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a b s t r a c t

In this paper we discuss the problem of approximation of the first
derivative of a function at the endpoint of its definition interval.
This problem is motivated by diabetes therapy management,
where it is important to provide estimations of the future blood
glucose trend from current and past measurements. A natural
way to approach the problem is to use one-sided finite difference
schemes for numerical differentiation, but, following this way, one
should be aware that the values of the function to be differentiated
are noisy and available only at given fixed points. Then (aswe argue
in the paper) the number of used point values is the only parameter
to be employed for regularization of the abovementioned ill-posed
problem of numerical differentiation. In this paper we present and
theoretically justify an adaptive procedure for choosing such a
parameter. We also demonstrate some illustrative tests, as well as
the results of numerical experiments with simulated clinical data.

© 2012 Elsevier Inc. All rights reserved.

1. Problem formulation

In this paper we consider the problem of approximation of a derivative y′(B) at the boundary point
of some interval [b, B] under the condition that at the given points

B = tN > tN−1 > · · · > t1 ≥ b (1)

only noisy values yδ(tj) of y(tj) are available such that

|y(tj)− yδ(tj)| ≤ δ. (2)
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It should be noted that the problem in such formulation arises in various practical applications,
for example, in the diabetes therapy management. More about this application will be given in the
forthcoming section.

At the same time, it is noteworthy to mention that the problem of approximation of y′(B) does not
seem to have been discussed so intensively as the problem of the reconstruction of the derivative at a
given interior point. For the latter one there is a substantial amount of publications, see, for example
[1,14,16,22,24], just to mention a few.

At this point, it should be noted that the problem of the numerical differentiation is known to be
ill-posed [6]. Hence, in order to approximate a value of the derivative in a stable way, regularization
methods should be applied.

In the context of approximation y′(τ ) at an interior point τ ∈ (b, B) the role of such a regularization
method is usually played by a finite difference formula of the form

y′(τ ) ≈ Sn,hyδ(τ ) =

n
j=−n

anj
h
yδ(τ + jh), (3)

where the value h of the step-size is used as a regularization parameter. Within this scheme it
is presupposed that a step-size h can be freely chosen in dependence on a noise level δ (see, for
example [14,16,24]). Note that such a scheme is not relevant for our problem, since the points (1)
are assumed to be given and cannot be chosen at will. Moreover, formula (3) cannot be used for
approximation of the derivative value at the boundary point, which is our main interest in this
paper.

With this interest in mind, we consider another tool for numerical differentiation, known as
one-sided finite difference formula, see, for example [23]. Similar to [23] we assume that the given
sequence (1) is formed by points of several equidistant grids with step-sizes h1 > h2 > · · · > hν such
that

{tk}Nk=1 =

ν
s=1

{tj,s}
Ns−1
j=0 , (4)

where tj,s = B − jhs, j = 0, 1, . . . ,Ns − 1, Ns =


B−b
hs


, and [a] denotes the integer part of a. For

instance, if we are given to the grid with the step-size hs, then the grids with step-sizes hi = ihs, i =

1, 2, . . . , also can be used.
Then the one-sided finite difference formula used for the approximation of y′(B) can be written in

the form

y′(B) ≈ Sn,hsyδ =

n
j=0

anj
hs

yδ(B − jhs), n ≤ Ns. (5)

From the viewpoint of the Information-Based Complexity (IBC) theory [29] a family of formulae
(5) with a fixed array of coefficients {anj }

n,
j=0,

Ns
n=1 can be seen as a sequence of algorithms of increasing

computational cost, which is proportional either to the amount (n + 1) of used standard information
{y(tj,s)}nj=0 or, which is almost the same, to the order n of a formula. But these algorithms operate
with noisy information {yδ(tj,s)}nj=0, n = 1, 2, . . . ,Ns, and aim to approximate the value of the func-
tional Sy := y′(B), which is unbounded on the space C[0, 1] of continuous functions. Due to this
unboundedness, the considered approximation problem is ill-posed. In contrast to the well-posed
problems with noisy information, which were mainly studied until now in the literature on IBC
(see, e.g., [21]), in the considered case an uncontrolled increase of the order n of the (5) leads not
only to unnecessary computational costs, but also to an amplification of the noise propagation error
(see Example 1 below). Therefore, the goal is to use a value n of the complexity measure as a
regularization parameter, and to find among a fixed sequence of algorithms (5) such one for which
the noise propagation error is balanced with the error of approximation of Sy at given y from the
corresponding noise-free information. The latter error usually decreases with increasing amount
(n+1) of information. However, this is not always the case for the considered problem (see Remark 1



526 V. Naumova et al. / Journal of Complexity 28 (2012) 524–538

Fig. 1. The functions φ(n) (solid line) and ψ(n) δhs (dotted line) for hs = 10−1, δ = 10−4 and y ∈ C3 (upper panel) and y ∈ C4

(lower panel).

and the illustrations of Assumption 3 by Figs. 1 and 2) that somehow differs our analysis from the
known ones in the literature.

