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1. Introduction

Let G be a finite group, p be a prime number and GY, be the set of p’-irreducible characters of G

i.e. the complex irreducible characters whose degree is relatively prime to p. The McKay conjecture
asserts that

|Gy | =[Nc(P)

where P is a Sylow p-subgroup of G and N¢(P) is the normalizer of P in G.

The McKay conjecture has been verified for many families of groups including the symmetric
groups and alternating groups (see [8]). However the underlying reason for this phenomenon remains
a mystery.

One approach to a further understanding of the McKay conjecture is to refine the statement of the
conjecture as precisely as possible. The Alperin-McKay conjecture [1] is one such refinement. Let B
be a Brauer p-block of G and D be the defect group of B. Let b be the p-block of Ng(D) that is the
Brauer correspondent of B. Let v be the exponential valuation of Z associated with p, normalized so
that v(p) = 1. The height h()x) of a character x in B is a non-negative integer such that
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v(x(M) =v(IGl) = v(IDI) +h(x).

Similarly, the height of a character ¢ in b is the non-negative integer h(¢) such that v(¢(1)) =
V(|Ng(D)]) — v(|D]) + h(¢). Let M(B) and M(b) be the sets of characters in B and b of height 0.
The Alperin-McKay conjecture asserts that |M(B)| = |M(b)]|.

M. Isaacs and G. Navarro proposed a new refinement of the McKay conjecture. Their first formu-
lation (Conjecture A, [4]) requires defining My (G) as the set of irreducible characters of G whose
degrees are congruent to £k (mod p) where k is an integer relatively prime to p.

Conjecture 1.1 (Isaacs-Navarro). For each integer k not divisible by p

|Mi(G)| = [M(N¢(P))|.

Their second formulation (Conjecture B, [4]) requires defining My (B) the set of height zero char-
acters in a p-block B for which the p’-part of the degree is congruent to +k (mod p).

Conjecture 1.2 (Block Isaacs-Navarro). Let B be a p-block of G and suppose that b is the Brauer correspondent
of B with respect to some defect group D. Then for each integer k not divisible by p,

|Mck(B)| = |[Mk(b)|, wherec=|G:Ng(D)

p”

Let IT be a set of size n, and S(/T) and A(JT) respectively be the symmetric and alternating
groups on 1. The splitting characters S(I1)) are irreducible characters of S(/T) that split into two
conjugate characters when restricted to A(JT). The p’-splitting characters S (17);,’* are characters in
S(IT); whose degree is prime to p. Let B be a p-block of S(IT) with defect group D. Now suppose
H = Ng(7)(D) and H* = Ng(7y(D) N A(IT). Then H) and HZ,’* are the irreducible characters and p’-
irreducible characters that split over H* respectively. In this paper we describe a bijection between
5(17);,‘* and Ns(n)(D);,!* of which the Isaacs-Navarro conjecture for A(IT) is a consequence.

2. Combinatorial description of splitting characters of S (n)

Given a partition A, we denote its dual (in the sense of Eq. (1.4.3), [5]) by A*. Then A is symmetric
or self-dual if » = A*. By a classical result of Frobenius S(I/7), are labeled precisely by symmetric
partitions of n. We recall every partition A can be expressed uniquely in terms of its p-core A0 and
p-quotient {A,}1<y<p (see Chapter 2 in [5] for details). There is the following relationship between
the p-core and p-quotient of A and A* (p. 3481, [3]).

Theorem 2.1. Let (A*)° and {1}, ..., %} be the p-core and p-quotient of 1* respectively. Then (1*)® = (A%)*
and (A*)y = (Ap41—y)* for 1 <y < p. In particular, A = 1* if and only if 1° = (A°)* and 1, = (Ap11-)*
for1<y <p.

Let v, be the p-adic valuation on Z (so that vp(q) = p if p# divides q but p**1 does not). Each
diagram A; has in turn a p-core A? and a p-quotient (A1, ..., Ajp). Let c; =) |A?| and ny =Y |Ajjl,
where (1;j) is the sequence of p partitions that form the p-quotient of A;.

