.

From the sequence (3.1) we also obtain

0 = Ext1
kQ (1) (T0, T ) Ext1

kQ (1) (T1, T ) Ext2
kQ (1) (X, T ) = 0.

Since T is a tilting kQ (1)-module, from Ext1
kQ (1) (T , T1) = Ext1

kQ (1) (T1, T ) = 0, we deduce T1 ∈
add T . �
Lemma 3.3. Let X, Y ∈ M such that τ−1 X = 0. Then we have a functorial isomorphism

D Ext1kQ (1)

(
τ−1 X, Y

) � M(Y , X).

Proof. The category M is functorially finite and extension closed. It has an Auslander–Reiten formula
by [EMM10], that is for any X and Y in M we have a functorial isomorphism

D Ext1kQ (1)

(
τ−1 X, Y

) � M(Y , X)/
[
add DkQ (1)

]
.

A morphism M(Y , X) factors through an object in add DkQ (1) if and only if X ∈ add DkQ (1) since
DkQ (1) is a slice. But if τ−1 X = 0 then X is not in add DkQ (1) , thus we get the result. �
3.3. Action of S2 on projective A-modules

For t � 1 we define the subcategory Tt of M as

Tt := add
(
T ⊕ τ−1T ⊕ · · · ⊕ τ−t+1T

)
,

and by convention T0 = ∅. Note that T(i,t) = τ t−mi T(i,mi) ∈ Tmi−t+1, thus we have Tm+1 = M.
The following lemma is a variant of Lemma 5.9 of [Ami09] and will be very useful in the rest of

the paper.

Lemma 3.4. Let X be an object of M and n � 0 such that τ−n X = 0, where τ is the AR-translation of the
category M. Then we have an isomorphism in mod M:

S
−n
2

(
M(−, X)

) � M
(−, τ−n X

)
/[Tn].
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Proof. We prove this lemma by induction on n.
Let X be an indecomposable in M with τ−1 X = 0. Since τ−1 X is in M we have a short exact

sequence by Lemma 3.2

0 T1 T0
f

τ−1 X 0 (3.2)

with T0 and T1 in T1 = add(T ) and f a minimal right add(T )-approximation. The objects T0 and T1
are not zero since X is not zero and in M. Thus we get an exact sequence in mod M

0 M(−, T1) M(−, T0) M(−, τ−1 X) M(−, τ−1 X)/[T1] 0

which gives a projective resolution of the module M(−, τ−1 X)/[T1]. Therefore the object

S2
(

M
(−, τ−1 X

)
/[T1]

)
is isomorphic in Db(mod M) to the complex

D M(T1,−) D M(T0,−) D M(τ−1 X,−),

where D M(T1,−) is in degree 0. From the short exact sequence (3.2) we get a long exact sequence
in mod M:

D Ext1
kQ (1) (T0,−)|M D Ext1

kQ (1) (τ
−1 X,−)|M D M(T1,−) D M(T0,−)

D M(τ−1 X,−) 0.

Since M = Fac(T ), we have Ext1
kQ (1) (T0, M) = 0. By Lemma 3.3 we have an isomorphism in mod M

D Ext1M
(
τ−1 X,−) � M(−, X).

Hence we get the desired isomorphism

S
−1
2

(
M(−, X)

) � M
(−, τ−1 X

)
/[T1],

which is the assertion for n = 1.
Now let n � 2 and assume that for any Y with τ−n+1Y = 0 we have

S
−n+1
2

(
M(−, Y )

) � M
(−, τ−n+1Y

)
/[Tn−1].

Let X be in M such that τ−n X is not zero. Then by the assertion for n = 1, we have an isomorphism

S
−n
2

(
M(−, X)

) � S
−n+1
2

(
M

(−, τ−1 X
)
/[T1]

)
. (3.3)

By the above short exact sequence (3.2), we obtain that M(−, τ−1 X)/[T1] is isomorphic in
Db(mod M) to the complex
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M(−, T1) M(−, T0) M(−, τ−1 X).

