The Isaacs-Navarro conjecture for the alternating groups

Rishi Nath
Department of Mathematics, York College-CUNY, Jamaica, NY 11418, United States

A R T I C L E I N F O

Article history:

Received 31 October 2007
Available online 21 January 2009
Communicated by Ronald Solomon

Keywords:

McKay conjecture
Isaacs-Navarro conjecture
Alternating groups

Abstract

A recent refinement of the McKay conjecture is verified for the case of the alternating groups. The argument builds upon the verification of the conjecture for the symmetric groups [P. Fong, The Isaacs-Navarro conjecture for symmetric groups, J. Algebra 250 (1) (2003) 154-161].

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Let G be a finite group, p be a prime number and $G_{p^{\prime}}^{\vee}$ be the set of p^{\prime}-irreducible characters of G i.e. the complex irreducible characters whose degree is relatively prime to p. The McKay conjecture asserts that

$$
\left|G_{p^{\prime}}^{\vee}\right|=\left|N_{G}(P)_{p^{\prime}}^{\vee}\right|
$$

where P is a Sylow p-subgroup of G and $N_{G}(P)$ is the normalizer of P in G.
The McKay conjecture has been verified for many families of groups including the symmetric groups and alternating groups (see [8]). However the underlying reason for this phenomenon remains a mystery.

One approach to a further understanding of the McKay conjecture is to refine the statement of the conjecture as precisely as possible. The Alperin-McKay conjecture [1] is one such refinement. Let B be a Brauer p-block of G and D be the defect group of B. Let b be the p-block of $N_{G}(D)$ that is the Brauer correspondent of B. Let v be the exponential valuation of \mathbb{Z} associated with p, normalized so that $v(p)=1$. The height $h(\chi)$ of a character χ in B is a non-negative integer such that

[^0]$$
v(\chi(1))=v(|G|)-v(|D|)+h(\chi)
$$

Similarly, the height of a character ϕ in b is the non-negative integer $h(\phi)$ such that $v(\phi(1))=$ $v\left(\left|N_{G}(D)\right|\right)-v(|D|)+h(\phi)$. Let $M(B)$ and $M(b)$ be the sets of characters in B and b of height 0 . The Alperin-McKay conjecture asserts that $|M(B)|=|M(b)|$.
M. Isaacs and G. Navarro proposed a new refinement of the McKay conjecture. Their first formulation (Conjecture A, [4]) requires defining $M_{k}(G)$ as the set of irreducible characters of G whose degrees are congruent to $\pm k(\bmod p)$ where k is an integer relatively prime to p.

Conjecture 1.1 (Isaacs-Navarro). For each integer k not divisible by p

$$
\left|M_{k}(G)\right|=\left|M_{k}\left(N_{G}(P)\right)\right| .
$$

Their second formulation (Conjecture B, [4]) requires defining $M_{k}(B)$ the set of height zero characters in a p-block B for which the p^{\prime}-part of the degree is congruent to $\pm k(\bmod p)$.

Conjecture 1.2 (Block Isaacs-Navarro). Let B be a p-block of G and suppose that b is the Brauer correspondent of B with respect to some defect group D. Then for each integer k not divisible by p,

$$
\left|M_{c k}(B)\right|=\left|M_{k}(b)\right|, \quad \text { where } c=\left|G: N_{G}(D)\right|_{p^{\prime}}
$$

Let Π be a set of size n, and $S(\Pi)$ and $A(\Pi)$ respectively be the symmetric and alternating groups on Π. The splitting characters $S(\Pi)_{*}^{\vee}$ are irreducible characters of $S(\Pi)$ that split into two conjugate characters when restricted to $A(\Pi)$. The p^{\prime}-splitting characters $S(\Pi)_{p^{\prime}, *}^{\vee}$ are characters in $S(\Pi)_{*}^{\vee}$ whose degree is prime to p. Let B be a p-block of $S(\Pi)$ with defect group D. Now suppose $H=N_{S(\Pi)}(D)$ and $H^{+}=N_{S(\Pi)}(D) \cap A(\Pi)$. Then H_{*}^{\vee} and $H_{p^{\prime}, *}^{\vee}$ are the irreducible characters and $p^{\prime}-$ irreducible characters that split over H^{+}respectively. In this paper we describe a bijection between $S(\Pi)_{p^{\prime}, *}^{\vee}$ and $N_{S(\Pi)}(D)_{p^{\prime}, *}^{\vee}$ of which the Isaacs-Navarro conjecture for $A(\Pi)$ is a consequence.

2. Combinatorial description of splitting characters of $\boldsymbol{S}(\boldsymbol{n})$

Given a partition λ, we denote its dual (in the sense of Eq. (1.4.3), [5]) by λ^{*}. Then λ is symmetric or self-dual if $\lambda=\lambda^{*}$. By a classical result of Frobenius $S(\Pi)_{*}^{\vee}$ are labeled precisely by symmetric partitions of n. We recall every partition λ can be expressed uniquely in terms of its p-core λ^{0} and p-quotient $\{\lambda \gamma\}_{1 \leqslant \gamma \leqslant p}$ (see Chapter 2 in [5] for details). There is the following relationship between the p-core and p-quotient of λ and λ^{*} (p. 3481, [3]).

Theorem 2.1. Let $\left(\lambda^{*}\right)^{0}$ and $\left\{\lambda_{1}^{*}, \ldots, \lambda_{p}^{*}\right\}$ be the p-core and p-quotient of λ^{*} respectively. Then $\left(\lambda^{*}\right)^{0}=\left(\lambda^{0}\right)^{*}$ and $\left(\lambda^{*}\right)_{\gamma}=\left(\lambda_{p+1-\gamma}\right)^{*}$ for $1 \leqslant \gamma \leqslant p$. In particular, $\lambda=\lambda^{*}$ if and only if $\lambda^{0}=\left(\lambda^{0}\right)^{*}$ and $\lambda_{\gamma}=\left(\lambda_{p+1-\gamma}\right)^{*}$ for $1 \leqslant \gamma \leqslant p$.

Let v_{p} be the p-adic valuation on \mathbb{Z} (so that $v_{p}(q)=\mu$ if p^{μ} divides q but $p^{\mu+1}$ does not). Each diagram λ_{i} has in turn a p-core λ_{i}^{0} and a p-quotient $\left(\lambda_{i 1}, \ldots, \lambda_{i p}\right)$. Let $c_{1}=\sum\left|\lambda_{i}^{0}\right|$ and $n_{2}=\sum\left|\lambda_{i j}\right|$, where $\left(\lambda_{i j}\right)$ is the sequence of p partitions that form the p-quotient of λ_{i}.

