Journal of Algebra 321 (2009) 1632-1642

The Isaacs-Navarro conjecture for the alternating groups

Rishi Nath

Department of Mathematics, York College-CUNY, Jamaica, NY 11418, United States

ARTICLE INFO

Article history: Received 31 October 2007 Available online 21 January 2009 Communicated by Ronald Solomon

Keywords: McKay conjecture Isaacs–Navarro conjecture Alternating groups

ABSTRACT

A recent refinement of the McKay conjecture is verified for the case of the alternating groups. The argument builds upon the verification of the conjecture for the symmetric groups [P. Fong, The Isaacs–Navarro conjecture for symmetric groups, J. Algebra 250 (1) (2003) 154–161].

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Let G be a finite group, p be a prime number and $G_{p'}^{\vee}$ be the set of p'-irreducible characters of G i.e. the complex irreducible characters whose degree is relatively prime to p. The McKay conjecture asserts that

$$G_{p'}^{\vee} = \left| N_G(P)_{p'}^{\vee} \right|$$

where *P* is a Sylow *p*-subgroup of *G* and $N_G(P)$ is the normalizer of *P* in *G*.

The McKay conjecture has been verified for many families of groups including the symmetric groups and alternating groups (see [8]). However the underlying reason for this phenomenon remains a mystery.

One approach to a further understanding of the McKay conjecture is to refine the statement of the conjecture as precisely as possible. The Alperin–McKay conjecture [1] is one such refinement. Let *B* be a Brauer *p*-block of *G* and *D* be the defect group of *B*. Let *b* be the *p*-block of $N_G(D)$ that is the Brauer correspondent of *B*. Let ν be the exponential valuation of \mathbb{Z} associated with *p*, normalized so that $\nu(p) = 1$. The height $h(\chi)$ of a character χ in *B* is a non-negative integer such that

0021-8693/\$ – see front matter $\,\,\odot\,$ 2009 Elsevier Inc. All rights reserved. doi:10.1016/j.jalgebra.2008.11.041

E-mail address: rnath@york.cuny.edu.

$$\nu(\chi(1)) = \nu(|G|) - \nu(|D|) + h(\chi).$$

Similarly, the height of a character ϕ in *b* is the non-negative integer $h(\phi)$ such that $v(\phi(1)) = v(|N_G(D)|) - v(|D|) + h(\phi)$. Let M(B) and M(b) be the sets of characters in *B* and *b* of height 0. The Alperin–McKay conjecture asserts that |M(B)| = |M(b)|.

M. Isaacs and G. Navarro proposed a new refinement of the McKay conjecture. Their first formulation (Conjecture A, [4]) requires defining $M_k(G)$ as the set of irreducible characters of G whose degrees are congruent to $\pm k \pmod{p}$ where k is an integer relatively prime to p.

Conjecture 1.1 (Isaacs-Navarro). For each integer k not divisible by p

$$|M_k(G)| = |M_k(N_G(P))|.$$

Their second formulation (Conjecture B, [4]) requires defining $M_k(B)$ the set of height zero characters in a *p*-block *B* for which the *p'*-part of the degree is congruent to $\pm k \pmod{p}$.

Conjecture 1.2 (Block Isaacs–Navarro). Let B be a p-block of G and suppose that b is the Brauer correspondent of B with respect to some defect group D. Then for each integer k not divisible by p,

$$|M_{ck}(B)| = |M_k(b)|, \text{ where } c = |G:N_G(D)|_{p'}.$$

Let Π be a set of size *n*, and $S(\Pi)$ and $A(\Pi)$ respectively be the symmetric and alternating groups on Π . The *splitting characters* $S(\Pi)_*^{\vee}$ are irreducible characters of $S(\Pi)$ that split into two conjugate characters when restricted to $A(\Pi)$. The *p'*-splitting characters $S(\Pi)_{p',*}^{\vee}$ are characters in $S(\Pi)_*^{\vee}$ whose degree is prime to *p*. Let *B* be a *p*-block of $S(\Pi)$ with defect group *D*. Now suppose $H = N_{S(\Pi)}(D)$ and $H^+ = N_{S(\Pi)}(D) \cap A(\Pi)$. Then H_*^{\vee} and $H_{p',*}^{\vee}$ are the irreducible characters and *p'*irreducible characters that split over H^+ respectively. In this paper we describe a bijection between $S(\Pi)_{p',*}^{\vee}$ and $N_{S(\Pi)}(D)_{p',*}^{\vee}$ of which the Isaacs–Navarro conjecture for $A(\Pi)$ is a consequence.

2. Combinatorial description of splitting characters of *S*(*n*)

Given a partition λ , we denote its *dual* (in the sense of Eq. (1.4.3), [5]) by λ^* . Then λ is *symmetric* or *self-dual* if $\lambda = \lambda^*$. By a classical result of Frobenius $S(\Pi)^{\vee}_*$ are labeled precisely by symmetric partitions of *n*. We recall every partition λ can be expressed uniquely in terms of its *p*-core λ^0 and *p*-quotient $\{\lambda_{\gamma}\}_{1 \leq \gamma \leq p}$ (see Chapter 2 in [5] for details). There is the following relationship between the *p*-core and *p*-quotient of λ and λ^* (p. 3481, [3]).

Theorem 2.1. Let $(\lambda^*)^0$ and $\{\lambda_1^*, \ldots, \lambda_p^*\}$ be the *p*-core and *p*-quotient of λ^* respectively. Then $(\lambda^*)^0 = (\lambda^0)^*$ and $(\lambda^*)_{\gamma} = (\lambda_{p+1-\gamma})^*$ for $1 \leq \gamma \leq p$. In particular, $\lambda = \lambda^*$ if and only if $\lambda^0 = (\lambda^0)^*$ and $\lambda_{\gamma} = (\lambda_{p+1-\gamma})^*$ for $1 \leq \gamma \leq p$.

Let v_p be the *p*-adic valuation on \mathbb{Z} (so that $v_p(q) = \mu$ if p^{μ} divides *q* but $p^{\mu+1}$ does not). Each diagram λ_i has in turn a *p*-core λ_i^0 and a *p*-quotient $(\lambda_{i1}, \ldots, \lambda_{ip})$. Let $c_1 = \sum |\lambda_i^0|$ and $n_2 = \sum |\lambda_{ij}|$, where (λ_{ij}) is the sequence of *p* partitions that form the *p*-quotient of λ_i .

