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1. Introduction

Let G be a finite group, p be a prime number and G∨
p′ be the set of p′-irreducible characters of G

i.e. the complex irreducible characters whose degree is relatively prime to p. The McKay conjecture
asserts that

∣∣G∨
p′

∣∣ = ∣∣NG(P )∨p′
∣∣

where P is a Sylow p-subgroup of G and NG(P ) is the normalizer of P in G .
The McKay conjecture has been verified for many families of groups including the symmetric

groups and alternating groups (see [8]). However the underlying reason for this phenomenon remains
a mystery.

One approach to a further understanding of the McKay conjecture is to refine the statement of the
conjecture as precisely as possible. The Alperin–McKay conjecture [1] is one such refinement. Let B
be a Brauer p-block of G and D be the defect group of B. Let b be the p-block of NG(D) that is the
Brauer correspondent of B . Let ν be the exponential valuation of Z associated with p, normalized so
that ν(p) = 1. The height h(χ) of a character χ in B is a non-negative integer such that
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ν
(
χ(1)

) = ν
(|G|) − ν

(|D|) + h(χ).

Similarly, the height of a character φ in b is the non-negative integer h(φ) such that ν(φ(1)) =
ν(|NG(D)|) − ν(|D|) + h(φ). Let M(B) and M(b) be the sets of characters in B and b of height 0.
The Alperin–McKay conjecture asserts that |M(B)| = |M(b)|.

M. Isaacs and G. Navarro proposed a new refinement of the McKay conjecture. Their first formu-
lation (Conjecture A, [4]) requires defining Mk(G) as the set of irreducible characters of G whose
degrees are congruent to ±k (mod p) where k is an integer relatively prime to p.

Conjecture 1.1 (Isaacs–Navarro). For each integer k not divisible by p

∣∣Mk(G)
∣∣ = ∣∣Mk

(
NG(P )

)∣∣.
Their second formulation (Conjecture B, [4]) requires defining Mk(B) the set of height zero char-

acters in a p-block B for which the p′-part of the degree is congruent to ±k (mod p).

Conjecture 1.2 (Block Isaacs–Navarro). Let B be a p-block of G and suppose that b is the Brauer correspondent
of B with respect to some defect group D. Then for each integer k not divisible by p,

∣∣Mck(B)
∣∣ = ∣∣Mk(b)

∣∣, where c = ∣∣G : NG(D)
∣∣

p′ .

Let Π be a set of size n, and S(Π) and A(Π) respectively be the symmetric and alternating
groups on Π . The splitting characters S(Π)∨∗ are irreducible characters of S(Π) that split into two
conjugate characters when restricted to A(Π). The p′-splitting characters S(Π)∨p′,∗ are characters in
S(Π)∨∗ whose degree is prime to p. Let B be a p-block of S(Π) with defect group D . Now suppose
H = N S(Π)(D) and H+ = N S(Π)(D) ∩ A(Π). Then H∨∗ and H∨

p′,∗ are the irreducible characters and p′-
irreducible characters that split over H+ respectively. In this paper we describe a bijection between
S(Π)∨p′,∗ and N S(Π)(D)∨p′,∗ of which the Isaacs–Navarro conjecture for A(Π) is a consequence.

2. Combinatorial description of splitting characters of S(n)

Given a partition λ, we denote its dual (in the sense of Eq. (1.4.3), [5]) by λ∗ . Then λ is symmetric
or self-dual if λ = λ∗. By a classical result of Frobenius S(Π)∨∗ are labeled precisely by symmetric
partitions of n. We recall every partition λ can be expressed uniquely in terms of its p-core λ0 and
p-quotient {λγ }1�γ �p (see Chapter 2 in [5] for details). There is the following relationship between
the p-core and p-quotient of λ and λ∗ (p. 3481, [3]).

Theorem 2.1. Let (λ∗)0 and {λ∗
1, . . . , λ

∗
p} be the p-core and p-quotient of λ∗ respectively. Then (λ∗)0 = (λ0)∗

and (λ∗)γ = (λp+1−γ )∗ for 1 � γ � p. In particular, λ = λ∗ if and only if λ0 = (λ0)∗ and λγ = (λp+1−γ )∗
for 1 � γ � p.