At the r th level we have p^{r} partitions $\left(\lambda_{i_{1} i_{2} \cdots i_{r}}\right)^{0}$, each a p-core. In addition we inherit $p^{r+1}(p$ for each of the p^{r}) partitions $\lambda_{i_{1} \cdots i_{r+1}}$. Then $\left(i_{1}, \ldots, i_{r}\right) \in I^{r}$, indexes the partitions $\lambda_{i_{1} \cdots i_{r}}$ at the r th level. Let $c_{r}=\sum_{\left(i_{1}, \ldots, i_{r}\right) \in I^{r}}\left|\left(\lambda_{i_{1} \ldots i_{r}}\right)^{0}\right|, n_{r}=\sum_{\left(i_{1}, \ldots, i_{r}\right) \in I^{r}}\left|\lambda_{i_{1} i_{2} \ldots i_{r}}\right|$. We define the r th level p-core $C_{\lambda, r}$ to be the set

$$
C_{\lambda, r}:=\left\{\left(\lambda_{i_{1} \cdots i_{r}}\right)^{0} \text { where }\left(i_{1}, \ldots, i_{r}\right) \in I^{r}\right\} .
$$

Then the p-core tower C_{λ} is $\bigcup_{r \geqslant 0} C_{\lambda, r}$ where $C_{\lambda, 0}=\left\{\lambda^{0}\right\}$. The sum

$$
c_{r}=\sum\left|\left(\lambda_{i_{1} \ldots i_{r}}\right)^{0}\right|
$$

will be called the p-core sum at level r. Now given $i \in I=\{1, \ldots, p\}$, we let $i^{*}=p+1-i$. Given $\underline{i}=\left(i_{1}, \ldots, i_{r}\right) \in I^{r}$ let $\underline{\underline{i}}^{*}=\left(p+1-i_{1}, \ldots, p+1-i_{r}\right)$. The dual C_{λ}^{*} of a p-core tower $C_{\lambda}=\bigcup_{r \geqslant 0} C_{\lambda, r}$ is defined as follows:

$$
C_{\lambda}^{*}=\bigcup_{r \geqslant 0} C_{\lambda, r}^{*}
$$

where $C_{\lambda, r}^{*}=\left\{\gamma_{\underline{i}}: \underline{i} \in I^{r},\left(\gamma_{\underline{i}}\right)^{*}=\left(\lambda_{\underline{i}^{*}}\right)^{0}\right\}$. A p-core tower C_{λ} is self-dual if $C_{\lambda, r}=C_{\lambda, r}^{*}$ for all r. C_{λ} has height k if k is the minimal non-negative integer k such that $\left(\lambda_{i_{1} \ldots i_{r}}\right)^{0}=\emptyset$ for all $r>k$. [Note that if $\lambda=\lambda^{0}$ is a p-core, C_{λ} has height 0 .]

Theorem 2.2. Let γ and λ be partitions of n. Then $\gamma=\lambda^{*}$ if and only if $C_{\gamma}^{*}=C_{\lambda}$. In particular, $C_{\lambda}=C_{\lambda}^{*}$ if and only if $\lambda=\lambda^{*}$.

Proof. By induction on the height k. Suppose C_{λ} has height $k=1$. Then $C_{\lambda, r}$ consists of empty sets for $r \geqslant 2$. By Theorem 2.1, $\gamma=\lambda^{*}$ if and only if $\gamma_{i}^{*}=\lambda_{p+1-i}$ and $\left(\gamma^{0}\right)^{*}=\lambda^{0}$.

Suppose that the theorem is true for height $k-1$ and consider C_{λ} with height k. Then we have the following equivalences.

$$
\begin{aligned}
C_{\gamma}^{*}=C_{\lambda} & \Longleftrightarrow C_{\gamma_{i}}^{*}=C_{\lambda_{p+1-i}} \text { for all } i, \quad \text { and } \\
C_{\gamma, 0}^{*}=C_{\lambda, 0} & \Longleftrightarrow \gamma_{i}=\lambda_{p+1-i}^{*} \text { for all } i, \quad \text { and } \quad\left(\gamma^{0}\right)^{*}=\lambda^{0} .
\end{aligned}
$$

The first equivalence follows by the definition of two core towers being self-dual. The second follows by the induction hypothesis since γ_{i} and λ_{p+1-i} are partitions whose core towers have height at most $k-1$.

We let $n=n_{0}+n_{1} p+n_{2} p^{2}+\cdots+n_{r} p^{r}$ be the p-adic decomposition of n so the n_{i} satisfy $0 \leqslant$ $n_{i}<p$. The following theorem appears in Section 4 of [6].

Theorem 2.3 (MacDonald Criterion). Let $n=\sum_{r \geqslant 0} n_{r} p^{r}$ be the p-adic decomposition of n. Let C_{λ} be the p core tower of λ, and c_{r} be the p-core sum at each level $r \geqslant 0$. Suppose $\chi_{\lambda} \in S(\Pi)^{\vee}$. Then $\nu_{p}\left(\chi_{\lambda}(1)\right)=0$ if and only if $c_{r}=n_{r}$ for all r.

Corollary 2.4. Let p be an odd prime. Then $S(\Pi)_{p^{\prime}, *}^{\vee}$ is the set $\left\{\chi_{\lambda}\right\}$ such that the p-core tower C_{λ} is self-dual and $\sum_{\underline{i}}\left|\lambda_{i_{1} \cdots i_{k}}^{0}\right|=n_{k}$ for all k.

Proof. This follows from Theorem 2.2 and Theorem 2.3.

3. Block theory for the symmetric groups

Following [2], we describe a bijection between height zero irreducible characters of $S(\Pi)$ and $N_{S(\Pi)}(X)$. We partition Π as $\Pi_{-} \cup \Pi_{+}$where

$$
\Pi_{-}=\{x \in \Pi \mid D x=x\} \quad \text { and } \quad \Pi_{+}=\Pi-\Pi_{-} .
$$

Let $|\Pi|=n$, let $\left|\Pi_{-}\right|=n_{-}$and $\left|\Pi_{+}\right|=n_{+}$where $n=n_{-}+n_{+}$. Note that $n_{+} \equiv 0(\bmod p)$. Let B_{+} be the principal block of $S\left(\Pi_{+}\right)$, i.e. the block containing the identity character. Recall the Nakayama conjecture: Two ordinary irreducible representations χ_{λ} and $\chi_{\lambda^{\prime}}$ of $S(\Pi)$ belong to the same p-block if and only if the λ and λ^{\prime} have the same p-core (see Chapter 6.1, [5]).

Thus the Nakayama conjecture implies that B and B_{+}are parametrized respectively by a p-core partition $\kappa \vdash n_{-}$and the empty partition. So

$$
\begin{aligned}
B & =\left\{\chi_{\lambda} \in S(\Pi) \mid \lambda^{0}=\kappa\right\}, \\
B_{+} & =\left\{\chi_{\lambda_{+}} \in S\left(\Pi_{+}\right) \mid\left(\lambda_{+}\right)^{0}=\emptyset\right\} .
\end{aligned}
$$

D is then a Sylow p-subgroup of $S\left(\Pi_{+}\right)$and a defect group of B_{+}. Given a partition $\lambda \vdash n$ such that $\lambda^{0}=\kappa$ there exists a partition $\lambda_{+} \vdash n_{+}$with empty p-core and the same p-quotient as λ. Conversely, given a partition λ_{+}of n_{+}with empty p-core, we let λ be the partition of n with p-core κ and p quotient the same as λ_{+}. The correspondences $\mu \rightarrow \lambda_{+}$and $\lambda_{+} \rightarrow \mu$ are inverses to each other and induce a bijection $\beta: B \mapsto B_{+}$such that

$$
\beta\left(\chi_{\lambda}\right)=\chi_{\lambda_{+}} .
$$

The following is Lemma 1.3 in [2].
Lemma 3.1. The bijection $\beta: B \rightarrow B_{+}$where $\beta\left(\chi_{\lambda}\right)=\chi_{\lambda_{+}}$is height-preserving. In particular, $\chi_{\lambda} \in M(B)$ if and only if $\sum_{k \geqslant 1} c_{k}(\lambda) p^{k}$ is the p-adic expansion of n_{+}.