At the rth level we have p^r partitions $(\lambda_{i_1i_2\cdots i_r})^0$, each a *p*-core. In addition we inherit p^{r+1} (*p* for each of the p^r) partitions $\lambda_{i_1\cdots i_{r+1}}$. Then $(i_1,\ldots,i_r) \in I^r$, indexes the partitions $\lambda_{i_1\cdots i_r}$ at the rth level. Let $c_r = \sum_{(i_1,\ldots,i_r)\in I^r} |(\lambda_{i_1\cdots i_r})^0|$, $n_r = \sum_{(i_1,\ldots,i_r)\in I^r} |\lambda_{i_1i_2\cdots i_r}|$. We define the *rth level p*-core $C_{\lambda,r}$ to be the set

$$C_{\lambda,r} := \left\{ (\lambda_{i_1 \cdots i_r})^0 \text{ where } (i_1, \ldots, i_r) \in I^r \right\}.$$

Then the *p*-core tower C_{λ} is $\bigcup_{r\geq 0} C_{\lambda,r}$ where $C_{\lambda,0} = \{\lambda^0\}$. The sum

$$c_r = \sum \left| (\lambda_{i_1 \cdots i_r})^0 \right|$$

will be called the *p*-core sum at level *r*. Now given $i \in I = \{1, ..., p\}$, we let $i^* = p + 1 - i$. Given $\underline{i} = (i_1, ..., i_r) \in l^r$ let $\underline{i}^* = (p + 1 - i_1, ..., p + 1 - i_r)$. The dual C^*_{λ} of a *p*-core tower $C_{\lambda} = \bigcup_{r \ge 0} C_{\lambda,r}$ is defined as follows:

$$C_{\lambda}^* = \bigcup_{r \ge 0} C_{\lambda,r}^*$$

where $C_{\lambda,r}^* = \{\gamma_i: \underline{i} \in l^r, (\gamma_i)^* = (\lambda_{\underline{i}^*})^0\}$. A *p*-core tower C_{λ} is *self-dual* if $C_{\lambda,r} = C_{\lambda,r}^*$ for all *r*. C_{λ} has *height k* if *k* is the minimal non-negative integer *k* such that $(\lambda_{i_1\cdots i_r})^0 = \emptyset$ for all r > k. [Note that if $\lambda = \lambda^0$ is a *p*-core, C_{λ} has height 0.]

Theorem 2.2. Let γ and λ be partitions of n. Then $\gamma = \lambda^*$ if and only if $C_{\gamma}^* = C_{\lambda}$. In particular, $C_{\lambda} = C_{\lambda}^*$ if and only if $\lambda = \lambda^*$.

Proof. By induction on the height *k*. Suppose C_{λ} has height k = 1. Then $C_{\lambda,r}$ consists of empty sets for $r \ge 2$. By Theorem 2.1, $\gamma = \lambda^*$ if and only if $\gamma_i^* = \lambda_{p+1-i}$ and $(\gamma^0)^* = \lambda^0$.

Suppose that the theorem is true for height k - 1 and consider C_{λ} with height k. Then we have the following equivalences.

$$C_{\gamma}^* = C_{\lambda} \iff C_{\gamma_i}^* = C_{\lambda_{p+1-i}} \text{ for all } i, \text{ and}$$

$$C_{\gamma,0}^* = C_{\lambda,0} \iff \gamma_i = \lambda_{p+1-i}^* \text{ for all } i, \text{ and } (\gamma^0)^* = \lambda^0.$$

The first equivalence follows by the definition of two core towers being self-dual. The second follows by the induction hypothesis since γ_i and λ_{p+1-i} are partitions whose core towers have height at most k-1. \Box

We let $n = n_0 + n_1 p + n_2 p^2 + \dots + n_r p^r$ be the *p*-adic decomposition of *n* so the n_i satisfy $0 \le n_i < p$. The following theorem appears in Section 4 of [6].

Theorem 2.3 (MacDonald Criterion). Let $n = \sum_{r \ge 0} n_r p^r$ be the *p*-adic decomposition of *n*. Let C_{λ} be the *p*-core tower of λ , and c_r be the *p*-core sum at each level $r \ge 0$. Suppose $\chi_{\lambda} \in S(\Pi)^{\vee}$. Then $\nu_p(\chi_{\lambda}(1)) = 0$ if and only if $c_r = n_r$ for all *r*.

Corollary 2.4. Let *p* be an odd prime. Then $S(\Pi)_{p',*}^{\vee}$ is the set $\{\chi_{\lambda}\}$ such that the *p*-core tower C_{λ} is self-dual and $\sum_{i} |\lambda_{i_1\cdots i_k}^0| = n_k$ for all *k*.

Proof. This follows from Theorem 2.2 and Theorem 2.3.

3. Block theory for the symmetric groups

Following [2], we describe a bijection between height zero irreducible characters of $S(\Pi)$ and $N_{S(\Pi)}(X)$. We partition Π as $\Pi_{-} \cup \Pi_{+}$ where

$$\Pi_{-} = \{x \in \Pi \mid Dx = x\}$$
 and $\Pi_{+} = \Pi - \Pi_{-}$.

1634

Let $|\Pi| = n$, let $|\Pi_{-}| = n_{-}$ and $|\Pi_{+}| = n_{+}$ where $n = n_{-} + n_{+}$. Note that $n_{+} \equiv 0 \pmod{p}$. Let B_{+} be the *principal block* of $S(\Pi_{+})$, i.e. the block containing the identity character. Recall the Nakayama conjecture: Two ordinary irreducible representations χ_{λ} and $\chi_{\lambda'}$ of $S(\Pi)$ belong to the same *p*-block if and only if the λ and λ' have the same *p*-core (see Chapter 6.1, [5]).