Applying the induction hypothesis for Y = T0, T1, τ
−1 X we obtain the isomorphisms

S
−n+1
2

(
M(−, T1)

) � M
(−, τ−n+1T1

)
/[Tn−1],

S
−n+1
2

(
M(−, T0)

) � M
(−, τ−n+1T0

)
/[Tn−1],

S
−n+1
2

(
M(−, X)

) � M
(−, τ−n+1 X

)
/[Tn−1].

Hence S
−n+1
2 (M(−, τ−1 X)/[T1]) is isomorphic in Db(mod M) to the complex

M(−, τ−n+1T1)/[Tn−1] M(−, τ−n+1T0)/[Tn−1] M(−, τ−n X)/[Tn−1]. (3.4)

Since τ−n X is not zero, the short exact sequence (3.2) yields a short exact sequence

0 τ−n+1T1 τ−n+1T0 τ−n X 0.

The objects τ−n+1T0 and τ−n+1T1 cannot be zero since X, τ−1 X, . . . , τ−n X are not zero. As above,
we obtain an exact sequence in mod M

0 M(−, τ−n+1T1) M(−, τ−n+1T0) M(−, τ−n X)

M(−, τ−n X)/[addτ−n+1T ] 0.

Dividing by the ideal [Tn−1] we obtain an exact sequence

0 M(−, τ−n+1T1)/[Tn−1] M(−, τ−n+1T0)/[Tn−1] M(−, τ−n X)/[Tn−1]

M(−, τ−n X)/[Tn] 0,

that is M(−, τ−n X)/[Tn] is isomorphic in Db(mod M) to the complex

M(−, τ−n+1T1)/[Tn−1] M(−, τ−n+1T0)/[Tn−1] M(−, τ−n X)/[Tn−1]. (3.5)

Combining the isomorphisms (3.3), (3.4) and (3.5), we obtain the isomorphisms

M
(−, τ−n X

)
/[Tn] � S

−n+1
2

(
M

(−, τ−1 X
)
/[T1]

) � S
−n
2

(
M(−, X)

)
.

This finishes the induction. �
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3.4. 2-APR-tilting

The object M of Theorem 2.6 is constructed by applying powers of the functor S2 to summands
of A. To prove that it is tilting, we use the tool of 2-APR-tilting introduced by Iyama and Oppermann.
The following result is Theorem 4.5 together with Proposition 4.7 of [IO09].

Theorem 3.5 (Iyama–Oppermann). Let B be a finite dimensional k-algebra of global dimension at most 2.
Suppose we can decompose B = P ⊕ Q as a B-module in such a way that

(1) HomB(Q , P ) = 0;
(2) Ext−1

Db(B)
(Q ,S

−1
2 (P )) = 0.

Then T = S
−1
2 (P ) ⊕ Q is a tilting complex over B and EndB(T ) is of global dimension � 2.

Applying recursively this theorem, we will prove the following.

Proposition 3.6. Let B be a finite dimensional k-algebra of global dimension � 2. Suppose that we can de-
compose B as the sum Pm ⊕ · · · ⊕ P1 ⊕ P0 of B-modules in such a way that

(a) for any s, t, j such that s − j − t � 1 and j � 0 the space HomDb(B)(Pt ,S
− j
2 P s) vanishes;

(b) S
− j
2 P s is a module for 0 � j � s.

Then T = S
−m
2 Pm ⊕ · · · ⊕ S

−1
2 P1 ⊕ P0 is a tilting module and the algebra EndB(T ) is of global dimension at

most 2.