We now consider $n_{+}=n_{1} p+n_{2} p^{2}+\cdots$. Let Δ_{k} be a set of size n_{k} for $n_{k} \geqslant 1$. Let $I=\{1, \ldots, p\}$, $\Pi_{k}=\left(I^{k}\right)^{\Delta_{k}}$ and $\Pi_{+}=\bigsqcup_{k \geqslant 1} \Pi_{k}$. Notice $S\left(I^{k}\right)^{\Delta_{k}}$ and $\prod_{k \geqslant 1} S\left(I^{k}\right)^{\Delta_{k}}$ act componentwise on Π_{k} and Π_{+}respectively. Given $X_{1} \in \operatorname{Syl}_{p}(S(I))$ that $X_{k}=X_{1} 2 \cdots X_{1}$ (the k-fold wreath product) is a Sylow p-subgroup of $S\left(I^{k}\right)$. Hence $X_{k}^{\Delta_{k}} \in \operatorname{Syl}_{p}\left(\Pi_{k}\right)$ and $X=\prod_{k \geqslant 1} X_{k} \Delta_{k} \in \operatorname{Syl}_{p}\left(S\left(\Pi_{+}\right)\right)$. Since D is a Sylow p-subgroup of $S\left(\Pi_{+}\right)$, we may assume $D=X$. Now consider $Y_{k}=N_{S\left(l^{k}\right)}\left(X_{k}\right)$, and let $Y=N_{S(\Pi)}(X)$. By Proposition 1.5 in [8] we have the isomorphism α_{k} where

$$
\alpha_{k}: Y_{k} /\left[X_{k}, X_{k}\right] \simeq Y_{1}^{k} .
$$

Hence $Y /[X, X]=\prod_{k \geqslant 1} Y_{k} /\left[X_{k}, X_{k}\right] \simeq \prod_{k \geqslant 1} Y_{1}^{k}$. Since

$$
N_{S(\Pi)}(X)=S\left(\Pi_{-}\right) \times \prod_{k \geqslant 1} Y_{k} \imath S\left(\Delta_{k}\right)
$$

then

$$
N_{S(\Pi)}(X) / X^{\prime} \simeq S\left(\Pi_{-}\right) \times \prod_{k \geqslant 1} Y_{1}^{k} \imath S\left(\Delta_{k}\right) .
$$

Let b be the Brauer correspondent of B. Then b consists of characters $\omega_{\kappa} \times \psi$ where ω_{κ} is the character of $S\left(\Pi_{-}\right)$corresponding to the p-core partition κ labeling B and $\psi=\prod \psi_{k}$ where $\psi_{k} \in$ $\left[Y_{k} 乙 S\left(\Delta_{k}\right)\right]^{\vee}$. Suppose $(\psi(1), p)=1$. By a result of $\operatorname{Clifford} \operatorname{Res}_{X}{ }_{S}^{N_{S(\pi)}(X)}(\psi)=e \sum_{i=1}^{t} \theta_{t}$, where $\left\{\theta_{t}\right\}$ are the conjugates of $\theta \in \operatorname{Irr}(X)$ and e is a constant. Since $|X|=p^{j}$ and $\theta_{t}(1)$ divides $|X|$, we have $\theta_{t}(1)=1$, for all t. Hence

$$
\left\{\psi \mid \psi \in N_{S\left(\Pi_{+}\right)}(X)_{p^{\prime}}^{\vee}\right\}=\left(N_{S\left(\Pi_{+}\right)}(X) / X^{\prime}\right)^{\vee}=\prod_{k \geqslant 1}\left(Y_{1}^{k} \imath S\left(\Delta_{k}\right)\right)^{\vee} .
$$

Since Y_{1} is a Frobenius group, Y_{1} has p characters, $p-1$ of which $\left\{\xi_{i}\right\}_{1 \leqslant i \leqslant p-1}$ have degree 1 , and one of which ξ_{p} has degree $p-1$. Hence we can label the elements of $\left(Y_{1}^{k}\right)^{\vee}$ as k-tuples ($\xi_{i_{1}}, \ldots, \xi_{i_{k}}$) or $\xi \underline{i}$, where $\underline{i}=\left(i_{1}, \ldots, i_{k}\right) \in I^{k}$.

Let Λ_{k} be a partition-valued function on $\left(Y_{1}^{k}\right)^{\vee}$ whose values $\Lambda_{k}\left(\xi_{\underline{i}}\right)$ satisfy

$$
\sum_{\underline{i} \in I^{k}}\left|\Lambda_{k}\left(\xi_{i}\right)\right|=n_{k} .
$$

In particular, each $\Lambda_{k}\left(\xi_{\underline{i}}\right)$ is a p-core since $n_{k}<p$. We partition Δ_{k} into disjoint subsets $\Delta_{k, \underline{i}}$ of size $\left|\Lambda_{k}\left(\xi_{i}\right)\right|$ for $\underline{i} \in I^{k}$. Let $\xi_{\Lambda_{k}}$ be the character of the base group $Y_{k}^{\Delta_{k}}$ with component ξ_{i} in positions indexed by elements of $\Delta_{k, \underline{i}}$. We note $\xi_{k}(1) \equiv \pm 1(\bmod p)$ since $\xi_{\underline{i}}(1) \equiv \pm 1(\bmod p)$ for all \underline{i}. Then the stabilizer of $\xi_{\Lambda_{k}}$ in $S\left(\Delta_{k}\right)$ is:

$$
S\left(\Delta_{k}\right)_{\xi_{k}}=\prod_{\underline{i} \in I^{k}} S\left(\Delta_{k, \underline{i}}\right)
$$

and $\xi_{\Lambda_{k}}$ extends to a character $E\left(\xi_{\Lambda_{k}}\right)$ of $Y_{k}^{\Delta_{k}} \cdot S\left(\Delta_{k}\right)_{\xi_{\Lambda_{k}}}$. Let $\omega_{\Lambda_{k}}$ be the character of $S\left(\Delta_{k}\right)_{\xi_{A_{k}}}$ with component $\omega_{\Lambda_{k}\left(\xi_{i}\right)}$ on $S\left(\Delta_{k, i}\right)$. We describe the p^{\prime}-irreducible characters of Y_{k} $2 S\left(\Delta_{k}\right)$ by an application of Clifford's theory and is Theorem 4.3.34 in [5].

Theorem 3.2.

$$
\psi_{k}=\operatorname{Ind}_{Y_{k}^{\Lambda_{k}}}^{Y_{k}^{\Delta_{k}} S\left(\Delta_{k}\right) \xi_{\Lambda_{k}}}\left(E\left(\xi_{\Lambda_{k}}\right) \omega_{\Lambda_{k}}\right)
$$

is a p^{\prime}-irreducible character of $\left(Y_{k} 乙 S\left(\Delta_{k}\right)\right)^{\vee}$. Moreover, every p^{\prime}-irreducible character of $Y_{k} 乙 S\left(\Delta_{k}\right)$ is of this form.