Let νp be the p-adic valuation on Z (so that νp(q) = μ if pμ divides q but pμ+1 does not). Each
diagram λi has in turn a p-core λ0

i and a p-quotient (λi1, . . . , λip). Let c1 = ∑ |λ0
i | and n2 = ∑ |λi j|,

where (λi j) is the sequence of p partitions that form the p-quotient of λi .
At the rth level we have pr partitions (λi1 i2···ir )

0, each a p-core. In addition we inherit pr+1 (p
for each of the pr ) partitions λi1···ir+1 . Then (i1, . . . , ir) ∈ Ir , indexes the partitions λi1···ir at the rth
level. Let cr = ∑

(i1,...,ir)∈Ir |(λi1···ir )
0|, nr = ∑

(i1,...,ir)∈Ir |λi1 i2···ir |. We define the rth level p-core Cλ,r to
be the set

Cλ,r := {
(λi1···ir )

0 where (i1, . . . , ir) ∈ Ir}.
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Then the p-core tower Cλ is
⋃

r�0 Cλ,r where Cλ,0 = {λ0}. The sum

cr =
∑∣∣(λi1···ir )

0
∣∣

will be called the p-core sum at level r. Now given i ∈ I = {1, . . . , p}, we let i∗ = p + 1 − i. Given
i = (i1, . . . , ir) ∈ Ir let i∗ = (p + 1 − i1, . . . , p + 1 − ir). The dual C∗

λ of a p-core tower Cλ = ⋃
r�0 Cλ,r

is defined as follows:

C∗
λ =

⋃
r�0

C∗
λ,r

where C∗
λ,r = {γi: i ∈ Ir, (γi)

∗ = (λi∗ )
0}. A p-core tower Cλ is self-dual if Cλ,r = C∗

λ,r for all r. Cλ has

height k if k is the minimal non-negative integer k such that (λi1···ir )
0 = ∅ for all r > k. [Note that if

λ = λ0 is a p-core, Cλ has height 0.]

Theorem 2.2. Let γ and λ be partitions of n. Then γ = λ∗ if and only if C∗
γ = Cλ. In particular, Cλ = C∗

λ if and
only if λ = λ∗.

Proof. By induction on the height k. Suppose Cλ has height k = 1. Then Cλ,r consists of empty sets
for r � 2. By Theorem 2.1, γ = λ∗ if and only if γ ∗

i = λp+1−i and (γ 0)∗ = λ0.
Suppose that the theorem is true for height k − 1 and consider Cλ with height k. Then we have

the following equivalences.

C∗
γ = Cλ ⇐⇒ C∗

γi
= Cλp+1−i for all i, and

C∗
γ ,0 = Cλ,0 ⇐⇒ γi = λ∗

p+1−i for all i, and
(
γ 0)∗ = λ0.

The first equivalence follows by the definition of two core towers being self-dual. The second follows
by the induction hypothesis since γi and λp+1−i are partitions whose core towers have height at most
k − 1. �

We let n = n0 + n1 p + n2 p2 + · · · + nr pr be the p-adic decomposition of n so the ni satisfy 0 �
ni < p. The following theorem appears in Section 4 of [6].

Theorem 2.3 (MacDonald Criterion). Let n = ∑
r�0 nr pr be the p-adic decomposition of n. Let Cλ be the p-

core tower of λ, and cr be the p-core sum at each level r � 0. Suppose χλ ∈ S(Π)∨ . Then νp(χλ(1)) = 0 if and
only if cr = nr for all r.

Corollary 2.4. Let p be an odd prime. Then S(Π)∨p′,∗ is the set {χλ} such that the p-core tower Cλ is self-dual

and
∑

i |λ0
i1···ik

| = nk for all k.

Proof. This follows from Theorem 2.2 and Theorem 2.3. �
3. Block theory for the symmetric groups

Following [2], we describe a bijection between height zero irreducible characters of S(Π) and
N S(Π)(X). We partition Π as Π− ∪ Π+ where

Π− = {x ∈ Π | Dx = x} and Π+ = Π − Π−.
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Let |Π | = n, let |Π−| = n− and |Π+| = n+ where n = n− + n+. Note that n+ ≡ 0 (mod p). Let B+
be the principal block of S(Π+), i.e. the block containing the identity character. Recall the Nakayama
conjecture: Two ordinary irreducible representations χλ and χλ′ of S(Π) belong to the same p-block
if and only if the λ and λ′ have the same p-core (see Chapter 6.1, [5]).