Thus, if in (5) the step-size hs cannot be freely chosen, then the performance of the high order finite
difference formula can be rather poor if the order n is not properly related with δ and hs. This issue
is important in some applications, where a poor performance of numerical differentiation can lead to
dangerous implications. For example, from Tables 10 and 11 presented in the last section it can be
seen that the use of the numerical differentiation formula with the finest step-size and a priori fixed
(highest) order dramatically increases the percentage of erroneous predictions of the blood glucose
(BG) concentration of diabetic patients compared to the formulae with proper parameter choice.

In this study, we present a new approach for selection of optimal parameter n, which is based on
the balancing principle [14].

The article is organized in the following way. In Section 2, we present an adaptive parameter
choice rule in (5) based on the balancing principle. We also provide and prove error estimates for
this rule under some assumptions. In the same section, we present some illustrative tests supporting
theoretical results. In Section 3, we conclude our study with a discussion and illustration of how the
proposed approach can be used in the diabetes therapy management, in particular, for predicting
blood glucose values from current and past BG measurements.

2. The regularized finite difference method

We return now to the discussion of the problem of estimating the value of the derivative at the
boundary point B. Let y : [b, B] → R be an r-times continuously differentiable function, r ≥ 2. The
difference between y′(B) and the estimate (5) can be bounded as follows

|y′(B)− Sn,hsyδ| ≤ |y′(B)− Sn,hsy| + |Sn,hsy − Sn,hsyδ|, (6)
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Fig. 2. The functions φ(n) (solid line) and ψ(n) δhs (dotted line) for hs = 10−1, δ = 10−4 and y ∈ C5 (upper panel) and y ∈ C6

(lower panel).

where the first term on the right-hand side is the approximation error, whereas the second term is
the noise propagation error. For the latter one we have a bound

|Sn,hsy − Sn,hsyδ| ≤ ψ(n)
δ

hs
; (7)

here ψ(n) =
n

j=0 |anj |, and for n = 0 we define ψ(0) = 0. Note that under the assumption (2) the
bound (7) cannot be improved in its terms.

At this point it is worth observing that any formula of the form (5) can be seen as a linear
bounded functional Sn,hs defined on the space C[0, 1] such that ∥Sn,hs∥ =

ψ(n)
hs

, and our aim is to use a

family {Sn,hs}
Ns
n=1 of such functionals for approximating an unbounded functional Sy = y′(B). Thus, to

guarantee a good approximation, the functionals from a chosen family {Sn,hs} should not be uniformly
bounded. Even more, to the best of our knowledge, in the literature such formulae (5) are mainly
considered for which ∥Sn,hs∥ increases with n.

Therefore, dealing with a fixed hs, we make the following assumption on the function ψ(n).

Assumption 1. The function ψ(n) is an increasing function of n.

The following example illustrates this assumption.

Example 1. Following [9] we consider one-sided formulae of the form (5) with coefficients presented
in Table 1. Note that if y(t) is an algebraic polynomial of degree n on [b, B], then for the formula Sn,hs
with coefficients from Table 1 one has y′(B) = Sn,hsy.

In the sequel, we will use these formulae for numerical illustrations, since in practical applications
the formulae of higher order are rarely used. The reason for this can be seen in the numerical
test with the function (21) presented below. From Table 4 it follows that for some step-sizes
(e.g. h = 0.056, h = 0.039) the use of higher order formulae even for analytic functions may lead
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Table 1
Coefficients of the one-sided formulae of the form (5).

n an0 an1 an2 an3 an4 an5 an6
1 1 −1
2 3

2 −2 1
2

3 11
6 −3 3

2 −
1
3

4 25
12 −4 3 −

4
3

1
4

5 137
60 −5 5 −

10
3

5
4 −

1
5

6 49
20 −6 15

2 −
20
3

15
4 −

6
5

1
6

Table 2
The values of the function ψ(n) for corresponding n.

n 1 2 3 4 5 6

ψ(n) 2 4 6.67 10.67 17.07 27.73

to the reduction of the order of accuracy. Similar effect can be observed for functions of a finite
smoothness (see, e.g. Table 5).