At the rth level we have p” partitions ()\iliz--»i,)o- each a p-core. In addition we inherit p™*! (p
for each of the p") partitions A;,...,. Then (i1,...,i;) € I', indexes the partitions A;,..;, at the rth
level. Let cr =) ¢, iyerr |(Agyi )0, 1y = > tiy...inelr [Aiyip-i, |. We define the rth level p-core C; r to
be the set

,,,,,

Cori= {(Air..,})o where (i1,...,i) eI}
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Then the p-core tower C;, is Ur>0 C,..r where C, 0= {*%}. The sum

Cr= Z |(ki1<--ir)0|

will be called the p-core sum at level r. Now given i € [ = {1,..., p}, we let i* = p + 1 —i. Given
i=(,....ipel" leti*=(p+1—iy,...,p+1—ip). The dual C5 of a p-core tower C, :U@OC“
is defined as follows:

C; = U C;:,r

r>0

where Cj,r ={yriel", ()= ()Ll*)o}. A p-core tower C, is self-dual if C; , = C;r for all r. C, has
height k if k is the minimal non-negative integer k such that ()»ilm,-,)o =@ for all r > k. [Note that if
2 =A% is a p-core, C, has height 0.]

Theorem 2.2. Let y and A be partitions of n. Then y = A* if and only ifC;j = C,.. In particular, C;, = C} ifand
only if L = A*.

Proof. By induction on the height k. Suppose C, has height k = 1. Then C, ; consists of empty sets
for r > 2. By Theorem 2.1, y =A* if and only if y;* =p11_; and (y°)* =2°.

Suppose that the theorem is true for height k — 1 and consider C, with height k. Then we have
the following equivalences.

C;i:CA — C;';izC)\pri for all i, and

Cyo=Co < Vyi=iy, foralli, and (yo)*:ko.

The first equivalence follows by the definition of two core towers being self-dual. The second follows
by the induction hypothesis since y; and Ap11_; are partitions whose core towers have height at most
k—1. O

We let n =ng +n1p +nap® +--- +n;p" be the p-adic decomposition of n so the n; satisfy 0 <
n; < p. The following theorem appears in Section 4 of [6].

Theorem 2.3 (MacDonald Criterion). Let n = Z@() n.p" be the p-adic decomposition of n. Let C;,_ be the p-
core tower of A, and c; be the p-core sum at each level r > 0. Suppose x; € S(IT)". Then v, (x,.(1)) =0 if and
only ifc, =ny forallr.

Corollary 2.4. Let p be an odd prime. Then S(H);,!* is the set { x,.} such that the p-core tower C,_is self-dual
and Zi |)L?1_”ik| =ny, for all k.
Proof. This follows from Theorem 2.2 and Theorem 2.3. O

3. Block theory for the symmetric groups

Following [2], we describe a bijection between height zero irreducible characters of S(/7) and
Ns(m)(X). We partition IT as IT_ U IT, where

IN_={xell|Dx=x} and [I=11—-1I_.
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Let |IT1| =n, let |[I[I_| =n_ and |I14| =n; where n=n_ + ny. Note that n, =0 (mod p). Let By
be the principal block of S(I1;), i.e. the block containing the identity character. Recall the Nakayama
conjecture: Two ordinary irreducible representations x; and x;s of S(/T) belong to the same p-block
if and only if the A and A’ have the same p-core (see Chapter 6.1, [5]).

Thus the Nakayama conjecture implies that B and B are parametrized respectively by a p-core
partition k Fn_ and the empty partition. So

B={x.eSUD |0 =«},
By ={xn, €SUT) | G1)° =0},

D is then a Sylow p-subgroup of S(I7;) and a defect group of B . Given a partition A n such that
10 = i there exists a partition A, - n., with empty p-core and the same p-quotient as A. Conversely,
given a partition A4 of ny with empty p-core, we let A be the partition of n with p-core « and p-
quotient the same as .. The correspondences & — A4 and A4 — p are inverses to each other and
induce a bijection 8 : B+ B such that

BOXG) = Xop-

The following is Lemma 1.3 in [2].

Lemma 3.1. The bijection g : B— B, where B(x,) = x,., is height-preserving. In particular, x; € M(B) if
and only ifZ,<>1 cx(1)p¥ is the p-adic expansion of n..