Thus the Nakayama conjecture implies that B and B+ are parametrized respectively by a p-core
partition κ � n− and the empty partition. So

B = {
χλ ∈ S(Π)

∣∣ λ0 = κ
}
,

B+ = {
χλ+ ∈ S(Π+)

∣∣ (λ+)0 = ∅}
.

D is then a Sylow p-subgroup of S(Π+) and a defect group of B+ . Given a partition λ � n such that
λ0 = κ there exists a partition λ+ � n+ with empty p-core and the same p-quotient as λ. Conversely,
given a partition λ+ of n+ with empty p-core, we let λ be the partition of n with p-core κ and p-
quotient the same as λ+ . The correspondences μ → λ+ and λ+ → μ are inverses to each other and
induce a bijection β : B �→ B+ such that

β(χλ) = χλ+ .

The following is Lemma 1.3 in [2].

Lemma 3.1. The bijection β : B → B+ where β(χλ) = χλ+ is height-preserving. In particular, χλ ∈ M(B) if
and only if

∑
k�1 ck(λ)pk is the p-adic expansion of n+ .

We now consider n+ = n1 p + n2 p2 + · · · . Let Δk be a set of size nk for nk � 1. Let I = {1, . . . , p},
Πk = (Ik)Δk and Π+ = ⊔

k�1 Πk . Notice S(Ik)Δk and
∏

k�1 S(Ik)Δk act componentwise on Πk and
Π+ respectively. Given X1 ∈ Sylp(S(I)) that Xk = X1 � · · · �X1 (the k-fold wreath product) is a Sylow

p-subgroup of S(Ik). Hence XΔk
k ∈ Sylp(Πk) and X = ∏

k�1 Xk
Δk ∈ Sylp(S(Π+)). Since D is a Sylow

p-subgroup of S(Π+), we may assume D = X . Now consider Yk = N S(Ik)(Xk), and let Y = N S(Π)(X).
By Proposition 1.5 in [8] we have the isomorphism αk where

αk : Yk/[Xk, Xk] � Y k
1.

Hence Y /[X, X] = ∏
k�1 Yk/[Xk, Xk] � ∏

k�1 Y k
1. Since

N S(Π)(X) = S(Π−) ×
∏
k�1

Yk � S(Δk)

then

N S(Π)(X)/X ′ � S(Π−) ×
∏
k�1

Y k
1 � S(Δk).

Let b be the Brauer correspondent of B . Then b consists of characters ωκ × ψ where ωκ is the
character of S(Π−) corresponding to the p-core partition κ labeling B and ψ = ∏

ψk where ψk ∈
[Yk � S(Δk)]∨ . Suppose (ψ(1), p) = 1. By a result of Clifford, Res

N S(Π)(X)

X (ψ) = e
∑t

i=1 θt , where {θt}
are the conjugates of θ ∈ Irr(X) and e is a constant. Since |X | = p j and θt(1) divides |X |, we have
θt(1) = 1, for all t . Hence

{
ψ

∣∣ ψ ∈ N S(Π+)(X)∨p′
} = (

N S(Π+)(X)/X ′)∨ =
∏
k�1

(
Y k

1 � S(Δk)
)∨

.
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Since Y1 is a Frobenius group, Y1 has p characters, p − 1 of which {ξi}1�i�p−1 have degree 1, and
one of which ξp has degree p − 1. Hence we can label the elements of (Y k

1)∨ as k-tuples (ξi1 , . . . , ξik )

or ξi , where i = (i1, . . . , ik) ∈ Ik .
Let Λk be a partition-valued function on (Y k

1)∨ whose values Λk(ξi) satisfy

∑
i∈Ik

∣∣Λk(ξi)
∣∣ = nk.