The following is Eq. 2.7 in [2].
Theorem 3.3. $M(B)$ and $M(b)$ are in bijection via where

$$
\omega_{\lambda} \mapsto \omega_{\kappa} \times \psi_{\lambda_{+}}
$$

4. Equivalence of sign characters

We seek to describe the p^{\prime}-splitting characters of $Y_{k} 2 S\left(\Delta_{k}\right)$ combinatorially. We must first describe the relevant sign character of Y_{k} / X_{k}^{\prime} (by the discussion following Lemma 3.1 and the isomorphism $\left.\alpha_{k}: Y_{k} / X_{k}^{\prime} \simeq Y_{1}^{k}\right)$. Let sgn_{k} be the sign function of $S\left(I^{k}\right)$ with respect to the alternating group $A\left(I^{k}\right)$. In particular, since $X_{k}^{\prime} \subseteq A\left(I^{k}\right), \operatorname{sgn}_{k}$ is constant on cosets of X_{k}^{\prime}.

Here $\operatorname{sgn}_{Y_{1}^{k}}$ is the sign function of Y_{1}^{k} that is, $\operatorname{sgn}_{Y_{1}^{k}}\left(y_{1} \times \cdots \times y_{k}\right)=\prod_{i=1}^{i=k} \operatorname{sgn}_{Y_{1}}\left(y_{i}\right)$. We normalize $\left(Y_{1}^{k}\right)^{\vee}=\left\{\xi_{\underline{i}} \mid \underline{i} \in I^{k}\right\}$ so that $\xi_{(1, \ldots, 1)}=\operatorname{sgn}_{Y_{1}^{k}}$ and $\xi_{\left(i_{1}, \ldots, i_{k}\right)} \cdot \xi_{(1, \ldots, 1)}=\xi_{\left(i_{1}^{*}, \ldots, i_{k}^{*}\right)}$ where $i^{*}=p+1-i$.

Lemma 4.1. Consider $g X_{k}^{\prime} \in Y_{k} / X_{k}^{\prime}$, let α_{k} be defined as above, and suppose $\alpha_{k}\left(g X_{k}^{\prime}\right)=\left(y_{1}, \ldots, y_{k}\right)$ where $y_{i} \in Y_{1}^{k}$. We claim that

$$
\operatorname{sgn}_{k}(g)=\operatorname{sgn}_{Y_{1}}\left(y_{1}, \ldots, y_{k}\right)
$$

Proof. Following the argument in Proposition (1.5) of [8] we write elements of $S\left(I^{k-1}\right)$ 乙 $S(I)=$ $S\left(I^{k-1}\right)^{I} \rtimes S(I)$ as $\left(g_{1}, g_{2}, \ldots, g_{p} ; y\right)$ where $g_{i} \in S\left(I^{k-1}\right)$ and $y \in S(I)$. Then

$$
\begin{aligned}
& X_{k}^{\prime}=\left\{\left(g_{1}, g_{2}, \ldots, g_{p} ; 1\right): g_{i} \in X_{k-1} \text { and } g_{1} g_{2} \cdots g_{p} \in X_{k-1}^{\prime}\right\}, \\
& Y_{k}=\left\{\left(g_{1}, g_{2}, \ldots, g_{p} ; y\right): g_{i} \in Y_{k-1}, g_{i} \equiv g_{j}\left(\bmod X_{k-1}\right) i, j \text { and } y \in Y_{1}\right\} .
\end{aligned}
$$

In particular, Y_{k} contains subgroups M and F where

$$
\begin{gathered}
M=\left\{\left(g_{1}, g_{2}, \ldots, g_{p} ; 1\right): g_{i} \in Y_{k-1}, g_{i} \equiv g_{j}\left(\bmod X_{k-1}\right) \text { for all } i \text { and } j\right\}, \\
F=\left\{(1,1, \ldots, 1: y): y \in Y_{1}\right\},
\end{gathered}
$$

such that $M \triangleleft Y_{k}, Y_{k}=M F$, and $M \cap F=1$. Now $[M, F] \leqslant X_{k}^{\prime} \leqslant M$, so that

$$
\phi: Y_{k} / X_{k}^{\prime} \simeq M / X_{k}^{\prime} \times F,
$$

where $\phi\left(\left(g_{1}, g_{2}, \ldots, g_{p} ; y\right) X_{k}^{\prime}\right)=\left(\left(g_{1}, g_{2}, \ldots, g_{p} ; 1\right) X_{k}^{\prime}, y\right)$. We claim

$$
M / X_{k}^{\prime} \simeq Y_{k-1} / X_{k-1}^{\prime} .
$$

By the Schur-Zassenhaus theorem, $Y_{k-1}=X_{k-1} T$ for some subgroup T of Y_{k-1} such that $T \cap$ $X_{k-1}=1$. Let $x t \in Y_{k-1}$, where $x \in X_{k-1}$ and $t \in T$. Let

$$
\Phi: Y_{k-1} \rightarrow M / X_{k}^{\prime}, \quad x t \rightarrow(x t, t, \ldots, t ; 1) X_{k}^{\prime} .
$$

Note $(x t, t, \ldots, t ; 1) \in M$ by the above description of M. We have $\Phi(x t) \in X_{k}^{\prime}$ if and only if $x t^{p} \in X_{k-1}^{\prime}$, that is, if and only if $x \in X_{k-1}^{\prime}$ and $t=1$. Moreover, Φ is surjective. For an element of M has the form $\left(x_{1} t, x_{2} t, \ldots, x_{p} t ; 1\right)$, where $x_{i} \in X_{k-1}$ and $t \in T$. Now

$$
\begin{aligned}
\left(x_{1} t, x_{2} t, \ldots, x_{p} t ; 1\right) & =\left(x_{1}, x_{2}, \ldots, x_{p} ; 1\right)(t, t, \ldots, t ; 1) \\
& \equiv(x, 1,1, \ldots, 1 ; 1)(t, t, \ldots, t ; 1) \quad\left(\bmod X_{k}^{\prime}\right) \\
& \equiv(x t, t, t, \ldots, t ; 1) \quad\left(\bmod X_{k}^{\prime}\right)
\end{aligned}
$$

where $x=x_{1} x_{2} \cdots x_{p}$. Then $\Phi(x t)=\left(x_{1} t, x_{2} t, \ldots, x_{p} t ; 1\right) X_{k}^{\prime}$ and Φ induces an isomorphism of $Y_{k-1} / X_{k-1}^{\prime} \simeq M / X_{k}^{\prime}$. Hence $\alpha_{k}: Y_{k} / X_{k}^{\prime} \simeq Y_{1}^{k}$ since $\alpha_{k-1}: Y_{k-1} / X_{k-1}^{\prime} \simeq Y_{1}^{k-1}$ (by induction) and $F \simeq Y_{1}$. In summary, α_{k} is the composite of the isomorphisms

$$
Y_{k} / X_{k}^{\prime} \simeq M / X_{k}^{\prime} \times F \rightarrow Y_{k-1} / X_{k-1}^{\prime} \times Y_{1} \rightarrow Y_{1}^{k} .
$$