For the formulae with the coefficients from Table 1 the values of the function ψ(n) are given in
Table 2. It is clear that for the one-sided formulae with the coefficients from Table 1 Assumption 1 is
satisfied.

Suppose we are given a finite set N = {ni}
M
i=1 of possible orders of formulae (5). Note that for the

formulae from Example 1 we have N = {1, 2, . . . , 6}.
Then, for a fixed step-size hs the corresponding set of approximate values of the derivative y′(B) is

given as {Sni,hsyδ}
M
i=1.

The topic we are going to discuss now is how to choose n ∈ N to guarantee a good approximation
of the derivative y′(B) from the set {Sni,hsyδ}

M
i=1. Here we propose a selection strategy that is only by a

constant factor worse than the best possible error bound.
Note that the bound (7) for the noise propagation error does not depend on the function to be

differentiated, while the first term in the bound (6) depends on the smoothness of this function, which
is usually unknown. Therefore, one needs a strategy that allows an adaptation of the order n ∈ N
to the unknown smoothness of y. We will formulate such a strategy under the following additional
assumptions.

Assumption 2.

ψ(1)
δ

hs
< |y′(B)− S1,hsy|. (8)

Note that if the condition (8) is not satisfied, there is no sense to choose n > 1, because the
approximation error is dominated by the noise propagation error for any n ∈ N .

Assumption 3. For given y ∈ C r , r ≥ 2 and hs > 0 we assume that there is a continuous function
φ(u) = φ(u; hs, y), u ∈ [1, nM ], such that
(i) |y′(B)− Sn,hsy| ≤ φ(n; hs, y), n ∈ N ;

(ii) if nmin is the smallest number such that

nmin = argmin{φ(n), n ∈ N },

then the function φ(n) is non-increasing on [1, nmin) and for any n ∈ [nmin, nM ]

φ(n) ≤ ψ(n)
δ

hs
. (9)
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Any function satisfying Assumption 3 is called admissible. We denote by Φ(y, hs) the set of all
admissible functions.

If Assumption 3(ii) does not hold, then the noise level is low and negligible. For example, if (9) is
not satisfied with n = nmin, then one can ignore the noise propagation and n = nmin is the best choice
for noisy data, as well as for noise-free.

The next example illustrates these assumptions.

Example 1 (continuation). Consider the problem of estimating the first derivative of a function y ∈

C r
[0, 1] at the boundary point t = 1. Similar to [18] to eliminate the influence of the other boundary

point t = 0 we assume that y ∈ C r
0 = {y : y ∈ C r

[0, 1], y(i)(0) = 0, i = 0, 1, . . . , r − 1}.
Then y can be represented by Taylor’s theorem as follows

y(t) =

 1

0

(t − τ)r−1
+

(r − 1)!
y(r)(t)dτ ,

where (a)+ = max{a, 0}, and for a finite difference scheme (5) one can derive the bound

|y′(1)− Sn,hsy| ≤ ∥y(r)∥C

 1

0

 (1 − τ)r−2
+

(r − 2)!
−

n
j=0

anj
hs

(1 − jhs − τ)r−1
+

(r − 1)!

 dτ ; (10)

here ∥ · ∥C denotes the maximum norm in C[0, 1].
In view of (10) an admissible function φ(n; hs, y) can be taken of the form

φ(n; hs, y) = ∥y(r)∥Chr−1
s Vr(n, hs), (11)

where

Vr(n, hs) = h1−r
s

 1

0

 (1 − τ)r−2
+

(r − 2)!
−

n
j=0

anj
hs

(1 − jhs − τ)r−1
+

(r − 1)!

 dτ . (12)

Using (12) one can easily calculate (symbolically and numerically) the values of Vr(n, hs). The graphs
of admissible functions (11) for hs = 10−1 and ∥y(r)∥C = 10r−3, r = 3, 4, 5, 6, are presented in Figs. 1
and 2. On these figures, we also display the graphs of the function ψ(n) δhs for δ = 10−4. Using these
figures, one can conclude that for the considered noise level Assumption 3 is satisfied for any function
y ∈ C r

0 such that ∥y(r)∥C ≤ 10r−3, r = 3, 4, 5, 6. Note that in order to illustrate the behaviour of the
functions in a more transparent way we keep the same scale for all graphs.

Remark 1. In [14,16] the authors consider the modulus of continuity of a continuous function y′ as
an admissible function. Note also that Assumption 3 is more general than the assumption that an
admissible function is non-increasing, which has been used in [14], and it makes a difference in the
analysis compared to [14,16].