Thus the Nakayama conjecture implies that *B* and B_+ are parametrized respectively by a *p*-core partition $\kappa \vdash n_-$ and the empty partition. So

$$B = \left\{ \chi_{\lambda} \in S(\Pi) \mid \lambda^{0} = \kappa \right\},$$
$$B_{+} = \left\{ \chi_{\lambda_{+}} \in S(\Pi_{+}) \mid (\lambda_{+})^{0} = \emptyset \right\}.$$

D is then a Sylow *p*-subgroup of $S(\Pi_+)$ and a defect group of B_+ . Given a partition $\lambda \vdash n$ such that $\lambda^0 = \kappa$ there exists a partition $\lambda_+ \vdash n_+$ with empty *p*-core and the same *p*-quotient as λ . Conversely, given a partition λ_+ of n_+ with empty *p*-core, we let λ be the partition of *n* with *p*-core κ and *p*-quotient the same as λ_+ . The correspondences $\mu \to \lambda_+$ and $\lambda_+ \to \mu$ are inverses to each other and induce a bijection $\beta : B \mapsto B_+$ such that

$$\beta(\chi_{\lambda}) = \chi_{\lambda_+}.$$

The following is Lemma 1.3 in [2].

Lemma 3.1. The bijection $\beta : B \to B_+$ where $\beta(\chi_{\lambda}) = \chi_{\lambda_+}$ is height-preserving. In particular, $\chi_{\lambda} \in M(B)$ if and only if $\sum_{k \ge 1} c_k(\lambda) p^k$ is the p-adic expansion of n_+ .

We now consider $n_{+} = n_{1}p + n_{2}p^{2} + \cdots$. Let Δ_{k} be a set of size n_{k} for $n_{k} \ge 1$. Let $I = \{1, \dots, p\}$, $\Pi_{k} = (I^{k})^{\Delta_{k}}$ and $\Pi_{+} = \bigsqcup_{k \ge 1} \Pi_{k}$. Notice $S(I^{k})^{\Delta_{k}}$ and $\prod_{k \ge 1} S(I^{k})^{\Delta_{k}}$ act componentwise on Π_{k} and Π_{+} respectively. Given $X_{1} \in \text{Syl}_{p}(S(I))$ that $X_{k} = X_{1} \wr \cdots \wr X_{1}$ (the *k*-fold wreath product) is a Sylow *p*-subgroup of $S(I^{k})$. Hence $X_{k}^{\Delta_{k}} \in \text{Syl}_{p}(\Pi_{k})$ and $X = \prod_{k \ge 1} X_{k}^{\Delta_{k}} \in \text{Syl}_{p}(S(\Pi_{+}))$. Since *D* is a Sylow *p*-subgroup of $S(\Pi_{+})$, we may assume D = X. Now consider $Y_{k} = N_{S(I^{k})}(X_{k})$, and let $Y = N_{S(\Pi)}(X)$. By Proposition 1.5 in [8] we have the isomorphism α_{k} where

$$\alpha_k : Y_k / [X_k, X_k] \simeq Y_1^k$$

Hence $Y/[X, X] = \prod_{k \ge 1} Y_k/[X_k, X_k] \simeq \prod_{k \ge 1} Y_1^k$. Since

$$N_{S(\Pi)}(X) = S(\Pi_{-}) \times \prod_{k \ge 1} Y_k \wr S(\Delta_k)$$

then

$$N_{S(\Pi)}(X)/X' \simeq S(\Pi_{-}) \times \prod_{k \ge 1} Y_1^k \wr S(\Delta_k).$$

Let *b* be the Brauer correspondent of *B*. Then *b* consists of characters $\omega_{\kappa} \times \psi$ where ω_{κ} is the character of $S(\Pi_{-})$ corresponding to the *p*-core partition κ labeling *B* and $\psi = \prod \psi_k$ where $\psi_k \in [Y_k \wr S(\Delta_k)]^{\vee}$. Suppose $(\psi(1), p) = 1$. By a result of Clifford, $\operatorname{Res}_X^{N_{S(\Pi)}(X)}(\psi) = e \sum_{i=1}^t \theta_i$, where $\{\theta_t\}$ are the conjugates of $\theta \in \operatorname{Irr}(X)$ and *e* is a constant. Since $|X| = p^j$ and $\theta_t(1)$ divides |X|, we have $\theta_t(1) = 1$, for all *t*. Hence

$$\left\{\psi \mid \psi \in N_{S(\Pi_+)}(X)_{p'}^{\vee}\right\} = \left(N_{S(\Pi_+)}(X)/X'\right)^{\vee} = \prod_{k \ge 1} \left(Y_1^k \wr S(\Delta_k)\right)^{\vee}.$$

Since Y_1 is a Frobenius group, Y_1 has p characters, p - 1 of which $\{\xi_i\}_{1 \le i \le p-1}$ have degree 1, and one of which ξ_p has degree p - 1. Hence we can label the elements of $(Y_1^k)^{\vee}$ as k-tuples $(\xi_{i_1}, \ldots, \xi_{i_k})$ or ξ_i , where $\underline{i} = (i_1, \ldots, i_k) \in I^k$.

Let Λ_k be a partition-valued function on $(Y_1^k)^{\vee}$ whose values $\Lambda_k(\xi_i)$ satisfy

$$\sum_{\underline{i}\in I^k} \left| \Lambda_k(\underline{\xi}_{\underline{i}}) \right| = n_k$$

In particular, each $\Lambda_k(\underline{\xi}_{\underline{i}})$ is a *p*-core since $n_k < p$. We partition Δ_k into disjoint subsets $\Delta_{k,\underline{i}}$ of size $|\Lambda_k(\underline{\xi}_{\underline{i}})|$ for $\underline{i} \in I^k$. Let $\underline{\xi}_{\Lambda_k}$ be the character of the base group $Y_k^{\Delta_k}$ with component $\underline{\xi}_{\underline{i}}$ in positions indexed by elements of $\Delta_{k,\underline{i}}$. We note $\underline{\xi}_k(1) \equiv \pm 1 \pmod{p}$ since $\underline{\xi}_{\underline{i}}(1) \equiv \pm 1 \pmod{p}$ for all \underline{i} . Then the stabilizer of $\underline{\xi}_{\Lambda_k}$ in $S(\Delta_k)$ is:

$$S(\Delta_k)_{\xi_{\Lambda_k}} = \prod_{i \in I^k} S(\Delta_{k,\underline{i}})$$

and ξ_{Λ_k} extends to a character $E(\xi_{\Lambda_k})$ of $Y_k^{\Delta_k} \cdot S(\Delta_k)_{\xi_{\Lambda_k}}$. Let ω_{Λ_k} be the character of $S(\Delta_k)_{\xi_{\Lambda_k}}$ with component $\omega_{\Lambda_k(\xi_l)}$ on $S(\Delta_{k,l})$. We describe the p'-irreducible characters of $Y_k \wr S(\Delta_k)$ by an application of Clifford's theory and is Theorem 4.3.34 in [5].