If $\alpha_{k}\left(g X_{k}^{\prime}\right)=\left(y_{1}, y_{2}, \ldots, y_{k}\right)$ and $g=\left(g_{1}, g_{2}, \ldots, g_{p} ; 1\right)(1,1, \ldots, 1 ; y)$, where the factors are respectively in M and F, then $y_{k}=y$. Moreover, if

$$
\left(g_{1}, g_{2}, \ldots, g_{p} ; 1\right) X_{k}^{\prime}=\Phi(x t)
$$

for $x t \in Y_{k-1}$, then $\alpha_{k-1}(x t) \in X_{k-1}^{\prime}=\left(y_{1}, y_{2}, \ldots, y_{k-1}\right)$.
We now prove the relation $\operatorname{sgn}_{k}(g)=\operatorname{sgn}_{Y_{1}^{k}}\left(y_{1}, \ldots, y_{k}\right)$ by induction on k (following an argument of P. Fong). Suppose g in Y_{k} and

$$
g=\left(g_{1}, g_{2}, \ldots, g_{p} ; 1\right)(1,1, \ldots, 1 ; y)
$$

where $\left(g_{1}, g_{2}, \ldots, g_{p} ; 1\right) \in M$ and $(1,1, \ldots, 1 ; y) \in F$. Then

$$
\begin{aligned}
\operatorname{sgn}_{k}(g) & =\operatorname{sgn}_{k}\left(g_{1}, g_{2}, \ldots, g_{p} ; 1\right) \operatorname{sgn}_{k}(1,1, \ldots, 1 ; y) \\
& =\left(\operatorname{sgn}_{Y_{1}} y\right) \prod_{i=1}^{p} \operatorname{sgn}_{k-1}\left(g_{i}\right)
\end{aligned}
$$

For p odd, we have $\operatorname{sgn}_{k}(1,1, \ldots, 1 ; y)=\operatorname{sgn}_{Y}(y)$. This follows by viewing y as a permutation matrix of degree p and $(1,1, \ldots, 1 ; y)$ as the permutation matrix of degree p^{k} obtained from y by replacing 0 and 1 respectively by the zero matrix and the identity of degree p^{k-1}. Taking determinants then gives $\operatorname{sgn}_{k}(1,1, \ldots, 1 ; y)=\operatorname{sgn}_{Y_{1}}(y)$. On the other hand, if we view $\left(g_{1}, g_{2}, \ldots, g_{p} ; 1\right)$ as a block diagonal matrix with permutation matrices $g_{1}, g_{2}, \ldots, g_{p}$ of degree p^{k-1} along the diagonal, we see that

$$
\operatorname{sgn}_{k}\left(g_{1}, g_{2}, \ldots, g_{p} ; 1\right)=\prod_{i=1}^{p} \operatorname{sgn}_{k-1}\left(g_{i}\right)
$$

Now sgn_{k} is constant on cosets of X_{k}^{\prime} and $\left(g_{1}, \ldots, g_{p} ; 1\right) X_{k}^{\prime}=(x t, t, t, \ldots, t ; 1) X_{k}^{\prime}$ where $x \in X_{k-1}$, $t \in T$, and $\Phi(x t)=\left(g_{1}, g_{2}, \ldots, g_{p} ; 1\right) X_{k}^{\prime}$. Thus

$$
\prod_{i=1}^{p} \operatorname{sgn}_{k-1}\left(g_{i}\right)=\operatorname{sgn}_{k-1}(x t)\left(\operatorname{sgn}_{k-1}(t)\right)^{p-1}=\operatorname{sgn}_{k-1}(x t)
$$

Since $\operatorname{sgn}_{Y_{1}}(y)=\operatorname{sgn}_{Y_{1}}\left(y_{k}\right)$ and $\operatorname{sgn}_{k-1}(x t)=\prod_{i=1}^{k-1} \operatorname{sgn}_{Y_{1}}\left(y_{i}\right)$ we have, by induction, $\operatorname{sgn}_{k}(g)=$ $\operatorname{sgn}_{Y_{1}^{k}}\left(g_{1}, \ldots, g_{k}\right)$.

Suppose $p=2$. The result follows since $Y_{k-1}=X_{k-1}$.

5. A criterion for splitting characters of the normalizer

Let $|\Pi|=n_{1} p, I=\{1, \ldots, p\}$ and Δ be a set of size $n_{1}<p$ so $\Pi=(I)^{\Delta}$. Let $X \in \operatorname{Syl}_{p}(S(\Pi))$. In this case, P. Fong and M. Harris (see Proposition (4D), [3]) obtained a criterion for a character of $H=N_{S(\Pi)}(X)$ to split when restricted to the subgroup $H^{+}=H \cap A(\Pi)$: For $\psi_{\Lambda} \in H^{\vee} \operatorname{Res}_{H^{+}}^{H} \psi_{\Lambda}=$ $\psi_{\Lambda}^{+}+\psi_{\Lambda}^{-}$if and only if $\Lambda^{*}\left(\xi_{i}\right)=\Lambda\left(\xi_{p+1-i}\right)$ for all i.

We extend this to the case where $n=\sum_{i \geqslant 1} n_{i} p^{i}$. First consider $n=n_{k} p^{k}$, where $n_{k}<p$ for $k>1$ so $|\Pi|=n_{k} p^{k}$. From Section 3, elements of $N_{G}\left(X_{k}\right)_{p^{\prime}}^{\vee}=\left[Y_{k} 乙 S\left(\Delta_{k}\right)\right]_{p^{\prime}}^{\vee}$ can be labeled by maps $\Lambda_{k}: I^{k} \rightarrow\{p$-core partitions $\}$. Consider

$$
(f, \sigma) \in\left(Y_{1}^{k}\right)^{\Delta_{k}} \cdot S\left(\Delta_{k}\right)_{\xi_{\Lambda_{k}}}
$$

where $f \in\left(Y_{1}^{k}\right)^{\Delta_{k}}$ and $\sigma \in S\left(\Delta_{k}\right)_{\xi_{\Lambda_{k}}}$. We calculate $E\left(\xi_{\Lambda_{k}}\right)(f, \sigma)$. First decompose $\sigma=\sigma_{1} \cdots \sigma_{d}$ into a product of its disjoint cycles in $S\left(\Delta_{k}\right)_{\xi_{\Lambda_{k}}}$. Let $\Delta_{k, \delta}^{\sigma}$ be the support of σ_{δ}, for $1 \leqslant \delta \leqslant d$. Let $n_{\delta}=\left|\Delta_{k, \delta}^{\sigma}\right|$, and $h_{\delta} \in \Delta_{k, \delta}^{\sigma}$. Let $\rho_{h_{\delta}}(f, \sigma)=f\left(h_{\delta}\right) \cdot f\left(\sigma^{-1}\left(h_{\delta}\right)\right) \cdots f\left(\sigma^{-\left(n_{\delta}-1\right)}\left(h_{\delta}\right)\right)$. Let $\Gamma_{\underline{i}}$ be the index sets such that $\Delta_{k, \underline{i}}=\bigsqcup_{\delta \in \Gamma_{\underline{i}}} \Delta_{k, \delta}^{\sigma}$ (since σ stabilizes each $\Delta_{k, \underline{i}}$). Then by an extension of Lemma 4.3.9 in [5]

$$
E\left(\xi_{\Lambda_{k}}\right)(f, \sigma)=\prod_{\underline{i} \in I^{k}} \prod_{\delta \in \Gamma_{\underline{i}}} \xi_{\underline{i}}\left(\rho_{h_{\delta}}(f, \sigma)\right) .
$$

We want to find the partition-valued function labeling the sign function $\operatorname{sgn}_{(k)}$ of Y_{1}^{k} 2 $S\left(\Delta_{k}\right)$ with respect to $\left(Y_{1}^{k} \imath S\left(\Delta_{k}\right)\right)^{+}$.