In particular, each Λk(ξi) is a p-core since nk < p. We partition Δk into disjoint subsets Δk,i of size

|Λk(ξi)| for i ∈ Ik . Let ξΛk be the character of the base group Y Δk
k with component ξi in positions

indexed by elements of Δk,i . We note ξk(1) ≡ ±1 (mod p) since ξi(1) ≡ ±1 (mod p) for all i. Then
the stabilizer of ξΛk in S(Δk) is:

S(Δk)ξΛk
=

∏
i∈Ik

S(Δk,i)

and ξΛk extends to a character E(ξΛk ) of Y Δk
k · S(Δk)ξΛk

. Let ωΛk be the character of S(Δk)ξΛk
with

component ωΛk(ξi) on S(Δk,i). We describe the p′-irreducible characters of Yk � S(Δk) by an applica-
tion of Clifford’s theory and is Theorem 4.3.34 in [5].

Theorem 3.2.

ψk = Ind
Y

Δk
k S(Δk)

Y
Δk
k S(Δk)ξΛk

(
E(ξΛk )ωΛk

)

is a p′-irreducible character of (Yk � S(Δk))
∨. Moreover, every p′-irreducible character of Yk � S(Δk) is of this

form.

The following is Eq. 2.7 in [2].

Theorem 3.3. M(B) and M(b) are in bijection via where

ωλ �→ ωκ × ψλ+ .

4. Equivalence of sign characters

We seek to describe the p′-splitting characters of Yk � S(Δk) combinatorially. We must first describe
the relevant sign character of Yk/X ′

k (by the discussion following Lemma 3.1 and the isomorphism
αk: Yk/X ′

k � Y k
1). Let sgnk be the sign function of S(Ik) with respect to the alternating group A(Ik).

In particular, since X ′
k ⊆ A(Ik), sgnk is constant on cosets of X ′

k .

Here sgnY k
1

is the sign function of Y k
1 that is, sgnY k

1
(y1 × · · · × yk) = ∏i=k

i=1 sgnY1
(yi). We normalize

(Y k
1)∨ = {ξi | i ∈ Ik} so that ξ(1,...,1) = sgnY k

1
and ξ(i1,...,ik) · ξ(1,...,1) = ξ(i∗1,...,i∗k ) where i∗ = p + 1 − i.

Lemma 4.1. Consider g X ′
k ∈ Yk/X ′

k, let αk be defined as above, and suppose αk(g X ′
k) = (y1, . . . , yk) where

yi ∈ Y k
1 . We claim that

sgnk(g) = sgnY1
k (y1, . . . , yk).
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Proof. Following the argument in Proposition (1.5) of [8] we write elements of S(Ik−1) � S(I) =
S(Ik−1)I

� S(I) as (g1, g2, . . . , gp; y) where gi ∈ S(Ik−1) and y ∈ S(I). Then

X ′
k = {

(g1, g2, . . . , gp;1): gi ∈ Xk−1 and g1 g2 · · · gp ∈ X ′
k−1

}
,

Yk = {
(g1, g2, . . . , gp; y): gi ∈ Yk−1, gi ≡ g j (mod Xk−1) i, j and y ∈ Y1

}
.

In particular, Yk contains subgroups M and F where

M = {
(g1, g2, . . . , gp;1): gi ∈ Yk−1, gi ≡ g j (mod Xk−1) for all i and j

}
,

F = {
(1,1, . . . ,1 : y): y ∈ Y1

}
,

such that M � Yk , Yk = M F , and M ∩ F = 1. Now [M, F ] � X ′
k � M, so that

φ : Yk/X ′
k � M/X ′

k × F ,

where φ((g1, g2, . . . , gp; y)X ′
k) = ((g1, g2, . . . , gp;1)X ′

k, y). We claim

M/X ′
k � Yk−1/X ′

k−1.

By the Schur–Zassenhaus theorem, Yk−1 = Xk−1T for some subgroup T of Yk−1 such that T ∩
Xk−1 = 1. Let xt ∈ Yk−1, where x ∈ Xk−1 and t ∈ T . Let

Φ : Yk−1 → M/X ′
k, xt → (xt, t, . . . , t;1)X ′

k.