Theorem 3.2.

$$\psi_k = \operatorname{Ind}_{Y_k^{\Delta_k} S(\Delta_k) \atop Y_k^{\Delta_k} S(\Delta_k) \xi_{\Lambda_k}} \left(E(\xi_{\Lambda_k}) \omega_{\Lambda_k} \right)$$

is a p'-irreducible character of $(Y_k \wr S(\Delta_k))^{\vee}$. Moreover, every p'-irreducible character of $Y_k \wr S(\Delta_k)$ is of this form.

The following is Eq. 2.7 in [2].

Theorem 3.3. *M*(*B*) and *M*(*b*) are in bijection via where

$$\omega_{\lambda} \mapsto \omega_{\kappa} \times \psi_{\lambda_{+}}.$$

4. Equivalence of sign characters

We seek to describe the p'-splitting characters of $Y_k \wr S(\Delta_k)$ combinatorially. We must first describe the relevant sign character of Y_k/X'_k (by the discussion following Lemma 3.1 and the isomorphism α_k : $Y_k/X'_k \simeq Y_1^k$). Let sgn_k be the sign function of $S(I^k)$ with respect to the alternating group $A(I^k)$. In particular, since $X'_k \subseteq A(I^k)$, sgn_k is constant on cosets of X'_k .

Here $\operatorname{sgn}_{Y_1^k}$ is the sign function of Y_1^k that is, $\operatorname{sgn}_{Y_1^k}(y_1 \times \cdots \times y_k) = \prod_{i=1}^{i=k} \operatorname{sgn}_{Y_1}(y_i)$. We normalize $(Y_1^k)^{\vee} = \{\xi_i \mid i \in I^k\}$ so that $\xi_{(1,\dots,1)} = \operatorname{sgn}_{Y_1^k}$ and $\xi_{(i_1,\dots,i_k)} \cdot \xi_{(1,\dots,1)} = \xi_{(i_1^*,\dots,i_k^*)}$ where $i^* = p + 1 - i$.

Lemma 4.1. Consider $gX'_k \in Y_k/X'_k$, let α_k be defined as above, and suppose $\alpha_k(gX'_k) = (y_1, \ldots, y_k)$ where $y_i \in Y_1^k$. We claim that

$$\operatorname{sgn}_k(g) = \operatorname{sgn}_{Y_1^k}(y_1, \ldots, y_k)$$

Proof. Following the argument in Proposition (1.5) of [8] we write elements of $S(I^{k-1}) \wr S(I) = S(I^{k-1})^I \rtimes S(I)$ as $(g_1, g_2, \dots, g_p; y)$ where $g_i \in S(I^{k-1})$ and $y \in S(I)$. Then

$$X'_{k} = \{(g_{1}, g_{2}, \dots, g_{p}; 1): g_{i} \in X_{k-1} \text{ and } g_{1}g_{2} \cdots g_{p} \in X'_{k-1}\},\$$

$$Y_{k} = \{(g_{1}, g_{2}, \dots, g_{p}; y): g_{i} \in Y_{k-1}, g_{i} \equiv g_{j} \pmod{X_{k-1}} i, j \text{ and } y \in Y_{1}\}$$

In particular, Y_k contains subgroups M and F where

$$M = \{(g_1, g_2, \dots, g_p; 1): g_i \in Y_{k-1}, g_i \equiv g_j \pmod{X_{k-1}} \text{ for all } i \text{ and } j\},\$$
$$F = \{(1, 1, \dots, 1: y): y \in Y_1\},\$$

such that $M \triangleleft Y_k$, $Y_k = MF$, and $M \cap F = 1$. Now $[M, F] \leq X'_k \leq M$, so that

$$\phi: Y_k/X'_k \simeq M/X'_k \times F,$$

where $\phi((g_1, g_2, \dots, g_p; y)X'_k) = ((g_1, g_2, \dots, g_p; 1)X'_k, y)$. We claim

$$M/X'_k \simeq Y_{k-1}/X'_{k-1}.$$

By the Schur–Zassenhaus theorem, $Y_{k-1} = X_{k-1}T$ for some subgroup T of Y_{k-1} such that $T \cap X_{k-1} = 1$. Let $xt \in Y_{k-1}$, where $x \in X_{k-1}$ and $t \in T$. Let

$$\Phi: Y_{k-1} \to M/X'_{k}, \quad xt \to (xt, t, \dots, t; 1)X'_{k}.$$

Note $(xt, t, ..., t; 1) \in M$ by the above description of M. We have $\Phi(xt) \in X'_k$ if and only if $xt^p \in X'_{k-1}$, that is, if and only if $x \in X'_{k-1}$ and t = 1. Moreover, Φ is surjective. For an element of M has the form $(x_1t, x_2t, ..., x_pt; 1)$, where $x_i \in X_{k-1}$ and $t \in T$. Now

$$(x_1t, x_2t, \dots, x_pt; 1) = (x_1, x_2, \dots, x_p; 1)(t, t, \dots, t; 1)$$

$$\equiv (x, 1, 1, \dots, 1; 1)(t, t, \dots, t; 1) \pmod{X'_k}$$

$$\equiv (xt, t, t, \dots, t; 1) \pmod{X'_k}$$

where $x = x_1 x_2 \cdots x_p$. Then $\Phi(xt) = (x_1 t, x_2 t, \dots, x_p t; 1) X'_k$ and Φ induces an isomorphism of $Y_{k-1}/X'_{k-1} \simeq M/X'_k$. Hence α_k : $Y_k/X'_k \simeq Y_1^k$ since α_{k-1} : $Y_{k-1}/X'_{k-1} \simeq Y_1^{k-1}$ (by induction) and $F \simeq Y_1$. In summary, α_k is the composite of the isomorphisms

$$Y_k/X'_k \simeq M/X'_k \times F \to Y_{k-1}/X'_{k-1} \times Y_1 \to Y_1^k.$$

If $\alpha_k(gX'_k) = (y_1, y_2, \dots, y_k)$ and $g = (g_1, g_2, \dots, g_p; 1)(1, 1, \dots, 1; y)$, where the factors are respectively in M and F, then $y_k = y$. Moreover, if

$$(g_1, g_2, \ldots, g_p; 1)X'_k = \Phi(xt)$$

for $xt \in Y_{k-1}$, then $\alpha_{k-1}(xt) \in X'_{k-1} = (y_1, y_2, \dots, y_{k-1})$.