We now consider ny =nyp +nap%+ ---. Let A be a set of size ny for ny > 1. Let I ={1,..., p},
M = (1% and IT; = | |;> M. Notice S(I*)% and [T, S(I*)4k act componentwise on T, and
I1; respectively. Given Xy € Syl,(S(I)) that X = X7 2---2Xy (the k-fold wreath product) is a Sylow
p-subgroup of S(I¥). Hence X,(A“ € Syl,(ITy) and X = ]_[,@1 X2k € Syl,(S(I14)). Since D is a Sylow
p-subgroup of S(I1;), we may assume D = X. Now consider Y, = N iy (X, and let Y = N7 (X).
By Proposition 1.5 in [8] we have the isomorphism ¢ where

ot s Yie/ [ X, Xiel =YY

Hence Y/[X, X] = ]_[,{21 Yi/[ Xk, Xk] = ]‘[k>] Y’l‘. Since

Ny (X) = SUT-) x [ | Yir S(Aw)
k>1

then

Ny (X)/X' =~ SUT-) x [ YieScap.
k>1

Let b be the Brauer correspondent of B. Then b consists of characters w, x ¥ where w, is the

character of S(I71_) corresponding to the p-core partition « labeling B and ¥ =[]y where vy €
[Yr 2 S(ATY. Suppose (¥ (1), p) =1. By a result of Clifford, Reszs(m(x)(w) =eY_, 6, where {6}
are the conjugates of 6 € Irr(X) and e is a constant. Since |X| = p/ and 6;(1) divides |X|, we have

6:(1) =1, for all t. Hence

(¥ | ¥ € Nsiry (X3} = (Nsar (X)/X) =TT (¥ san)”.
k=1
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Since Y; is a Frobenius group, Y1 has p characters, p — 1 of which {§;}1<igp—1 have degree 1, and
one of which &, has degree p — 1. Hence we can label the elements of (Y’l‘)v as k-tuples (&;,,...,&;,)
or &, where i = (i1, ..., i) € I¥.

Let Ay be a partition-valued function on (Y%‘)v whose values Ay (&;) satisfy

> A =m.

ielk

In particular, each A(&;) is a p-core since n < p. We partition Ay into disjoint subsets Ay ; of size

|Ar(&)]| for ie 1%, Let &4, be the character of the base group YkA" with component &; in positions
indexed by elements of Ay ;. We note &(1) ==+1 (mod p) since & (1) = %1 (mod p) for all i. Then
the stabilizer of £, in S(A4y) is:

S(Aeq, = [ [ SAkD

ielk

and &4, extends to a character E(§,4,) of YkA" . S(Ak)gAk. Let w,, be the character of S(Ak)gAk with

component @, ) on S(A ;). We describe the p’-irreducible characters of Y; : S(Ay) by an applica-
tion of Clifford’s theory and is Theorem 4.3.34 in [5].

Theorem 3.2.

A
Y, KS(Aw)
A
Y £S5y,

Yk =Ind (EGa)@a,)

is a p’-irreducible character of (Y 2 S(Ax))" . Moreover, every p’-irreducible character of Yy : S(Ay) is of this
form.

The following is Eq. 2.7 in [2].

Theorem 3.3. M(B) and M(b) are in bijection via where

W) = W X Yy L
4. Equivalence of sign characters

We seek to describe the p’-splitting characters of Y, 2S(Ax) combinatorially. We must first describe
the relevant sign character of Yy /X, (by the discussion following Lemma 3.1 and the isomorphism
ag: Yie/X, > Y¥). Let sgny be the sign function of S(I¥) with respect to the alternating group A(I).
In particular, since X, € A(I¥), sgn, is constant on cosets of Xp-

Here SgNyk is the sign function of Y’l< that is, sgNyk (Y1 X - X Yp) = ]‘[i’{ sgny, (¥i). We normalize

Lemma 4.1. Consider gX; € Yi/X,, let ay be defined as above, and suppose a(gX}) = (Y1, ..., Yk) where
yi € YX. We claim that

SgN(8) = s8Ny k(Y1 .- - Yk)-
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Proof. Following the argument in Proposition (1.5) of [8] we write elements of S(I¥"1): S(I) =
SN S(I) as (g1, 82, ..., &p; ¥) where g € S(I*~1) and y € S(I). Then

Xe=1{(81,82.....8p: D)2 g € X—1 and g182---&p € X;_1},
Ye={(g1.82.....8p: ¥): & €Yk_1,&=gj (mod Xy_q) i,jand y € Y1}.
In particular, Y, contains subgroups M and F where
M={(g1,82.....8p: 1)} g € Yk_1.8i =g; (mod X;_y) for all i and j},
F={(1,1,....1:y): yeYq},

such that M <Yy, Yy =MF,and MNF =1. Now [M, F]1 < X,Q < M, so that
¢ :Yi/X, = M/X; x F,
where ¢((g1, 82, ..., &ps X)) = ((g1, 82, ..., &ps DX}, ¥). We claim
M/X, ~ Y 1/X; ;.