Proof. We prove by induction on i � 0 that the object

Ti = S
−i
2 (Pm ⊕ · · · ⊕ Pi) ⊕ S

−i+1
2 Pi−1 ⊕ · · · ⊕ S

−1
2 P1 ⊕ P0

is a tilting module over B and that the endomorphism algebra Bi := EndB(Ti) has global dimen-
sion � 2. This holds for i = 0 by hypothesis. Suppose that this holds for an i � 0. The functor
Fi = R HomB(Ti,−) yields a triangle equivalence

Fi : Db(B)

S2=− L⊗B D B[−2]

∼
Db(Bi)

iS2=− L⊗Bi D Bi [−2]

which sends Ti to Bi . By the uniqueness of the Serre functor we have an isomorphism

Fi ◦ S2 = R HomB
(
Ti,−

L⊗B D B[−2]) � R HomB(Ti,−)
L⊗Bi D Bi[−2] = iS2 ◦ Fi .

We want to apply Theorem 3.5 to

P := Fi
(
S

−i
2 (Pm ⊕ · · · ⊕ Pi+1)

)
and Q := Fi

(
S

−i
2 (Pi) ⊕ · · · ⊕ S

−1
2 (P1) ⊕ P0

)
.

We have
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HomDb(Bi)
(Q , P ) = HomDb(Bi)

(
Fi

(
S

−i
2 (Pi) ⊕ · · · ⊕ S

−1
2 (P1) ⊕ P0

)
, Fi

(
S

−i
2 (Pm ⊕ · · · ⊕ Pi+1)

))
� HomDb(B)

(
S

−i
2 (Pi) ⊕ · · · ⊕ S

−1
2 (P1) ⊕ P0,S

−i
2 (Pm ⊕ · · · ⊕ Pi+1)

)
= 0 by (1).

Moreover, we have

Ext−1
Db(Bi)

(
Q , iS

−1
2 P

)
= Ext−1

Db(Bi)

(
Fi

(
S

−i
2 (Pi) ⊕ · · · ⊕ S

−1
2 (P1) ⊕ P0

)
, iS

−1
2 Fi

(
S

−i
2 (Pm ⊕ · · · ⊕ Pi+1)

))
� Ext−1

Db(Bi)

(
Fi

(
S

−i
2 (Pi) ⊕ · · · ⊕ S

−1
2 (P1) ⊕ P0

)
, Fi

(
S

−(i+1)
2 (Pm ⊕ · · · ⊕ Pi+1)

))
� Ext−1

Db(B)

(
S

−i
2 (Pi) ⊕ · · · ⊕ S

−1
2 (P1) ⊕ P0,S

−(i+1)
2 (Pm ⊕ · · · ⊕ Pi+1)

)
.

By (b), for 1 � j � s the object S
− j
2 P s is a module, hence the space Ext−1

B (Pl,S
− j
2 P s) vanishes for

any l. Therefore the space Ext−1
Db(Bi )

(Q , iS
−1
2 P ) vanishes.

Thus by Theorem 3.5, iS
−1
2 (P ) ⊕ Q � Fi(Ti+1) is a tilting complex in Db(Bi). Therefore Ti+1 is a

tilting complex in Db(B). It is a module by (2), and its endomorphism algebra Bi+1 = EndB(Ti+1) �
EndBi (Fi(Ti+1)) is of global dimension � 2. Thus we get the proposition. �
3.5. Application to our setup

In this subsection, we apply Proposition 3.6 for B = A = ⊕m
t=1(

⊕
i∈c(t) P (i,t)) where P (i,t) :=

M(−, T(i,t)) is the projective indecomposable A-module defined in Theorem 2.6.

Proposition 3.7. The complex M = ⊕m
t=1

⊕
i∈c(t) S

−t+1
2 (P (i,t)) is a tilting A-module.

Proof. If i is in c(t) , then τ−t+1(T(i,t)) is isomorphic to ei D(kQ (1)). Now for t = 1, . . . ,m, we denote
by Pt the projective A-module

⊕
i∈c(t) P (i,t) . For i in c(t) , the indecomposable projective P (i,t) is of the

form M(−, T(i,t)). Thus we have P (i,t) = M(−, τ t−1(ei DkQ (1))). Therefore we can write

Pt = M
(−, τ t−1(DkQ (1)

))
.

Note that if i is not in c(t) then τ t−1(ei DkQ (1)) is zero, thus the decomposition of Pt into indecom-
posables is given by

Pt =
⊕
i∈c(t)

M
(−, τ t−1(ei DkQ (1)

)) =
⊕
i∈c(t)

M(−, T(i,t)).