We now prove the relation $sgn_k(g) = sgn_{Y_1^k}(y_1, \ldots, y_k)$ by induction on k (following an argument of P. Fong). Suppose g in Y_k and

$$g = (g_1, g_2, \dots, g_p; 1)(1, 1, \dots, 1; y)$$

where $(g_1, g_2, ..., g_p; 1) \in M$ and $(1, 1, ..., 1; y) \in F$. Then

$$sgn_k(g) = sgn_k(g_1, g_2, \dots, g_p; 1) sgn_k(1, 1, \dots, 1; y)$$
$$= (sgn_{Y_1} y) \prod_{i=1}^p sgn_{k-1}(g_i).$$

For *p* odd, we have $sgn_k(1, 1, ..., 1; y) = sgn_Y(y)$. This follows by viewing *y* as a permutation matrix of degree *p* and (1, 1, ..., 1; y) as the permutation matrix of degree p^k obtained from *y* by replacing 0 and 1 respectively by the zero matrix and the identity of degree p^{k-1} . Taking determinants then gives $sgn_k(1, 1, ..., 1; y) = sgn_{Y_1}(y)$. On the other hand, if we view $(g_1, g_2, ..., g_p; 1)$ as a block diagonal matrix with permutation matrices $g_1, g_2, ..., g_p$ of degree p^{k-1} along the diagonal, we see that

$$\operatorname{sgn}_k(g_1, g_2, \dots, g_p; 1) = \prod_{i=1}^p \operatorname{sgn}_{k-1}(g_i).$$

Now sgn_k is constant on cosets of X'_k and $(g_1, \ldots, g_p; 1)X'_k = (xt, t, t, \ldots, t; 1)X'_k$ where $x \in X_{k-1}$, $t \in T$, and $\Phi(xt) = (g_1, g_2, \ldots, g_p; 1)X'_k$. Thus

$$\prod_{i=1}^{p} \operatorname{sgn}_{k-1}(g_i) = \operatorname{sgn}_{k-1}(xt) \left(\operatorname{sgn}_{k-1}(t) \right)^{p-1} = \operatorname{sgn}_{k-1}(xt).$$

Since $\operatorname{sgn}_{Y_1}(y) = \operatorname{sgn}_{Y_1}(y_k)$ and $\operatorname{sgn}_{k-1}(xt) = \prod_{i=1}^{k-1} \operatorname{sgn}_{Y_1}(y_i)$ we have, by induction, $\operatorname{sgn}_k(g) = \operatorname{sgn}_{Y_k^k}(g_1, \ldots, g_k)$.

Suppose p = 2. The result follows since $Y_{k-1} = X_{k-1}$. \Box

5. A criterion for splitting characters of the normalizer

Let $|\Pi| = n_1 p$, $I = \{1, ..., p\}$ and Δ be a set of size $n_1 < p$ so $\Pi = (I)^{\Delta}$. Let $X \in \text{Syl}_p(S(\Pi))$. In this case, P. Fong and M. Harris (see Proposition (4D), [3]) obtained a criterion for a character of $H = N_{S(\Pi)}(X)$ to split when restricted to the subgroup $H^+ = H \cap A(\Pi)$: For $\psi_A \in H^{\vee} \operatorname{Res}_{H^+}^H \psi_A = \psi_A^+ + \psi_A^-$ if and only if $\Lambda^*(\xi_i) = \Lambda(\xi_{p+1-i})$ for all *i*.

We extend this to the case where $n = \sum_{i \ge 1} n_i p^i$. First consider $n = n_k p^k$, where $n_k < p$ for k > 1 so $|\Pi| = n_k p^k$. From Section 3, elements of $N_G(X_k)_{p'}^{\vee} = [Y_k \wr S(\Delta_k)]_{p'}^{\vee}$ can be labeled by maps $\Lambda_k : I^k \to \{p \text{-core partitions}\}$. Consider

$$(f,\sigma) \in (Y_1^k)^{\Delta_k} \cdot S(\Delta_k)_{\xi_{\Delta_k}}$$

where $f \in (Y_1^k)^{\Delta_k}$ and $\sigma \in S(\Delta_k)_{\xi_{A_k}}$. We calculate $E(\xi_{A_k})(f, \sigma)$. First decompose $\sigma = \sigma_1 \cdots \sigma_d$ into a product of its disjoint cycles in $S(\Delta_k)_{\xi_{A_k}}$. Let $\Delta_{k,\delta}^{\sigma}$ be the support of σ_{δ} , for $1 \leq \delta \leq d$. Let $n_{\delta} = |\Delta_{k,\delta}^{\sigma}|$, and $h_{\delta} \in \Delta_{k,\delta}^{\sigma}$. Let $\rho_{h_{\delta}}(f, \sigma) = f(h_{\delta}) \cdot f(\sigma^{-1}(h_{\delta})) \cdots f(\sigma^{-(n_{\delta}-1)}(h_{\delta}))$. Let $\Gamma_{\underline{i}}$ be the index sets such that $\Delta_{k,\underline{i}} = \bigsqcup_{\delta \in \Gamma_i} \Delta_{k,\delta}^{\sigma}$ (since σ stabilizes each $\Delta_{k,\underline{i}}$). Then by an extension of Lemma 4.3.9 in [5]

$$E(\xi_{\Lambda_k})(f,\sigma) = \prod_{\underline{i}\in I^k} \prod_{\delta\in\Gamma_{\underline{i}}} \underline{\xi_{\underline{i}}}(\rho_{h_{\delta}}(f,\sigma)).$$

1638

We want to find the partition-valued function labeling the sign function $sgn_{(k)}$ of $Y_1^k \wr S(\Delta_k)$ with respect to $(Y_1^k \wr S(\Delta_k))^+$.