Let $\Lambda_{(k)}$ be the map that sends $\left(\xi_{1}, \ldots, \xi_{1}\right)$ to $\left\{1^{n_{k}}\right\}$ and all other p^{k}-tuples to \emptyset. Since the stabilizer of $\xi_{\Lambda_{(k)}}$ is $\left(Y_{1}^{k}\right)^{\Delta_{k}} \cdot S\left(\Delta_{k}\right)=Y_{1}^{k}\left\langle S\left(\Delta_{k}\right)\right.$,

$$
\begin{aligned}
E\left(\xi_{\Lambda_{(k)}}\right)(f, \sigma) & =\prod_{\delta \in \Gamma_{(1,1, \ldots, 1)}} \xi_{(1,1, \ldots, 1)}\left(\rho_{h_{\delta}}(f, \sigma)\right) \\
& =\prod_{\delta \in \Gamma_{(1,1, \ldots, 1)}} \prod_{j \in \Delta_{k, \delta}^{\sigma}} \operatorname{sgn}_{Y_{1}^{k}}(f(j)) \\
& =\prod_{j \in \Delta_{k}} \operatorname{sgn}_{Y_{1}^{k}}(f(j)) .
\end{aligned}
$$

Since $\omega_{\Lambda_{(k)}}=\operatorname{sgn}_{S\left(\Delta_{k}\right)}$, we have $\psi_{\Lambda_{(k)}}(f, \sigma)=\operatorname{sgn}_{S\left(\Delta_{k}\right)}(\sigma) \cdot \prod_{j \in \Delta_{k}} \operatorname{sgn}_{Y_{1}^{k}}(f(j))$. It remains to show that this is the restriction to $Y_{1}^{k} 2 S\left(\Delta_{k}\right)$ of the usual sign function on $S(\Pi)$. View $f \in\left(Y_{1}^{k}\right)^{\Delta_{k}}$ as a mapping from Δ_{k} to Y_{1}^{k} and $\sigma \in S\left(\Delta_{k}\right)$. Now, since $(f, \sigma) \in\left(Y_{1}^{k}\right)^{\Delta_{k}} \cdot S\left(\Delta_{k}\right)$ we have $\operatorname{sgn}_{S(\Pi)}(f, \sigma)=$ $\operatorname{sgn}_{\left(Y_{1}^{k}\right)_{k}}(f) \cdot \operatorname{sgn}_{S\left(\Delta_{k}\right)}(\sigma)=\prod_{i \in \Delta_{k}} \operatorname{sgn}_{Y_{1}^{k}}(f(i)) \cdot \operatorname{sgn}_{S\left(\Delta_{k}\right)}(\sigma)$.

Given a partition-valued function Λ_{k}, consider the mapping $*: \Lambda_{k} \rightarrow \Lambda_{k}^{*}$ such that

$$
\Lambda_{k}^{*}: \xi_{\underline{i}} \rightarrow \Lambda_{k}\left(\xi_{i^{*}}\right)^{*} .
$$

Then Λ_{k}^{*} is the dual of Λ_{k}. If $\Lambda_{k}=\Lambda_{k}^{*}$, we say Λ_{k} is self-dual or symmetric. If $\Lambda=\bigsqcup_{k \geqslant 1} \Lambda_{k}$, we say that Λ is self-dual or symmetric if $\Lambda_{k}=\Lambda_{k}^{*}$ for all k. The following generalizes Proposition (4D) in [3].

Proposition 5.1. Let $\psi_{\Lambda_{k}} \in\left(Y_{1}^{k} \imath S\left(\Delta_{k}\right)\right)^{\vee}$. Then $\operatorname{sgn}_{(k)} \cdot \psi_{\Lambda_{k}}=\psi_{\Lambda_{k}^{*}}$. In particular, $\psi_{\Lambda_{k}}$ is a splitting character if and only if Λ_{k} is self-dual.

Proof.

$$
\begin{aligned}
& \left.\psi_{\Lambda_{k}} \cdot \operatorname{sgn}_{(k)}=\left[\operatorname{Ind}_{Y_{k}^{\Delta_{k}} S\left(\Delta_{k}\right) \xi_{\Sigma_{k}}}^{Y_{k}^{\Delta_{k}} \cdot S\left(\Delta_{k}\right.}\right) \cdot E\left(\xi_{\left.\Lambda_{k}\right)}\right) \omega_{\Lambda_{k}}\right] \cdot \operatorname{sgn}_{(k)}
\end{aligned}
$$

Decompose $(f, \sigma) \in\left(Y_{1}^{k}\right)^{\Delta_{k}} \cdot S\left(\Delta_{k}\right)_{\xi_{A_{k}}}$ into $(f, \sigma)=\prod_{\underline{i} \in I^{k}}\left(f_{\underline{i}}, \sigma_{\underline{i}}\right)$, where $\left(f_{\underline{i}}, \sigma_{\underline{i}}\right) \in Y_{1}^{k} \imath S\left(\Delta_{k, \underline{i}}\right)$. Let $\Delta_{k, \underline{i}}=\bigsqcup_{\delta \in \Gamma_{\underline{i}}} \Delta_{k, \delta}^{\sigma_{\underline{i}}}$ be the orbit decomposition of $\sigma_{\underline{i}}$ on $\Delta_{k, \underline{i}}$. Since

$$
\operatorname{Res}_{\left.\left(Y_{1}^{k}\right)^{k} \cdot S\left(\Delta_{k}\right)\right)_{S_{\Lambda_{k}}}^{Y_{k}^{k} S\left(\Delta_{k}\right)}}\left(\operatorname{sgn}_{(k)}\right)(f, \sigma)=\prod_{\underline{i} \in I^{k}}\left[\prod_{\delta \in \Gamma_{\underline{\underline{i}}}} \operatorname{sgn}_{Y_{1}^{k}}\left(\rho_{h_{\delta}}\left(f_{\underline{i}}, \sigma_{\underline{i}}\right)\right)\right] \cdot \operatorname{sgn}_{S\left(\Delta_{k, i}\right)}\left(\sigma_{\underline{i}}\right)
$$

we have

$$
\begin{aligned}
\left(E\left(\xi_{\Lambda_{k}}\right) \omega_{\Lambda_{k}} \cdot \operatorname{sgn}_{(k)}\right)(f, \sigma) & =\prod_{\underline{i} \in I^{k}}\left[\prod_{\delta \in \Gamma_{\underline{\underline{i}}}} \xi_{\underline{i}}\left(\rho_{h_{\delta}}\left(f_{\underline{i}}, \sigma_{\underline{i}}\right)\right) \operatorname{sgn}_{Y_{\underline{1}}^{k}}\left(\rho_{h_{\delta}}\left(f_{\underline{\underline{L}}}, \sigma_{\underline{\underline{i}}}\right)\right)\right]\left(\omega_{\Lambda_{k}\left(\xi_{\underline{i}} \underline{i}\right.} \cdot \operatorname{sgn}_{S\left(\Delta_{k, \underline{\underline{i}}}\right)}\right)\left(\sigma_{\underline{i}}\right) \\
& =\prod_{\underline{i} \in I^{k}}\left[\prod_{\delta \in \Gamma_{\underline{\underline{i}}}}\left(\xi_{\underline{i}^{*}}\right)\left(\rho_{h_{\delta}}\left(f_{\underline{i}}, \sigma_{\underline{i}}\right)\right)\right] \cdot \omega_{\Lambda_{\underline{k}}^{*}\left(\xi_{\underline{i}}\right)}\left(\sigma_{\underline{i}}\right)=E\left(\xi_{\Lambda_{k}^{*}}\right) \cdot \omega_{\Lambda_{k}^{*}}(f, \sigma) .
\end{aligned}
$$