We want to apply Proposition 3.6 to the decomposition A = Pm ⊕ · · · ⊕ P1. By Lemma 3.4, we
know that for any 0 � j � s − 1, we have

S
− j
2 P s � M

(−, τ s−1− j DkQ (1)
)
/[T j]

which is a module. Thus we have condition (b) of Proposition 3.6.
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For s − j − t � 1 we have isomorphisms

HomA
(

Pt,S
− j
2 P s

) = HomA
(

M
(−, τ t−1(DkQ (1)

))
,S

− j
2

(
M

(−, τ s−1(DkQ (1)
))))

= HomA
(

M
(−, τ t−1(DkQ (1)

))
, M

(−, τ s−1− j(DkQ (1)
))

/[T j]
)

by Lemma 3.4

� M
(
τ t−1(DkQ (1)

)
, τ s− j−1(DkQ (1)

))
/[T j] by Lemma 3.1

� M
(

DkQ (1), τ s− j−t(DkQ (1)
))

/add
(
τ 1−t T ⊕ · · · ⊕ τ 2−t− j(T )

)
.

Since s − j − t � 1 the space M(DkQ (1), τ s− j−t DkQ (1)) vanishes. Hence we have condition (a) of
Proposition 3.6. Therefore the complex

M =
m⊕

t=1

S
−t+1
2 (Pt) =

m⊕
t=1

⊕
i∈c(t)

S
−t+1
2 (P (i,t))

is a tilting module. �
4. Computation of the endomorphism algebra

In this section, we prove Theorem 2.6(2), that is that the endomorphism algebra EndA(M) is iso-
morphic to the algebra Γ defined in Section 2.1. The strategy consists of describing these two algebras
with a quiver and an ideal of relations.

Let w = c(m) . . . c(0) be a co-c-sortable word, and define w′ = c(m) . . . c(1) . Let Rw′ be the following
quiver:

• its vertices are (i, t) where i is in c(t);
• for i ∈ Q (1)

0 , for t � 1 such that i is in c(t+1) , we have an arrow qi
t : (i, t) → (i, t + 1);

• for any a : i → j in Q (1)
1 such that i, j ∈ c(t) we have an arrow at : (i, t) → ( j, t).

We define an ideal Jw′ of relations on the path algebra kRw′ generated by commutative squares

(i, t)
qi

t

at

(i, t + 1)

at+1

( j, t)
q j

t
( j, t + 1)

when all these arrows are defined, and by zero relations

(i, t)
ai

t
( j, t)

q j
t

( j, t + 1)

when i is not in c(t+1) .

Lemma 4.1. The algebra Γ is isomorphic to the algebra kRw′/Jw′ .

Proof. In the case where w is co-c-sortable, the quivers Q w and Q ′
w described in Section 1 are much

simpler. The orientation of Q satisfies condition (∗) of Section 2.1 if and only if it satisfies (∗∗) of
Section 2.2 (cf. Remark 2.1(3)). It is routine to check that if we remove the Q ∗-arrows of Q ′

w we
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get Rw′ , and that the partial derivatives ∂a∗ Ww where a∗ is a Q ∗-arrow are exactly the relations
generating Jw′ . �
Proposition 4.2. There exists an algebra isomorphism

Ḡ : kRw′/Jw′ → EndA

(
m⊕

t=1

⊕
i∈c(t)

S
−t+1
2 (P (i,t))

)
= EndA(M).

Proof. We divide the proof in several steps.
Step 1: Construction of Ḡ .
We first define G : kRw′ → EndA(M) on the vertices of Rw′ . For i in c(t) we put

G(i, t) = S
−t+1
2 (P (i,t)) = S

−t+1
2

(
M

(−, τ t−1(ei DkQ (1)
)))

.