Let $\Lambda_{(k)}$ be the map that sends (ξ_1, \ldots, ξ_1) to $\{1^{n_k}\}$ and all other p^k -tuples to \emptyset . Since the stabilizer of $\xi_{\Lambda_{(k)}}$ is $(Y_1^k)^{\Delta_k} \cdot S(\Delta_k) = Y_1^k \wr S(\Delta_k)$,

$$E(\xi_{\Lambda_{(k)}})(f,\sigma) = \prod_{\delta \in \Gamma_{(1,1,\dots,1)}} \xi_{(1,1,\dots,1)} \left(\rho_{h_{\delta}}(f,\sigma) \right)$$
$$= \prod_{\delta \in \Gamma_{(1,1,\dots,1)}} \prod_{j \in \Delta_{k,\delta}} \operatorname{sgn}_{Y_{1}^{k}} (f(j))$$
$$= \prod_{j \in \Delta_{k}} \operatorname{sgn}_{Y_{1}^{k}} (f(j)).$$

Since $\omega_{A_{(k)}} = \operatorname{sgn}_{S(\Delta_k)}$, we have $\psi_{A_{(k)}}(f, \sigma) = \operatorname{sgn}_{S(\Delta_k)}(\sigma) \cdot \prod_{j \in \Delta_k} \operatorname{sgn}_{Y_1^k}(f(j))$. It remains to show that this is the restriction to $Y_1^k \wr S(\Delta_k)$ of the usual sign function on $S(\Pi)$. View $f \in (Y_1^k)^{\Delta_k}$ as a mapping from Δ_k to Y_1^k and $\sigma \in S(\Delta_k)$. Now, since $(f, \sigma) \in (Y_1^k)^{\Delta_k} \cdot S(\Delta_k)$ we have $\operatorname{sgn}_{S(\Pi)}(f, \sigma) = \operatorname{sgn}_{(Y_1^k)^{\Delta_k}}(f) \cdot \operatorname{sgn}_{S(\Delta_k)}(\sigma) = \prod_{i \in \Delta_k} \operatorname{sgn}_{Y_1^k}(f(i)) \cdot \operatorname{sgn}_{S(\Delta_k)}(\sigma)$.

Given a partition-valued function Λ_k , consider the mapping $* : \Lambda_k \to \Lambda_k^*$ such that

$$\Lambda_k^*: \xi_{\underline{i}} \to \Lambda_k(\xi_{\underline{i}^*})^*.$$

Then Λ_k^* is the dual of Λ_k . If $\Lambda_k = \Lambda_k^*$, we say Λ_k is self-dual or symmetric. If $\Lambda = \bigsqcup_{k \ge 1} \Lambda_k$, we say that Λ is self-dual or symmetric if $\Lambda_k = \Lambda_k^*$ for all k. The following generalizes Proposition (4D) in [3].

Proposition 5.1. Let $\psi_{\Lambda_k} \in (Y_1^k \wr S(\Delta_k))^{\vee}$. Then $\operatorname{sgn}_{(k)} \cdot \psi_{\Lambda_k} = \psi_{\Lambda_k^*}$. In particular, ψ_{Λ_k} is a splitting character if and only if Λ_k is self-dual.

Proof.

$$\psi_{A_{k}} \cdot \operatorname{sgn}_{(k)} = \left[\operatorname{Ind}_{Y_{k}^{\Delta_{k}} \cdot S(\Delta_{k})}^{Y_{k}^{\Delta_{k}} \cdot S(\Delta_{k})} \cdot E(\xi_{A_{k}})\omega_{A_{k}}\right] \cdot \operatorname{sgn}_{(k)}$$
$$= \operatorname{Ind}_{Y_{k}^{\Delta_{k}} \cdot S(\Delta_{k})}^{Y_{k}^{\Delta_{k}} \cdot S(\Delta_{k})} \left(E(\xi_{A_{k}})\omega_{A_{k}} \cdot \operatorname{Res}_{(Y_{1}^{k})^{\Delta_{k}} \cdot S(\Delta_{k})\xi_{A_{k}}}^{Y_{1}^{k} \cdot S(\Delta_{k})} (\operatorname{sgn}_{(k)})\right)$$

Decompose $(f, \sigma) \in (Y_1^k)^{\Delta_k} \cdot S(\Delta_k)_{\xi_{\Delta_k}}$ into $(f, \sigma) = \prod_{\underline{i} \in I^k} (f_{\underline{i}}, \sigma_{\underline{i}})$, where $(f_{\underline{i}}, \sigma_{\underline{i}}) \in Y_1^k \wr S(\Delta_{k,\underline{i}})$. Let $\Delta_{k,\underline{i}} = \bigsqcup_{\delta \in \Gamma_i} \Delta_{k,\delta}^{\sigma_{\underline{i}}}$ be the orbit decomposition of $\sigma_{\underline{i}}$ on $\Delta_{k,\underline{i}}$. Since

$$\operatorname{Res}_{(Y_1^k)^{\Delta_k} \cdot S(\Delta_k)_{\xi_{A_k}}}^{(Y_1^k) \in (\Delta_k)} (\operatorname{sgn}_{(k)})(f, \sigma) = \prod_{\underline{i} \in I^k} \left[\prod_{\delta \in \Gamma_{\underline{i}}} \operatorname{sgn}_{Y_1^k} (\rho_{h_\delta}(f_{\underline{i}}, \sigma_{\underline{i}})) \right] \cdot \operatorname{sgn}_{S(\Delta_{k,\underline{i}})}(\sigma_{\underline{i}})$$