By the Schur-Zassenhaus theorem, Yy_; = Xy_1T for some subgroup T of Y,_; such that T N
Xx_1=1.Let xt € Yy_1, where x€ X;_1 and t € T. Let

DYy 1 —> M/Xp, xt— (xt,t,....t; DX,

Note (xt,t,...,t; 1) € M by the above description of M. We have & (xt) € X,L if and only if xtP € X,’C_l,

that is, if and only if x € Xl/cfl and t = 1. Moreover, @ is surjective. For an element of M has the form

(x1t,X2t, ..., xpt; 1), where x; € X1 and t € T. Now
(x1t, X2, ..., Xpt; 1) = (X1, X2, ..., Xp; (L, L, ..., t;1)
=(x,1,1,...,1; 1)(t,¢t,...,t; 1) (mod X,’<)
=(xt,t,t,....t;1) (mod X})
where x = x1x2---Xp. Then @(xt) = (x1t,x2t,...,xpt;1)Xl’{ and @ induces an isomorphism of

Yi—1/X]_, = M/X;. Hence ay: Yi/X; =Y since ag_1: Ye_1/X]_, =YX~ (by induction) and F = Y1.
In summary, o is the composite of the isomorphisms

Yi/X; = M/Xy x F— Yi_1/X}_, x Y1 — Y§.

If ak(gX,’() =(1,Y2,---,Y) and g =(g1,82,...,&p; D(1,1,...,1;y), where the factors are respec-
tively in M and F, then y, = y. Moreover, if

(81,82, -, & DX =D (xt)

for xt € Yy_1, then ag_1(xt) € X; _; = (¥1.¥2. ... Yk—1)-
We now prove the relation sgn,(g) = sgnyf (¥1, ..., Yx) by induction on k (following an argument

of P. Fong). Suppose g in Yy and
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g£=1(81.82,...,8: DA, 1,...,1; )

where (g1, 82,....8p; 1) eMand (1,1,...,1;y) € F. Then
sgn,(g) = sgni (g1, 82, ---» &p; Dsgmy(1,1,...,1; y)

p
= (sgny, ) [ [ sene—1 (20
i=1

For p odd, we have sgn,(1,1,...,1; y) = sgny(y). This follows by viewing y as a permutation matrix
of degree p and (1,1, ..., 1; y) as the permutation matrix of degree p¥ obtained from y by replacing 0
and 1 respectively by the zero matrix and the identity of degree p*~'. Taking determinants then gives
sgng(1,1,...,1; y) = sgny, (¥). On the other hand, if we view (g1, g2,...,8p; 1) as a block diagonal
matrix with permutation matrices g1, g2, ..., gp of degree p*k=1 along the diagonal, we see that

14
sg (g1, &2 &pi 1) =] [ semes (20

i=1

Now sgny is constant on cosets of X; and (g1,...,gp; DX} = (xt,t,t,...,t;1)X] where x € X;_1,
teT,and ®(xt) = (g1, 82, ..., 8&p; )X} Thus

)

p
[ Tseme (g0 = sgme_s (x0) (sgny_1 (0)° " = sgn_; (x0).

i=1

Since sgny, (y) = sgny, (yx) and sgng_;(xt) = ]_[1‘;11 sgny, (yi) we have, by induction, sgn,(g) =
SENyE (81 - 8-
Suppose p = 2. The result follows since Yy_1 = X,_1. O

5. A criterion for splitting characters of the normalizer

Let |[[T|=nyp, I ={1,...,p} and A be a set of size n; < p so [T = ()2. Let X € Syl, (SUD)).
In this case, P. Fong and M. Harris (see Proposition (4D), [3]) obtained a criterion for a character of
H = Ng(7)(X) to split when restricted to the subgroup Ht =HnN A(T): For ¢4, € HY Resg+ Yp =
Y i+, if and only if A*(&) = A(&p+1—;) for all i.

We extend this to the case where n = Zi>ln,-pi. First consider n = nip*, where n; < p for
k> 1 so |IT| = ngp*. From Section 3, elements of N(;(Xk)IVJ =[Y: S(Ak)]z, can be labeled by maps

A K> {p-core partitions}. Consider

(f.0) e (V)™ S(Ape,,

where f € (Y’l‘)Ak and 0 € S(Ak)gAk. We calculate E(£4,)(f, o). First decompose o =07 -0y into a

product of its disjoint cycles in S(Ak)gAk. Let A7 be the support of o5, for 1 <8 <d. Let ns = |A7 4],
and hs € A7 ,. Let py,(f.0) = f(hs) - f(0 " (hs)) - f(6~M~V(hs)). Let I} be the index sets such
that A ; = User,- A7 s (since o stabilizes each Ay ;). Then by an extension of Lemma 4.3.9 in [5]

EGEa)(f o) =[] []&(en(f.0)).

ielkdeli
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We want to find the partition-valued function labeling the sign function sgn, of Y’l‘ ¢ S(Ag) with
respect to (Y¥:S(A)*.