Note (xt, t, . . . , t;1) ∈ M by the above description of M . We have Φ(xt) ∈ X ′
k if and only if xt p ∈ X ′

k−1,
that is, if and only if x ∈ X ′

k−1 and t = 1. Moreover, Φ is surjective. For an element of M has the form
(x1t, x2t, . . . , xpt;1), where xi ∈ Xk−1 and t ∈ T . Now

(x1t, x2t, . . . , xpt;1) = (x1, x2, . . . , xp;1)(t, t, . . . , t;1)

≡ (x,1,1, . . . ,1;1)(t, t, . . . , t;1)
(
mod X ′

k

)
≡ (xt, t, t, . . . , t;1)

(
mod X ′

k

)

where x = x1x2 · · · xp . Then Φ(xt) = (x1t, x2t, . . . , xpt;1)X ′
k and Φ induces an isomorphism of

Yk−1/X ′
k−1 � M/X ′

k . Hence αk: Yk/X ′
k � Y k

1 since αk−1: Yk−1/X ′
k−1 � Y k−1

1 (by induction) and F � Y1.
In summary, αk is the composite of the isomorphisms

Yk/X ′
k � M/X ′

k × F → Yk−1/X ′
k−1 × Y1 → Y k

1.

If αk(g X ′
k) = (y1, y2, . . . , yk) and g = (g1, g2, . . . , gp;1)(1,1, . . . ,1; y), where the factors are respec-

tively in M and F , then yk = y. Moreover, if

(g1, g2, . . . , gp;1)X ′
k = Φ(xt)

for xt ∈ Yk−1, then αk−1(xt) ∈ X ′
k−1 = (y1, y2, . . . , yk−1).

We now prove the relation sgnk(g) = sgnY k
1
(y1, . . . , yk) by induction on k (following an argument

of P. Fong). Suppose g in Yk and
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g = (g1, g2, . . . , gp;1)(1,1, . . . ,1; y)

where (g1, g2, . . . , gp;1) ∈ M and (1,1, . . . ,1; y) ∈ F . Then

sgnk(g) = sgnk(g1, g2, . . . , gp;1) sgnk(1,1, . . . ,1; y)

= (sgnY1
y)

p∏
i=1

sgnk−1(gi).

For p odd, we have sgnk(1,1, . . . ,1; y) = sgnY (y). This follows by viewing y as a permutation matrix
of degree p and (1,1, . . . ,1; y) as the permutation matrix of degree pk obtained from y by replacing 0
and 1 respectively by the zero matrix and the identity of degree pk−1. Taking determinants then gives
sgnk(1,1, . . . ,1; y) = sgnY1

(y). On the other hand, if we view (g1, g2, . . . , gp;1) as a block diagonal
matrix with permutation matrices g1, g2, . . . , gp of degree pk−1 along the diagonal, we see that

sgnk(g1, g2, . . . , gp;1) =
p∏

i=1

sgnk−1(gi).

Now sgnk is constant on cosets of X ′
k and (g1, . . . , gp;1)X ′

k = (xt, t, t, . . . , t;1)X ′
k where x ∈ Xk−1,

t ∈ T , and Φ(xt) = (g1, g2, . . . , gp;1)X ′
k . Thus

p∏
i=1

sgnk−1(gi) = sgnk−1(xt)
(
sgnk−1(t)

)p−1 = sgnk−1(xt).

Since sgnY1
(y) = sgnY1

(yk) and sgnk−1(xt) = ∏k−1
i=1 sgnY1

(yi) we have, by induction, sgnk(g) =
sgnY k

1
(g1, . . . , gk).

Suppose p = 2. The result follows since Yk−1 = Xk−1. �
5. A criterion for splitting characters of the normalizer

Let |Π | = n1 p, I = {1, . . . , p} and Δ be a set of size n1 < p so Π = (I)Δ . Let X ∈ Sylp(S(Π)).
In this case, P. Fong and M. Harris (see Proposition (4D), [3]) obtained a criterion for a character of
H = N S(Π)(X) to split when restricted to the subgroup H+ = H ∩ A(Π): For ψΛ ∈ H∨ ResH

H+ψΛ =
ψ+

Λ + ψ−
Λ if and only if Λ∗(ξi) = Λ(ξp+1−i) for all i.