we have

$$\begin{split} \left(E(\xi_{\Lambda_k})\omega_{\Lambda_k} \cdot \operatorname{sgn}_{(k)} \right)(f,\sigma) &= \prod_{\underline{i} \in I^k} \left[\prod_{\delta \in \Gamma_{\underline{i}}} \xi_{\underline{i}} \left(\rho_{h_\delta}(f_{\underline{i}},\sigma_{\underline{i}}) \right) \operatorname{sgn}_{Y_1^k} \left(\rho_{h_\delta}(f_{\underline{i}},\sigma_{\underline{i}}) \right) \right] \left(\omega_{\Lambda_k(\underline{\xi}_{\underline{i}})} \cdot \operatorname{sgn}_{S(\Delta_{k,\underline{i}})} \right)(\sigma_{\underline{i}}) \\ &= \prod_{\underline{i} \in I^k} \left[\prod_{\delta \in \Gamma_{\underline{i}}} (\xi_{\underline{i}^*}) \left(\rho_{h_\delta}(f_{\underline{i}},\sigma_{\underline{i}}) \right) \right] \cdot \omega_{\Lambda_k^*(\underline{\xi}_{\underline{i}})}(\sigma_{\underline{i}}) = E(\xi_{\Lambda_k^*}) \cdot \omega_{\Lambda_k^*}(f,\sigma). \end{split}$$

Hence, $\psi_A \cdot \text{sgn}_{(k)} = \psi_{A^*}$. In particular, if $\psi_A = \psi_{A^*}$ then ψ_A splits when restricted to $A(\Pi)$. If $\psi_A \neq \psi_{A^*}$ then ψ_A does not split. \Box

Theorem 5.2. Every $\chi \in H_{p',*}^{\vee}$ can be written as $\omega_{\kappa} \times \psi_{\Lambda}$ such that κ is a symmetric *p*-core partition, $\omega_{\kappa} \in S(\Pi_{-})^{\vee}$ and Λ is a self-dual partition-valued function. That is, $\Lambda = \bigsqcup_{k \ge 1} \Lambda_k$ where $\Lambda_k : Y_1^k \longrightarrow \{p\text{-core partitions}\}$ and $\Lambda_k = \Lambda_k^*$ for all k.

Proof. $H = S(\Pi_{-}) \times \prod Y_1^k \wr S(\Delta_k)$ and let $\psi_{\Lambda} \in N_{S(\Pi_{+})}(X)_{p',*}^{\vee}$ be a splitting character with respect to H^+ , $\Lambda = \bigsqcup \Lambda_k$, and $\text{Res}_{Y_k^k; S(\Delta_k)}^H \text{sgn}_H = \text{sgn}_{Y_1 \wr S(\Delta_k)}$. Then $\chi \in H_{p',*}$ implies $\chi = \omega_k \times \psi_\lambda$ where

$$\omega_{\kappa} \times \psi_{\Lambda} = [\omega_{\kappa} \times \psi_{\Lambda}] \cdot \operatorname{sgn}_{H}$$
$$= \omega_{\kappa^{*}} \times \bigsqcup_{k \ge 1} (\psi_{\Lambda_{k}} \cdot \operatorname{sgn}_{(k)})$$
$$= \omega_{\kappa^{*}} \times \bigsqcup_{k \ge 1} \psi_{\Lambda_{k}^{*}} = \omega_{\kappa^{*}} \times \psi_{\Lambda^{*}}.$$

Hence $\psi_{\Lambda_k} = \psi_{\Lambda_k^*}$ and $\Lambda_k = \Lambda_k^*$ for all $k \ge 1$ and $\kappa = \kappa^*$. \Box

6. A bijection between splitting characters

Let $M_*(B)$ and $M_*(b)$ be the splitting characters of M(B) and M(b) respectively. We restrict the bijection $f_B : M(B) \to M(b)$ (see Theorem 3.3) to $f_{B,*}$ which acts only on the domain $M_*(B)$.

Theorem 6.1. $f_{B,*}$ is a bijection between $M_*(B)$ and $M_*(b)$.

Proof. Let $\chi_{\lambda} \in M_{*}(B)$ and C_{λ} be the associated *p*-core tower. Then $C_{\lambda} = C_{\lambda}^{*}$ by Theorem 2.4. Now let $C_{\lambda_{+}}$ be the *p*-core tower of λ with $\lambda^{0} = \emptyset$. The set of $\chi_{\lambda} \in M_{*}(B)$, where $\lambda = \lambda^{*}$, is in bijection via *f* with the set of $\omega_{\kappa} \times \psi_{\lambda_{+}} \in M(b)$ where $\kappa = \kappa^{*}$ and $\lambda_{+} = \lambda_{+}^{*}$. But by Theorem 5.2 the latter are exactly the constituents of $M_{*}(b)$. Hence $M_{*}(B)$ and $M_{*}(b)$ are in bijection via $f_{B,*}$. \Box

Theorem 6.2. If $\lambda = \lambda^0$, then every irreducible constituent of $\operatorname{Res}_{A(\Pi)}^{S(\Pi)} \chi_{\lambda}$ forms its own *p*-block. Let $\{\pi_i \vdash n \mid \pi_i \neq \lambda\}$ be the set of partitions of *n* distinct from λ . If $\lambda \neq \lambda^0$, then to the *p*-block of an irreducible constituent of $\operatorname{Res}_{A(\Pi)}^{S(\Pi)} \chi_{\lambda}$ there belong just the constituents of such restrictions χ_{π_i} where $\pi_i^0 = \lambda^0$ or $\pi_i^0 = (\lambda^0)^*$.

A block *B* of $S(\Pi)$ splits over $A(\Pi)$ if each character $\chi \in B$ splits into two characters χ^{\pm} when restricted to $A(\Pi)$. Consider B_{κ} the block of $S(\Pi)$ indexed by a *p*-core κ . The following is Theorem 6.1.46 in [5].

Lemma 6.3. The block B_{κ} of $S(\Pi)$ splits over $A(\Pi)$ if and only if $\kappa = \kappa^*$ and $\kappa \vdash n$.

Proof. A block $B = B_{\kappa}$ splits over $A(\Pi)$ if and only if every character χ_{λ} in *B* splits upon restriction to $A(\Pi)$. By Theorem 6.2, this occurs if for each λ where $\chi_{\lambda} \in B$ and $\lambda = \lambda^*$. By Theorem 2.1, this implies $\kappa = \kappa^*$. However if $|\kappa| < n$, there will exist a $\chi_{\lambda} \in B$ such that $\lambda \neq \lambda^*$. \Box

Theorem 6.4. The alternating groups $A(\Pi)$ satisfy the block Isaacs–Navarro conjecture.