Hence, $\psi_{\Lambda} \cdot \operatorname{sgn}_{(k)}=\psi_{\Lambda^{*}}$. In particular, if $\psi_{\Lambda}=\psi_{\Lambda^{*}}$ then ψ_{Λ} splits when restricted to $A(\Pi)$. If $\psi_{\Lambda} \neq \psi_{\Lambda^{*}}$ then ψ_{Λ} does not split.

Theorem 5.2. Every $\chi \in \underset{p^{\prime}, *}{\vee}$ can be written as $\omega_{\kappa} \times \psi_{\Lambda}$ such that κ is a symmetric p-core partition, $\omega_{\kappa} \in S\left(\Pi_{-}\right)^{\vee}$ and Λ is a self-dual partition-valued function. That is, $\Lambda=\bigsqcup_{k \geqslant 1} \Lambda_{k}$ where $\Lambda_{k}: Y_{1}^{k} \longrightarrow$ $\{p$-core partitions $\}$ and $\Lambda_{k}=\Lambda_{k}^{*}$ for all k.

Proof. $H=S\left(\Pi_{-}\right) \times \prod_{1}^{k} \imath S\left(\Delta_{k}\right)$ and let $\psi_{\Lambda} \in N_{S\left(\Pi_{+}\right)}(X)_{p^{\prime}, *}^{\vee}$ be a splitting character with respect to $H^{+}, \Lambda=\bigsqcup \Lambda_{k}$, and $\operatorname{Res}_{Y_{1}^{k} k S\left(\Delta_{k}\right)}^{H} \operatorname{sgn}_{H}=\operatorname{sgn}_{Y_{1} z S\left(\Delta_{k}\right)}$. Then $\chi \in H_{p^{\prime}, *}$ implies $\chi=\omega_{\kappa} \times \psi_{\lambda}$ where

$$
\begin{aligned}
\omega_{\kappa} \times \psi_{\Lambda} & =\left[\omega_{\kappa} \times \psi_{\Lambda}\right] \cdot \operatorname{sgn}_{H} \\
& =\omega_{\kappa^{*}} \times \bigsqcup_{k \geqslant 1}\left(\psi_{\Lambda_{k}} \cdot \operatorname{sgn}_{(k)}\right) \\
& =\omega_{\kappa^{*}} \times \bigsqcup_{k \geqslant 1} \psi_{\Lambda_{k}^{*}}=\omega_{\kappa^{*}} \times \psi_{\Lambda^{*}} .
\end{aligned}
$$

Hence $\psi_{\Lambda_{k}}=\psi_{\Lambda_{k}^{*}}$ and $\Lambda_{k}=\Lambda_{k}^{*}$ for all $k \geqslant 1$ and $\kappa=\kappa^{*}$.

6. A bijection between splitting characters

Let $M_{*}(B)$ and $M_{*}(b)$ be the splitting characters of $M(B)$ and $M(b)$ respectively. We restrict the bijection $f_{B}: M(B) \rightarrow M(b)$ (see Theorem 3.3) to $f_{B, *}$ which acts only on the domain $M_{*}(B)$.

Theorem 6.1. $f_{B, *}$ is a bijection between $M_{*}(B)$ and $M_{*}(b)$.
Proof. Let $\chi_{\lambda} \in M_{*}(B)$ and C_{λ} be the associated p-core tower. Then $C_{\lambda}=C_{\lambda}^{*}$ by Theorem 2.4. Now let $C_{\lambda_{+}}$be the p-core tower of λ with $\lambda^{0}=\emptyset$. The set of $\chi_{\lambda} \in M_{*}(B)$, where $\lambda=\lambda^{*}$, is in bijection via f with the set of $\omega_{\kappa} \times \psi_{\lambda_{+}} \in M(b)$ where $\kappa=\kappa^{*}$ and $\lambda_{+}=\lambda_{+}^{*}$. But by Theorem 5.2 the latter are exactly the constituents of $M_{*}(b)$. Hence $M_{*}(B)$ and $M_{*}(b)$ are in bijection via $f_{B, *}$.

Theorem 6.2. If $\lambda=\lambda^{0}$, then every irreducible constituent of $\operatorname{Res}_{A(\Pi)}^{S(\Pi)} \chi_{\lambda}$ forms its own p-block. Let $\left\{\pi_{i} \vdash n \mid\right.$ $\left.\pi_{i} \neq \lambda\right\}$ be the set of partitions of n distinct from λ. If $\lambda \neq \lambda^{0}$, then to the p-block of an irreducible constituent of $\operatorname{Res}_{A(\Pi)}^{S(\Pi)} \chi_{\lambda}$ there belong just the constituents of such restrictions $\chi_{\pi_{i}}$ where $\pi_{i}^{0}=\lambda^{0}$ or $\pi_{i}^{0}=\left(\lambda^{0}\right)^{*}$.

A block B of $S(\Pi)$ splits over $A(\Pi)$ if each character $\chi \in B$ splits into two characters $\chi^{ \pm}$when restricted to $A(\Pi)$. Consider B_{κ} the block of $S(\Pi)$ indexed by a p-core κ. The following is Theorem 6.1.46 in [5].

Lemma 6.3. The block B_{κ} of $S(\Pi)$ splits over $A(\Pi)$ if and only if $\kappa=\kappa^{*}$ and $\kappa \vdash n$.
Proof. A block $B=B_{\kappa}$ splits over $A(\Pi)$ if and only if every character χ_{λ} in B splits upon restriction to $A(\Pi)$. By Theorem 6.2, this occurs if for each λ where $\chi_{\lambda} \in B$ and $\lambda=\lambda^{*}$. By Theorem 2.1, this implies $\kappa=\kappa^{*}$. However if $|\kappa|<n$, there will exist a $\chi_{\lambda} \in B$ such that $\lambda \neq \lambda^{*}$.

Theorem 6.4. The alternating groups $A(\Pi)$ satisfy the block Isaacs-Navarro conjecture.
Proof. Theorem 3 in [2] verifies the block Isaacs-Navarro conjecture for $S(\Pi)$. Hence, for a p-block B of $S(\Pi)$ and its Brauer correspondent, a p-block b of $N_{S(\Pi)}(X),\left|M_{c k}(B)\right|=\left|M_{k}(b)\right|$.

If B is a splitting block, then B and b are of defect 0 , in which case the result follows trivially. Now suppose p is odd and B does not split. Then either

1. $\kappa=\kappa^{*}$ and $|\kappa|<n$ or
2. $\kappa \neq \kappa^{*}$.