Let A, be the map that sends (¢1, ..., &) to {1"} and all other pk-tuples to . Since the stabilizer
of £, is (Y - S(AR) = YE2S(Ap),

E¢Gap)(f,0)= 1_[ E11....1)(ons (f.0))

S€l1,1,...1)

= [T [TI senpe(r)

dela... jeay

~ [T senpe(F):

jeAk

Since wa,, = S8Ng(4,), We have Ya,, (f,0) = sghg(a,)(0) - ]_[jeAk sgnyg<(f(j)). It remains to show
that this is the restriction to Yf ¢ S(Ag) of the usual sign function on S(/T). View f € (Y’l‘)Ak as a
mapping from Ay to Y¥ and o € S(Ay). Now, since (f, o) € (Y¥)2« . S(Ay) we have sgng ) (f.0) =
SBN (yk)4 (f) - s8n5(4,)(0) =[lica, sgnyf(f(i)) - $8Ng(,) (0).

Given a partition-valued function Ay, consider the mapping *: Ay — A} such that

A & — Ap(E)*.

Then A} is the dual of Ay. If Ay = A}, we say Ay is self-dual or symmetric. If A = L]k21 Ay, We say
that A is self-dual or symmetric if A, = A} for all k. The following generalizes Proposition (4D) in [3].

Proposition 5.1. Let i/ 4, € (YQ‘ 1 S(Ag))Y. Then sgn,y -¥a, = 1//,1;:, In particular, 4, is a splitting character
if and only if Ay is self-dual.

Proof.

Ak
Y. k.S(A)

YAy - S8y = [I“d b 'E('fAk)wAk] - S80 k)
Y, S(Ak)gAk
A k
Yo koS (A yhs(4y)

—Ind" (E(gA Yo, - Res'! (sgn )).

Yk Tl S(AkD KOk (Y) -5 (A0ey, ®

Decompose (f,0) € (Y52« . S(AWe,, into (f,0) = [T (fi, 01), where (fi,0) € Yk S(Ag ). Let
Api = User AZLB be the orbit decomposition of o; on Ay ;. Since

Yks(ap
A
()5 A0y,

(sgngy)(f,0) = l_[[ 1_[ sghyk (s (fi, 01))] - SgNs (4, (01)

ielk-8el}

we have

(EGa)wa, - sgng)(f.0) = l_[[ [ T &(ons (fi. o0) sgnye (o, (i ‘TL))} (@& - 58054, ) (©1)

ielk -8l

=[1| [T (on, (i, og)] - @z (1) = E( ) - @4 (f, 0).

ielk=é8el}
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Hence, ¥4 - sgng) = ¥a+. In particular, if ¥4 = ¥4+ then 4 splits when restricted to A(IT). If
WA # Y a+ then ¥4 does not split. O

Theorem 5.2. Every x € Hg,, , can be written as w, x Y4 such that « is a symmetric p-core partition,

we € SUT-)Y and A is a self-dual partition-valued function. That is, A = |_|,<>l Ay where Ay : Yi‘ —
{p-core partitions} and Ay = Ay, for all k.

Proof. H=S(I1_) x ]_[Y4< 2 S(Ay) and let vy € Ns(n+)(X);, , be a splitting character with respect to
H . .
H*, A=||Ay, and ResY’fzS(Ak) SgNy = SgNy,,5(4,)- Then x € Hy , implies x = w, x ¥, where

W X Yp = [w X Ya]-sgny

= Wgx X I_l(I//Ak - SgN (1))

k>1

— e x || Va =00 x e

k>1

Hence ¥4, =¥ 4; and Ay = Ay forallk>1and k =«*. O

6. A bijection between splitting characters

Let M,(B) and M, (b) be the splitting characters of M(B) and M(b) respectively. We restrict the
bijection fp: M(B) — M(b) (see Theorem 3.3) to fp . which acts only on the domain M. (B).

Theorem 6.1. f; .. is a bijection between M,.(B) and M. (b).