From (7) and Assumption 3 the difference between y′(B) and (5) can be bounded as follows

|y′(B)− Sn,hsyδ| ≤ φ(n)+ ψ(n)
δ

hs
. (13)

In view of (13) the quantity

e(y,N , Sn,hs) = min
n∈N

inf
φ∈Φ(y,hs)


φ(n)+ ψ(n)

δ

hs


(14)

is the best possible error bound that can be guaranteed for the approximation y′(B) within the
framework of the scheme Sn,hs under Assumptions 1–3 and (2).

We now present a principle for the adaptive choice of n+ ∈ N that allows us to reach the best
possible error bound up to multiplier 6ρ, where

ρ = ρ(N ) = max
i=1,...,M−1

ψ(ni+1)

ψ(ni)
.

In particular, from Table 2 in Example 1 one can see that ρ(N ) = 2 for N = {1, . . . , 6}.
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As we will see such n+ can be chosen knowing only noisy data values yδ(tj) for a fixed step-size hs
and without any a priori information concerning smoothness of y ∈ C r

[b, B]. To achieve the optimal
order under Assumptions 1–3, we employ the balancing principle in the form presented in [14].

Consider the set

N (Sn,hs) =


ni ∈ N : |Sni,hsyδ − Snj,hsyδ| ≤ Cψ(nj)

δ

hs
, j = i + 1, i + 2, . . . ,M


, (15)

where C is a tuning parameter. In particular, we use C = 4 for theoretical proofs and we adjust the
value of C for the numerical experiments.

The order n+ we are interested in is defined as

n+ = min{N (Sn,hs)}. (16)

We stress that an admissible function φ(n) ∈ Φ(y, hs), as well as any other information about the
smoothness of the function y is not involved in the process of choosing n+. Nowwewill formulate the
main result of this section.

Theorem 1. Let y ∈ C2
[b, B]. Then under Assumptions 1–3 we have

|y′(B)− Sn+,hsyδ| ≤ 6ρe(y,N , Sn,hs).

The proof of this theorem is a modification of the one provided in [14,15].

Proof. Let φ ∈ Φ(y, hs) be any admissible function and let us consider the numbers

n∗ = n∗(φ) = min

n ∈ N : φ(n) ≤ ψ(n)

δ

hs


,

n∗∗ = n∗∗(φ) = argmin

φ(nj)+ ψ(nj)

δ

hs
, nj ∈ N


.

Observe that from Assumption 3 it follows that n∗ ≤ nmin. Then

ψ(n∗)
δ

hs
≤ ρ


φ(n∗∗)+ ψ(n∗∗)

δ

hs


, (17)

because either n∗∗ ≤ n∗ − 1 < n∗, so that by definition we have ψ(n∗ − 1) δhs < φ(n∗ − 1) and

ψ(n∗)
δ

hs
=

ψ(n∗)

ψ(n∗ − 1)
ψ(n∗ − 1)

δ

hs
< ρφ(n∗ − 1) ≤ ρφ(n∗∗)

< ρ


φ(n∗∗)+ ψ(n∗∗)

δ

hs


, ρ > 1,

or n∗ < n∗∗, in which case

ψ(n∗)
δ

hs
< ψ(n∗∗)

δ

hs
< ρ


φ(n∗∗)+ ψ(n∗∗)

δ

hs


.

Moreover, note that for nj > n∗, nj ∈ N it follows that

φ(nj) < ψ(nj)
δ

hs
. (18)

In the case of nj > nmin the inequality (18) follows fromAssumption 3. If now for nj ≤ nmin we assume
the inequality φ(nj) ≥ ψ(nj)

δ
hs
, which is opposite to (18), then it would lead to

φ(n∗) ≥ φ(nj) ≥ ψ(nj)
δ

hs
> ψ(n∗)

δ

hs
,

that is in contradiction with the definition of n∗.
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Now we can also conclude that n∗ ≥ n+. Indeed, for any nj > n∗, nj ∈ N , we have

|Sn∗,hsyδ − Snj,hsyδ| ≤ |y′(B)− Sn∗,hsyδ| + |y′(B)− Snj,hsyδ|

≤ φ(n∗)+ ψ(n∗)
δ

hs
+ φ(nj)+ ψ(nj)

δ

hs

≤ 2ψ(n∗)
δ

hs
+ φ(nj)+ ψ(nj)

δ

hs

< 2
δ

hs
ψ(n∗)+ 2

δ

hs
ψ(nj) < 4

δ

hs
ψ(nj).

It means that n∗ ∈ N (Sn,hs) and

n∗ ≥ n+ = min{N (Sn,hs)}.