Consider the case where $\kappa=\kappa^{*}$ and $|\kappa|<n$. Although the block B does not split when restricted to $A(\Pi)$, individual characters χ_{λ} of B may split upon restriction. By Theorem 6.2 , both constituents will be in the same block, since the set of constituents of the restrictions of characters of a block of $S(\Pi)$ forms a block of $A(\Pi)$. Let B^{\prime} be the block of $A(\Pi)$ formed by the constituents of $\operatorname{Res}{ }_{A(\Pi)}^{S(\Pi)}(\chi)$ of $\chi \in B$. Hence if $\operatorname{Res}_{A(\Pi)}^{S(\Pi)}\left(\chi_{\lambda}\right)=\chi_{\lambda}^{+}+\chi_{\lambda}^{-},\left\{\chi_{\lambda}^{+}, \chi_{\lambda}^{-}\right\} \subseteq B^{\prime}$. Then b^{\prime} is defined from b in an analogous way. Let

$$
\begin{aligned}
s_{k} & =\left|\left\{\chi_{\lambda} \in M_{*}(B): \chi_{\lambda}(1) \equiv \pm 2 c k(\bmod p)\right\}\right| \\
2 t_{k} & =\left|\left\{\psi_{\lambda} \in M(B)-M_{*}(B): \psi_{\lambda}(1) \equiv \pm c k(\bmod p)\right\}\right|
\end{aligned}
$$

Then $\left|M_{c k}\left(B^{\prime}\right)\right|=2 s_{k}+t_{k}$. Similarly, let

$$
\begin{aligned}
s_{k}^{b} & =\left|\left\{f\left(\chi_{\lambda}\right) \in M_{*}(b): f\left(\chi_{\lambda}\right)(1) \equiv \pm 2 k(\bmod p)\right\}\right| \\
2 t_{k}^{b} & =\left|\left\{f\left(\chi_{\lambda}\right) \in M(b)-M_{*}(b): f\left(\chi_{\lambda}\right)(1) \equiv \pm k(\bmod p)\right\}\right|
\end{aligned}
$$

Then $\left|M_{k}\left(b^{\prime}\right)\right|=2 s_{k}^{b}+t_{k}^{b}$. Then $t_{k}=t_{k}^{b}$ by Theorem 3.3 and $s_{k}=s_{k}^{b}$ by Theorem 6.1 , so $\left|M_{c k}\left(B^{\prime}\right)\right|=$ $\left|M_{k}\left(b^{\prime}\right)\right|$.

Suppose $\kappa \neq \kappa^{*}$. In this case, no χ_{λ} splits when restricted to $A(\Pi)$ by Theorem 2.1. Hence no $f\left(\chi_{\lambda}\right)$ splits and $s=s^{b}=0$. Let

$$
2 t_{k}=\left|\left\{\psi_{\lambda} \in M(B): \chi_{\lambda}(1) \equiv \pm c k(\bmod p)\right\}\right|
$$

Hence $\left|M_{c k}\left(B^{\prime}\right)\right|=t_{k}$. Similarly, let

$$
2 t_{k}^{b}=\left|\left\{\psi_{\lambda} \in M(B): \chi_{\lambda}(1) \equiv \pm c k(\bmod p)\right\}\right|
$$

Then $\left|M_{k}\left(b^{\prime}\right)\right|=t_{k}^{b}$. Since $t_{k}=t_{k}^{b}$ by Theorem 3.3, $\left|M_{c k}\left(B^{\prime}\right)\right|=\left|M_{k}\left(b^{\prime}\right)\right|$.
Now suppose $p=2$ and $\kappa<n$. Then it is known that $\kappa=\kappa^{*}$ (see p. 24 in [9]). Then

$$
\begin{aligned}
s_{0} & =\left|\left\{\chi_{\lambda} \in M_{*}(B): \chi_{\lambda}(1) \equiv 0(\bmod 2)\right\}\right| \\
2 t_{0} & =\left|\left\{\chi_{\lambda} \in M(B)-M_{*}(B): \chi_{\lambda}(1) \equiv 0(\bmod 2)\right\}\right| \\
2 t_{1} & =\left|\left\{\chi_{\lambda} \in M_{B}-M_{*}(B): \chi_{\lambda}(1) \equiv 1(\bmod 2)\right\}\right|
\end{aligned}
$$

Then $\left|M_{0}\left(B^{\prime}\right)\right|=t_{0}$ and $\left|M_{1}\left(B^{\prime}\right)\right|=2 s_{0}+t_{1}$. Similarly,

$$
\begin{aligned}
\left(s_{0}^{b}\right) & =\left|\left\{\chi_{\lambda} \in M_{*}(b): \chi_{\lambda}(1) \equiv 0(\bmod 2)\right\}\right| \\
2 t_{0}^{b} & =\left|\left\{\chi_{\lambda} \in M(b)-M_{*}(b): \chi_{\lambda}(1) \equiv 0(\bmod 2)\right\}\right| \\
2 t_{1}^{b} & =\left|\left\{\chi_{\lambda} \in M(b)-M_{*}(b): \chi_{\lambda}(1) \equiv 1(\bmod 2)\right\}\right|
\end{aligned}
$$

Then $\left|M_{0}\left(b^{\prime}\right)\right|=t_{0}^{b}$ and $\left|M_{1}(B)\right|=2\left(s_{0}^{b}\right)+t_{1}^{b}$. The result follows using Theorem 3.3 and Theorem 6.1.

Acknowledgments

The author thanks his PhD advisor Paul Fong for suggesting this problem as part of his dissertation [7]. The author also thanks the anonymous referee for several valuable suggestions and corrections.

References

[1] J. Alperin, The main problem of block theory, in: Proc. of the Conference of Finite Groups, University of Utah, Park City, Utah, 1976, pp. 341-356.
[2] P. Fong, The Isaacs-Navarro conjecture for symmetric groups, J. Algebra 250 (1) (2003) 154-161.
[3] P. Fong, M. Harris, On perfect isometries and isotypies in alternating groups, Trans. Amer. Math. Soc. 349 (9) (1997) 34693516.
[4] I.M. Isaacs, G. Navarro, New refinements of the McKay conjecture for arbitrary finite groups, Ann. of Math. 156 (2002) 333-344.
[5] G. James, A. Kerber, Encyclopedia of Mathematics: The Representation Theory of the Symmetric Groups, Addison and Wesley, London, 1981.
[6] I. MacDonald, On the degrees of the irreducible representations of symmetric groups, Bull. Lond. Math. Soc. 3 (1971) 189192.
[7] R. Nath, Partial results on Navarro's conjecture and the Isaacs-Navarro conjecture for the alternating groups, PhD thesis, University of Illinois at Chicago, 2006.
[8] J. Olsson, McKay numbers and heights of characters, Math. Scand. 38 (1976) 25-42.
[9] J. Olsson, Combinatorics and representations of finite groups, Vorlesungen aus dem FB Mathematik der Univ. Essen, Heft 20, Essen, 1993.

[^0]: E-mail address: rnath@york.cuny.edu.

 0021-8693/\$ - see front matter © 2009 Elsevier Inc. All rights reserved.
 doi:10.1016/j.jalgebra.2008.11.041