Proof. Let x; € M. (B) and C; be the associated p-core tower. Then C;, = C; by Theorem 2.4. Now let
C., be the p-core tower of A with A0 = @. The set of X, € M4 (B), where A = A*, is in bijection via
f with the set of w, x ¥;, € M(b) where k¥ =«* and Ay = A%. But by Theorem 5.2 the latter are
exactly the constituents of M. (b). Hence M.(B) and M,(b) are in bijection via fp .. O

Theorem 6.2. If A = A9, then every irreducible constituent of Resf‘((g)) X, forms its own p-block. Let {rt; -n |

7T; # A} be the set of partitions of n distinct from A. If » # A9, then to the p-block of an irreducible constituent

of Resi%)) X. there belong just the constituents of such restrictions x; where w2 =% or 10 = (19)*.

A block B of S(IT) splits over A(IT) if each character x e B splits into two characters x* when
restricted to A(IT). Consider B, the block of S(/T) indexed by a p-core x. The following is Theo-
rem 6.1.46 in [5].

Lemma 6.3. The block B, of S(IT) splits over A(IT) if and only if k = k* and k -n.

Proof. A block B = B, splits over A(JT) if and only if every character x, in B splits upon restriction
to A(IT). By Theorem 6.2, this occurs if for each A where x; € B and A = A*. By Theorem 2.1, this
implies x = k*. However if |x| <n, there will exist a x, € B such that A Z1*. O

Theorem 6.4. The alternating groups A(IT) satisfy the block Isaacs-Navarro conjecture.

Proof. Theorem 3 in [2] verifies the block Isaacs-Navarro conjecture for S(IT). Hence, for a p-block
B of S(IT) and its Brauer correspondent, a p-block b of Ns(7)(X), [Mck(B)| = [Mg(b)|.

If B is a splitting block, then B and b are of defect 0, in which case the result follows trivially.
Now suppose p is odd and B does not split. Then either
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1. k =«*and |k| <n or

2. K #Kk*.

Consider the case where ¥k = «* and |k| < n. Although the block B does not split when restricted
to A(IT), individual characters y; of B may split upon restriction. By Theorem 6.2, both constituents
will be in the same block, since the set of constituents of the restrictions of characters of a block of
S(IT) forms a block of A(IT). Let B’ be the block of A(JT) formed by the constituents of Resf‘((g))(x)

of x f B. Hence if Resi((g))(x,\) =X+ % I x; } € B'. Then b is defined from b in an analogous
way. Let

s =|{X: € Mu(B): (1) =+2ck (mod p)},
2t = |{W:. € M(B) — My (B): ¥,.(1) = %ck (mod p)}|.
Then |Mk(B')| = 2k + ti. Similarly, let

se=1{f06) € M) () (1) = £2k (mod p))
260 = [{F () € M(B) = M (B): F(x2)(1) = £k (mod p)}].

)

Then [My(b')| = 250 + t}. Then t, =t by Theorem 3.3 and si = s> by Theorem 6.1, so [Mck(B)| =
My (b)].

Suppose « # «*. In this case, no x; splits when restricted to A(/T) by Theorem 2.1. Hence no
f(xu) splits and s =sP = 0. Let

2t = |{¥n € M(B): x5(1) = £ck (mod p)}|.
Hence Mg (B’)| = ti. Similarly, let
2t} = |{¥. € M(B): xx(1) = £ck (mod p)}|.

Then [My(b")| = t0. Since t; = t? by Theorem 3.3, |[M¢(B')| = M (b")|.
Now suppose p =2 and k < n. Then it is known that xk = k™ (see p. 24 in [9]). Then

)

s0={x. € Mu(B): 1:.(1) =0 (mod 2)}
2t0 = |{ 0. € M(B) — M (B): x,(1)=0 (mod 2)}

)

2t1 = |{ x5 € Mp — My (B): x5.(1)=1 (mod 2)}|.

Then |[Mo(B’)| =tg and |M1(B’)| = 2sg + t1. Similarly,

(s9) = [{x1 € Ma(®): x2.(1) =0 (mod 2)},
265 = [{x» € M(b) = Ma(b): x,.(1) =0 (mod 2)}

)

265 = |{x, € M(b) = M.(b): x:.(1)=1 (mod 2)}|.

Then |[Mo(b)| = tg and |M1(B)| = 2(53) + t’f. The result follows using Theorem 3.3 and Theo-
rem 6.1. O
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