We extend this to the case where n = ∑
i�1 ni pi . First consider n = nk pk , where nk < p for

k > 1 so |Π | = nk pk . From Section 3, elements of NG(Xk)
∨
p′ = [Yk � S(Δk)]∨p′ can be labeled by maps

Λk : Ik → {p-core partitions}. Consider

( f , σ ) ∈ (
Y k

1

)Δk · S(Δk)ξΛk

where f ∈ (Y k
1)Δk and σ ∈ S(Δk)ξΛk

. We calculate E(ξΛk )( f , σ ). First decompose σ = σ1 · · ·σd into a
product of its disjoint cycles in S(Δk)ξΛk

. Let Δσ
k,δ

be the support of σδ, for 1 � δ � d. Let nδ = |Δσ
k,δ

|,
and hδ ∈ Δσ

k,δ
. Let ρhδ

( f , σ ) = f (hδ) · f (σ−1(hδ)) · · · f (σ−(nδ−1)(hδ)). Let Γi be the index sets such
that Δk,i = ⊔

δ∈Γi
Δσ

k,δ
(since σ stabilizes each Δk,i ). Then by an extension of Lemma 4.3.9 in [5]

E(ξΛk )( f , σ ) =
∏
i∈Ik

∏
δ∈Γi

ξi
(
ρhδ

( f , σ )
)
.
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We want to find the partition-valued function labeling the sign function sgn(k) of Y k
1 � S(Δk) with

respect to (Y k
1 � S(Δk))

+ .
Let Λ(k) be the map that sends (ξ1, . . . , ξ1) to {1nk } and all other pk-tuples to ∅. Since the stabilizer

of ξΛ(k)
is (Y k

1)Δk · S(Δk) = Y k
1 � S(Δk),

E(ξΛ(k)
)( f , σ ) =

∏
δ∈Γ(1,1,...,1)

ξ(1,1,...,1)

(
ρhδ

( f , σ )
)

=
∏

δ∈Γ(1,1,...,1)

∏
j∈Δσ

k,δ

sgnY k
1

(
f ( j)

)

=
∏
j∈Δk

sgnY k
1

(
f ( j)

)
.

Since ωΛ(k)
= sgnS(Δk)

, we have ψΛ(k)
( f , σ ) = sgnS(Δk)

(σ ) · ∏
j∈Δk

sgnY k
1
( f ( j)). It remains to show

that this is the restriction to Y k
1 � S(Δk) of the usual sign function on S(Π). View f ∈ (Y k

1)Δk as a
mapping from Δk to Y k

1 and σ ∈ S(Δk). Now, since ( f , σ ) ∈ (Y k
1)Δk · S(Δk) we have sgnS(Π)( f , σ ) =

sgn
(Y k

1)Δk ( f ) · sgnS(Δk)
(σ ) = ∏

i∈Δk
sgnY k

1
( f (i)) · sgnS(Δk)

(σ ).

Given a partition-valued function Λk, consider the mapping ∗ : Λk → Λ∗
k such that

Λ∗
k : ξi → Λk(ξi∗ )

∗.

Then Λ∗
k is the dual of Λk . If Λk = Λ∗

k , we say Λk is self-dual or symmetric. If Λ = ⊔
k�1 Λk , we say

that Λ is self-dual or symmetric if Λk = Λ∗
k for all k. The following generalizes Proposition (4D) in [3].

Proposition 5.1. Let ψΛk ∈ (Y k
1 � S(Δk))

∨ . Then sgn(k) ·ψΛk = ψΛ∗
k

. In particular, ψΛk is a splitting character
if and only if Λk is self-dual.

Proof.

ψΛk · sgn(k) =
[

Ind
Y

Δk
k ·S(Δk)

Y
Δk
k S(Δk)ξΛk

· E(ξΛk )ωΛk

]
· sgn(k)

= Ind
Y

Δk
k ·S(Δk)

Y
Δk
k ·∏i∈Ik S(Δk,i)

(
E(ξΛk )ωΛk · Res

Y k
1 �S(Δk)(
Y k

1

)Δk ·S(Δk)ξΛk

(sgn(k))
)
.