Let s, t be integers � m, i ∈ c(t) and j ∈ c(s) . By Lemma 3.4, we have an isomorphism

HomA
(
S

−t+1
2 (P (i,t)),S

−s+1
2 (P ( j,s))

)
� HomA

(
M

(−, ei
(

DkQ (1)
))

/[Tt−1], M
(−, e j

(
DkQ (1)

))
/[Ts−1]

)
.

By Lemma 3.1, the above Hom-space is isomorphic to the space of commutative squares

Tt−1 ei(DkQ (1))

Ts−1 e j(DkQ (1))

up to homotopy, where horizontal maps are minimal right Tt−1 (resp. Ts−1)-approximations.
Hence to define a morphism G : kRw′ → EndA(M) we have to construct for any arrow qi

t : (i, t) →
(i, t + 1) a commutative square

U i
t := Tt−1

f
ei(DkQ (1))

Tt
g

ei(DkQ (1)),

and for any arrow at : (i, t) → ( j, t) a commutative square

S(a)t := Tt−1
f

ei(DkQ (1))

a

T ′
t−1

g
e j(DkQ (1)).

Here is an immediate result which will often be used in the proof.
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Lemma 4.3. For t � 1 we have equivalences

i /∈ c(t+1) ⇔ τ t(ei DkQ (1)
) = 0 ⇔ ei DkQ (1) ∈ Tt .

Let i be in Q (1)
0 and t be an integer � 1. Let f : Tt−1 → ei(DkQ (1)) be a minimal right Tt−1-

approximation and let g : Tt → ei(DkQ (1)) be a minimal right Tt -approximation. Since we have the
inclusion Tt−1 ⊂ Tt , then there exists a commutative square

U i
t := Tt−1

f
ei(DkQ (1))

Tt
g

ei(DkQ (1)).

It is homotopic to zero if and only if ei(DkQ (1)) is in Tt . This is equivalent to the fact that i is not
in c(t+1) by Lemma 4.3. Thus for i in c(t+1) we define

G
(
qi

t

) = U i
t = 0.

Let a : i → j be an arrow in Q (1)
1 and t be an integer � 1. Let f : Tt−1 → ei(DkQ (1)) and g : T ′

t−1 →
e j(DkQ (1)) be minimal right Tt−1-approximations. Then we have a commutative square

S(a)t := Tt−1
f

ei(DkQ (1))

a

T ′
t−1

g
e j(DkQ (1)).

If this square is homotopic to zero then there exists a map h : ei(DkQ (1)) → T ′
t−1 such that a =

g ◦ h. Since a is an irreducible map, h is a section or g is a retraction. Thus ei(DkQ (1)) or e j(DkQ (1))

is in Tt−1. By Lemma 4.3, this means that either i /∈ c(t) or j /∈ c(t) .
Therefore for any a : i → j in Q 1 and for t � 1 such that i, j ∈ c(t) , we put

G(at) = S(a)t = 0.

Now it remains to check that the map G : kRw′ → EndA(M) vanishes on Jw′ . For any i, j in c(t)

we have a commutative diagram:

Tt−1 ei(DkQ (1))

T ′
t−1 e j(DkQ (1))

Tt ei(DkQ (1))

T ′
t e j(DkQ (1)).
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This implies that in EndA(M) we have the relation U j
t ◦ S(a)t = S(a)t+1 ◦ U i

t if S(a)t+1 is not zero, that

is if i and j are in c(t+1) . Moreover we have the relation U j
t ◦ S(a)t = 0 if i is not in c(t+1) .

Therefore the morphism G : kRw′ → EndA(M) factors through morphism Ḡ : kRw′/Jw′ → EndA(M).

Step 2: The map Ḡ is surjective.
We will show that the squares of the form S(a)t and U i

t generate the algebra EndA(M).
Let α be a path in Q (1) from i to j. We denote by length(α) its length. For a commutative square

S := Tt−1 ei(DkQ (1))

α

Ts−1 e j(DkQ (1))

let us define the size of S by

size(S) = s − t + length(α).

For all integers t � 1, all i in Q (1)
0 and all a in Q (1)

1 , we have size(U i
t) = size(S(a)t) = 1.