Proof. Theorem 3 in [2] verifies the block Isaacs–Navarro conjecture for $S(\Pi)$. Hence, for a *p*-block *B* of $S(\Pi)$ and its Brauer correspondent, a *p*-block *b* of $N_{S(\Pi)}(X)$, $|M_{ck}(B)| = |M_k(b)|$.

If B is a splitting block, then B and b are of defect 0, in which case the result follows trivially. Now suppose p is odd and B does not split. Then either

1. $\kappa = \kappa^*$ and $|\kappa| < n$ or 2. $\kappa \neq \kappa^*$.

Consider the case where $\kappa = \kappa^*$ and $|\kappa| < n$. Although the block *B* does not split when restricted to $A(\Pi)$, individual characters χ_{λ} of B may split upon restriction. By Theorem 6.2, both constituents will be in the same block, since the set of constituents of the restrictions of characters of a block of $S(\Pi)$ forms a block of $A(\Pi)$. Let B' be the block of $A(\Pi)$ formed by the constituents of $\operatorname{Res}_{A(\Pi)}^{S(\Pi)}(\chi)$ of $\chi \in B$. Hence if $\operatorname{Res}_{A(\Pi)}^{S(\Pi)}(\chi_{\lambda}) = \chi_{\lambda}^{+} + \chi_{\lambda}^{-}, \{\chi_{\lambda}^{+}, \chi_{\lambda}^{-}\} \subseteq B'$. Then b' is defined from b in an analogous way. Let

$$s_k = \left| \left\{ \chi_{\lambda} \in M_*(B) \colon \chi_{\lambda}(1) \equiv \pm 2ck \pmod{p} \right\} \right|,$$
$$2t_k = \left| \left\{ \psi_{\lambda} \in M(B) - M_*(B) \colon \psi_{\lambda}(1) \equiv \pm ck \pmod{p} \right\} \right|.$$

Then $|M_{ck}(B')| = 2s_k + t_k$. Similarly, let

$$s_k^b = \left| \left\{ f(\chi_\lambda) \in M_*(b) \colon f(\chi_\lambda)(1) \equiv \pm 2k \pmod{p} \right\} \right|,$$
$$2t_k^b = \left| \left\{ f(\chi_\lambda) \in M(b) - M_*(b) \colon f(\chi_\lambda)(1) \equiv \pm k \pmod{p} \right\} \right|.$$

Then $|M_k(b')| = 2s_k^b + t_k^b$. Then $t_k = t_k^b$ by Theorem 3.3 and $s_k = s_k^b$ by Theorem 6.1, so $|M_{ck}(B')| =$ $|M_k(b')|.$

Suppose $\kappa \neq \kappa^*$. In this case, no χ_{λ} splits when restricted to $A(\Pi)$ by Theorem 2.1. Hence no $f(\chi_{\lambda})$ splits and $s = s^b = 0$. Let

$$2t_k = \left| \left\{ \psi_{\lambda} \in M(B) \colon \chi_{\lambda}(1) \equiv \pm ck \pmod{p} \right\} \right|.$$

Hence $|M_{ck}(B')| = t_k$. Similarly, let

$$2t_k^b = \left| \left\{ \psi_\lambda \in M(B) \colon \chi_\lambda(1) \equiv \pm ck \pmod{p} \right\} \right|$$

Then $|M_k(b')| = t_k^b$. Since $t_k = t_k^b$ by Theorem 3.3, $|M_{ck}(B')| = |M_k(b')|$. Now suppose p = 2 and $\kappa < n$. Then it is known that $\kappa = \kappa^*$ (see p. 24 in [9]). Then

$$s_{0} = \left| \left\{ \chi_{\lambda} \in M_{*}(B) \colon \chi_{\lambda}(1) \equiv 0 \pmod{2} \right\} \right|,$$

$$2t_{0} = \left| \left\{ \chi_{\lambda} \in M(B) - M_{*}(B) \colon \chi_{\lambda}(1) \equiv 0 \pmod{2} \right\} \right|,$$

$$2t_{1} = \left| \left\{ \chi_{\lambda} \in M_{B} - M_{*}(B) \colon \chi_{\lambda}(1) \equiv 1 \pmod{2} \right\} \right|.$$

Then $|M_0(B')| = t_0$ and $|M_1(B')| = 2s_0 + t_1$. Similarly,

Then $|M_0(b')| = t_0^b$ and $|M_1(B)| = 2(s_0^b) + t_1^b$. The result follows using Theorem 3.3 and Theorem 6.1. 🗆

Acknowledgments

The author thanks his PhD advisor Paul Fong for suggesting this problem as part of his dissertation [7]. The author also thanks the anonymous referee for several valuable suggestions and corrections.

References

- J. Alperin, The main problem of block theory, in: Proc. of the Conference of Finite Groups, University of Utah, Park City, Utah, 1976, pp. 341–356.
- [2] P. Fong, The Isaacs-Navarro conjecture for symmetric groups, J. Algebra 250 (1) (2003) 154-161.
- [3] P. Fong, M. Harris, On perfect isometries and isotypies in alternating groups, Trans. Amer. Math. Soc. 349 (9) (1997) 3469– 3516.
- [4] I.M. Isaacs, G. Navarro, New refinements of the McKay conjecture for arbitrary finite groups, Ann. of Math. 156 (2002) 333-344.
- [5] G. James, A. Kerber, Encyclopedia of Mathematics: The Representation Theory of the Symmetric Groups, Addison and Wesley, London, 1981.
- [6] I. MacDonald, On the degrees of the irreducible representations of symmetric groups, Bull. Lond. Math. Soc. 3 (1971) 189– 192.
- [7] R. Nath, Partial results on Navarro's conjecture and the Isaacs-Navarro conjecture for the alternating groups, PhD thesis, University of Illinois at Chicago, 2006.
- [8] J. Olsson, McKay numbers and heights of characters, Math. Scand. 38 (1976) 25-42.
- [9] J. Olsson, Combinatorics and representations of finite groups, Vorlesungen aus dem FB Mathematik der Univ. Essen, Heft 20, Essen, 1993.