Decompose ( f , σ ) ∈ (Y k
1)Δk · S(Δk)ξΛk

into ( f , σ ) = ∏
i∈Ik ( f i, σi), where ( f i, σi) ∈ Y k

1 � S(Δk,i). Let

Δk,i = ⊔
δ∈Γi

Δ
σi

k,δ
be the orbit decomposition of σi on Δk,i . Since

Res
Y k

1 �S(Δk)(
Y k

1

)Δk ·S(Δk)ξΛk

(sgn(k))( f , σ ) =
∏
i∈Ik

[ ∏
δ∈Γi

sgnY k
1

(
ρhδ

( f i, σi)
)] · sgnS(Δk,i)

(σi)

we have

(
E(ξΛk )ωΛk · sgn(k)

)
( f , σ ) =

∏
i∈Ik

[ ∏
δ∈Γi

ξi
(
ρhδ

( f i, σi)
)

sgnY k
1

(
ρhδ

( f i, σi)
)](

ωΛk(ξi) · sgnS(Δk,i)

)
(σi)

=
∏
i∈Ik

[ ∏
δ∈Γi

(ξi∗ )
(
ρhδ

( f i, σi)
)] · ωΛ∗

k (ξi)(σi) = E(ξΛ∗
k
) · ωΛ∗

k
( f , σ ).
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Hence, ψΛ · sgn(k) = ψΛ∗ . In particular, if ψΛ = ψΛ∗ then ψΛ splits when restricted to A(Π). If
ψΛ �= ψΛ∗ then ψΛ does not split. �
Theorem 5.2. Every χ ∈ H∨

p′,∗ can be written as ωκ × ψΛ such that κ is a symmetric p-core partition,

ωκ ∈ S(Π−)∨ and Λ is a self-dual partition-valued function. That is, Λ = ⊔
k�1 Λk where Λk : Y k

1 −→
{p-core partitions} and Λk = Λ∗

k for all k.

Proof. H = S(Π−) × ∏
Y k

1 � S(Δk) and let ψΛ ∈ N S(Π+)(X)∨p′,∗ be a splitting character with respect to

H+ , Λ = ⊔
Λk, and ResH

Y k
1 �S(Δk)

sgnH = sgnY1�S(Δk)
. Then χ ∈ H p′,∗ implies χ = ωκ × ψλ where

ωκ × ψΛ = [ωκ × ψΛ] · sgnH

= ωκ∗ ×
⊔
k�1

(ψΛk · sgn(k))

= ωκ∗ ×
⊔
k�1

ψΛ∗
k
= ωκ∗ × ψΛ∗ .

Hence ψΛk = ψΛ∗
k

and Λk = Λ∗
k for all k � 1 and κ = κ∗ . �

6. A bijection between splitting characters

Let M∗(B) and M∗(b) be the splitting characters of M(B) and M(b) respectively. We restrict the
bijection f B : M(B) → M(b) (see Theorem 3.3) to f B,∗ which acts only on the domain M∗(B).

Theorem 6.1. f B,∗ is a bijection between M∗(B) and M∗(b).

Proof. Let χλ ∈ M∗(B) and Cλ be the associated p-core tower. Then Cλ = C∗
λ by Theorem 2.4. Now let

Cλ+ be the p-core tower of λ with λ0 = ∅. The set of χλ ∈ M∗(B), where λ = λ∗ , is in bijection via
f with the set of ωκ × ψλ+ ∈ M(b) where κ = κ∗ and λ+ = λ∗+ . But by Theorem 5.2 the latter are
exactly the constituents of M∗(b). Hence M∗(B) and M∗(b) are in bijection via f B,∗ . �
Theorem 6.2. If λ = λ0 , then every irreducible constituent of ResS(Π)

A(Π)χλ forms its own p-block. Let {πi � n |
πi �= λ} be the set of partitions of n distinct from λ. If λ �= λ0 , then to the p-block of an irreducible constituent
of ResS(Π)

A(Π)
χλ there belong just the constituents of such restrictions χπi where π0

i = λ0 or π0
i = (λ0)∗ .

A block B of S(Π) splits over A(Π) if each character χ ∈ B splits into two characters χ± when
restricted to A(Π). Consider Bκ the block of S(Π) indexed by a p-core κ . The following is Theo-
rem 6.1.46 in [5].

Lemma 6.3. The block Bκ of S(Π) splits over A(Π) if and only if κ = κ∗ and κ � n.