We first show that the only non-zero squares S with size(S) � 0 are the isomorphism and then
size(S) = 0.

Let s � t be two integers, i be in c(t) and j be in c(s) . Suppose there is a commutative square

S := Tt−1
ft

u

ei(DkQ (1))

α

Ts−1
gs

e j(DkQ (1))

where α is non-zero path, and where ft (resp. gs) is a minimal right Tt−1 (resp. Ts−1)-approximation.
Since s � t , we have Ts−1 ⊂ Tt−1. The approximation ft is not zero, hence u is not zero and Tt−1 must
be in Ts−1. Let f s : T ′

s−1 → ei(DkQ (1)) be a minimal right Ts−1-approximation, then we have such a
factorization:

Tt−1
ft

ei(DkQ (1))

T ′
s−1

f s

ei(DkQ (1)).

By the fact that the maps ft and f s give an isomorphism between M(−, ei(DkQ (1)))/[Ts−1] and
M(−, ei(DkQ (1)))/[Tt−1], we have s = t .

Finally we get that all squares of size < 0 are zero. Moreover, all squares of size 0 are isomor-
phisms and all squares of size 1 which are not homotopic to zero are the S(a)t and U i

t .
Now we will show that any square S such that size(S) � 2 can be written as a composition of

squares of size strictly smaller. Let s � t be positive integers, α = 0 be a path from i to j in Q (1) . Let
S be a non-zero commutative square non-homotopic to zero with size(S) � 2:
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Tt−1
ft

u

ei(DkQ (1))

α

Ts−1
gs

e j(DkQ (1))

where ft (resp. gs) is a minimal right Tt−1 (resp. Ts−1)-approximation. Assume that s � t + 1. Then
we have a commutative diagram

Tt−1
ft

ei(DkQ (1))

αTt
ft+1

ei(DkQ (1))

Ts−1
gs

e j(DkQ (1))

where ft+1 is a minimal right Tt approximation. Thus the square S is the composition B ◦ U i
t where

B := Tt
ft+1

ei(DkQ (1))

α

Ts−1
gs

e j(DkQ (1)).

We have size(B) = s − t − 1 + length(α) and size(U i
t) = 1.

If s = t and if α is a composition of arrows a1 ◦ · · · ◦ an of Q (1)
1 with n � 2, then we

have S = S(a1)t ◦ B where size(B) = length(α) − 1. Therefore (U i
t , S(a)t) generates the algebra

End(
⊕

t

⊕
i∈c(t) S

−t+1
2 (P (i,t))) and the morphism Ḡ is surjective.

Step 3: The map Ḡ is injective.
Let x be a linear combination of paths from (i, t) to ( j, s) in Rw′ which is non-zero in kRw′/Jw′ .

Then we have s � t , i ∈ c(t) and j ∈ c(s) . The element x can be written as a sum
∑

u xu where for each
u there is a path

αu := i = i1
a1

i2
a2 · · · an−1

in
an

j

in Q (1) such that il ∈ c(s) for l = 1, . . . ,n and

xu = λuqi
tqi

t+1 . . .qi
s−1an

s an−1
s . . .a1

s

where λu is in the field k.
Now assume that G(x) is a commutative square homotopic to zero

Tt−1 ei(DkQ (1))

h
α

Ts−1 e j(DkQ (1))
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where α = ∑
u λuαu and where horizontal maps are minimal right Tt−1 and Ts−1-approximations.

Since s � t , we have a factorization:

Tt−1 ei(DkQ (1))
h

αT ′
s−1 ei(DkQ (1))

Ts−1 e j(DkQ (1)).