Proof. A block B = Bκ splits over A(Π) if and only if every character χλ in B splits upon restriction
to A(Π). By Theorem 6.2, this occurs if for each λ where χλ ∈ B and λ = λ∗ . By Theorem 2.1, this
implies κ = κ∗ . However if |κ | < n, there will exist a χλ ∈ B such that λ �= λ∗ . �
Theorem 6.4. The alternating groups A(Π) satisfy the block Isaacs–Navarro conjecture.

Proof. Theorem 3 in [2] verifies the block Isaacs–Navarro conjecture for S(Π). Hence, for a p-block
B of S(Π) and its Brauer correspondent, a p-block b of N S(Π)(X), |Mck(B)| = |Mk(b)|.

If B is a splitting block, then B and b are of defect 0, in which case the result follows trivially.
Now suppose p is odd and B does not split. Then either
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1. κ = κ∗ and |κ | < n or
2. κ �= κ∗ .

Consider the case where κ = κ∗ and |κ | < n. Although the block B does not split when restricted
to A(Π), individual characters χλ of B may split upon restriction. By Theorem 6.2, both constituents
will be in the same block, since the set of constituents of the restrictions of characters of a block of
S(Π) forms a block of A(Π). Let B ′ be the block of A(Π) formed by the constituents of ResS(Π)

A(Π)(χ)

of χ ∈ B . Hence if ResS(Π)
A(Π)(χλ) = χ+

λ +χ−
λ , {χ+

λ ,χ−
λ } ⊆ B ′ . Then b′ is defined from b in an analogous

way. Let

sk = ∣∣{χλ ∈ M∗(B): χλ(1) ≡ ±2ck (mod p)
}∣∣,

2tk = ∣∣{ψλ ∈ M(B) − M∗(B): ψλ(1) ≡ ±ck (mod p)
}∣∣.

Then |Mck(B ′)| = 2sk + tk . Similarly, let

sb
k = ∣∣{ f (χλ) ∈ M∗(b): f (χλ)(1) ≡ ±2k (mod p)

}∣∣,
2tb

k = ∣∣{ f (χλ) ∈ M(b) − M∗(b): f (χλ)(1) ≡ ±k (mod p)
}∣∣.

Then |Mk(b′)| = 2sb
k + tb

k . Then tk = tb
k by Theorem 3.3 and sk = sb

k by Theorem 6.1, so |Mck(B ′)| =
|Mk(b′)|.

Suppose κ �= κ∗ . In this case, no χλ splits when restricted to A(Π) by Theorem 2.1. Hence no
f (χλ) splits and s = sb = 0. Let

2tk = ∣∣{ψλ ∈ M(B): χλ(1) ≡ ±ck (mod p)
}∣∣.

Hence |Mck(B ′)| = tk . Similarly, let

2tb
k = ∣∣{ψλ ∈ M(B): χλ(1) ≡ ±ck (mod p)

}∣∣.
Then |Mk(b′)| = tb

k . Since tk = tb
k by Theorem 3.3, |Mck(B ′)| = |Mk(b′)|.

Now suppose p = 2 and κ < n. Then it is known that κ = κ∗ (see p. 24 in [9]). Then

s0 = ∣∣{χλ ∈ M∗(B): χλ(1) ≡ 0 (mod 2)
}∣∣,

2t0 = ∣∣{χλ ∈ M(B) − M∗(B): χλ(1) ≡ 0 (mod 2)
}∣∣,

2t1 = ∣∣{χλ ∈ MB − M∗(B): χλ(1) ≡ 1 (mod 2)
}∣∣.

Then |M0(B ′)| = t0 and |M1(B ′)| = 2s0 + t1. Similarly,

(
sb

0

) = ∣∣{χλ ∈ M∗(b): χλ(1) ≡ 0 (mod 2)
}∣∣,

2tb
0 = ∣∣{χλ ∈ M(b) − M∗(b): χλ(1) ≡ 0 (mod 2)

}∣∣,
2tb

1 = ∣∣{χλ ∈ M(b) − M∗(b): χλ(1) ≡ 1 (mod 2)
}∣∣.

Then |M0(b′)| = tb
0 and |M1(B)| = 2(sb

0) + tb
1. The result follows using Theorem 3.3 and Theo-

rem 6.1. �
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