Thus the square

T ′
s−1 ei(DkQ (1))

h
α

Ts−1 e j(DkQ (1))

is homotopic to zero.
Therefore for all u there exists a factorization

αu : ei(DkQ (1))
βu

eil(u)
(DkQ (1))

γu
e j(DkQ (1))

with eil(u)
in Ts−1. Thus by Lemma 4.3 il(u) is not in c(s) for all u. This is a contradiction. Therefore

the morphism Ḡ is injective. �
Proof of Theorem 2.6. Combining Proposition 3.7 with Lemma 4.1 and Proposition 4.2, we get that M
is a tilting module over A and that EndA(M) � Γ . Therefore by Theorem 1.6 of [Hap87] we have a
derived equivalence

R HomA(M,−) : Db(A)
∼

Db(Γ ).

We still have to prove that the diagram

Db(A)

πA

R HomA(M,−)

F A

Db(Γ )

FΓ

C A SubΛw

commutes. The tilting A-module M is sent to Γ by the functor R HomA(M,−), and thus to the cluster-
tilting object Cw in SubΛw by Theorem 2.1. By definition of the generalized cluster category, the
objects πA(S2(X)) and πA(X) are isomorphic in the category C A , therefore we have an isomorphism
in C A

πA(M) � πA(A).
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Hence by Theorem 2.5 the object M is sent to the cluster-tilting object C w in SubΛw . The tri-
angle functors Db(A) → SubΛw and Db(Γ ) → SubΛw are given by tensor products (see [Ami09]
and [ART11]). We can now conclude using the fact that two triangle functors which are tensor
products and which coincide on a tilting object are isomorphic. Therefore the diagram above is com-
mutative. And we finish the proof of Theorem 2.6. �
5. Example

Let Q be the quiver
2

1 3

and w := s3s2s3s1s2s3s1s2s3. The word w is co-c-sortable with

c = s1s2s3 and we have c(0) = c(1) = s1s2s3, c(2) = s2s3, c(3) = s3, w′ = s3s2s3s1s2s3 and the quiver
Q (1) is Q . It satisfies the orientation conditions (∗) and (∗∗). The endomorphism algebra in SubΛw

of the standard cluster-tilting object Cw of Theorem1.4 is the Jacobian algebra Jac(Q ′
w, Ww) (Theo-

rem 1.5) where

2
p

c

b

5

h

Q ′
w := 1

q

a

3
r

e

d

6

4

f

g

and Ww := gdr + her + f bp − ecp + caq. The arrows {c, f , g,h} are the Q -arrows, {a,b,d, e} are the
Q ∗-arrows, and {p,q, r} are the arrows going to the left.

Then T is the module

T = 3
2 3

1
⊕

3
3 2

3 2 1
1

⊕ 3
1

= I1 ⊕ τkQ (1) (I2) ⊕ T3.

The torsion class M = Fac(T ) has finitely many indecomposables, namely we have

M =
{

3 , 3
2
,

3
2 3

1
,

3
3 2

2 1
,

3
3 2

3 2 1
1

, 3
1

}
= {

I1, I2, I3, τkQ (I3), τkQ (I2), T3
}
.

The Auslander–Reiten quiver of M is

τkQ (I2) I2

T3 τkQ (I3) I3.

I1

Therefore the algebra A is given by the quiver
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2
c

b

5
h

1

a

3

e

d
6

4

f

g

with the relations he − gd = 0, f b − ec = 0 and ca = 0.

S
−2
2 (P1) = 6 , S

−1
2 (P2) = 5

3
and S

−1
2 (P3) = 6

5
.

We easily check that the A-module M of Theorem 2.6 is

M := S
−2
2 (P1) ⊕ S

−1
2 (P2 ⊕ P3) ⊕ (P4 ⊕ P5 ⊕ P6)

� 6 ⊕ 5
3

⊕ 6
5

⊕ 4
3 2

2 1
⊕

5
3 4

2 3
2

⊕
6

5 4
4 3 2

3 2 1
2

.

The endomorphism algebra EndA(M) is given by the quiver

S
−1
2 P2

p

c

P5

h

S
−2
2 P1 q

S
−1
2 P3

r
P6

P4

f

g

with relations rh − cp = 0, rg = 0, qc = 0 and pf = 0. It is isomorphic to the algebra Γw defined in
Section 2.1.
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