Then using (17) one can finally obtain

|y′(B)− Sn+,hsyδ| ≤ |y′(B)− Sn∗,hsyδ| + |Sn∗,hsyδ − Sn+,hsyδ|

≤ φ(n∗)+ ψ(n∗)
δ

hs
+ 4ψ(n∗)

δ

hs
≤ 6ψ(n∗)

δ

hs

≤ 6ρ

φ(n∗∗)+ ψ(n∗∗)

δ

hs


≤ 6ρmin

n∈N


φ(n)+ ψ(n)

δ

hs


. (19)

This estimation holds true for an arbitrary admissible function φ ∈ Φ(y, hs). Therefore, we conclude
that

|y′(B)− Sn+,hsyδ(B)| ≤ 6ρmin
n∈N

inf
φ∈Φ(y,hs)


φ(n)+ ψ(n)

δ

hs


.

The proof is complete. �

2.1. Numerical tests

To illustrate the theoretical results of the previous section, we consider the estimation of the first
derivative of a function y ∈ C r

[0, 1], r ≥ 2 at the boundary point t = 1 by means of a one-sided
finite difference formula (5). The balancing principle (15), (16) is used as the criterion for choosing
the optimal order n+ ∈ N .

To perform numerical experiments we consider the function of a finite smoothness

y(t) = |t|7 + |t − 0.25|7 + |t − 0.5|7 + |t − 0.75|7 + |t − 0.85|7 ∈ C6
[0, 1], (20)

as well as analytic functions

y(t) =
t3

3
−

t2

2
∈ C∞

[0, 1], (21)

y(t) = et ∈ C∞
[0, 1]. (22)

The numerical values yδ(1 − jhs) for the functions used in the tests are generated in the form
yδ(1 − jhs) = y(1 − jhs) + δξj, where δ ∼ 10−5 and ξj are random values sampled uniformly in the
interval [−1, 1].

For our numerical experiments, we consider 8 equidistant grids with step-sizes

hs = 1.5−s, s = 4, 5, . . . , 11, (23)

and the one-sided finite difference formulae (5) with coefficients from Example 1.
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Table 3
The results of the application of the choice rule (16).

Function Step-size hs 0.167 0.125 0.083 0.056 0.039 0.026 0.017 0.012

(20) Order n+ 5 5 5 5 5 5 5 5
Order of accuracy 10−1 10−2 10−3 10−3 10−4 10−3 10−3 10−3

(21) Order n+ 5 4 5 5 5 5 5 5
Order of accuracy 10−4 10−4 10−4 10−4 10−3 10−4 10−3 10−3

(22) Order n+ 5 5 5 5 5 5 5 5
Order of accuracy 10−4 10−3 10−3 10−3 10−3 10−2 10−3 10−2

Table 4
The orders of the accuracy of the numerical differentiation formulae for the analytic
function (21) and step-sizes (23).

Order n
Step-size hs 1 2 3 4 5 6

0.167 10−2 10−2 10−4 10−4 10−4 10−4

0.125 10−2 10−2 10−4 10−4 10−4 10−4

0.083 10−2 10−3 10−4 10−4 10−4 10−4

0.056 10−2 10−3 10−4 10−4 10−4 10−3

0.039 10−2 10−4 10−3 10−3 10−3 10−3

0.026 10−2 10−3 10−3 10−3 10−4 10−3

0.017 10−3 10−4 10−4 10−4 10−3 10−3

0.012 10−3 10−4 10−3 10−3 10−3 10−3

Table 5
The orders of the accuracy of the numerical differentiation formulae for the function of a
finite smoothness (20) and step-sizes (23).

Order n
Step-size hs 1 2 3 4 5 6

0.167 100 100 10−1 10−1 10−1 10−3

0.125 100 10−1 10−1 10−1 10−2 10−3

0.083 100 10−1 10−1 10−2 10−3 10−3

0.056 100 10−1 10−2 10−3 10−3 10−3

0.039 10−1 10−1 10−2 10−3 10−4 10−3

0.026 10−1 10−2 10−3 10−4 10−3 10−3

0.017 10−1 10−2 10−4 10−4 10−3 10−3

0.012 10−1 10−2 10−3 10−3 10−3 10−3

At first, for the fixed step-size hs we find the optimal order n+ ∈ N by means of the balancing
principle (15), (16). As we have already mentioned in applications the value of the tuning parameter
in (15) can be adjusted. The adjustment can be done as follows: we simulate data using some function,
say (21), and find a value of C that leads to a good performance of the principle (16) on simulated data.
This value of C is used in numerical applications. As a result of such an adjustment procedure, we have
found C = 0.0021.

The results of the application of the choice rule (16) for the functions (20)–(22) and step-sizes (23)
are displayed in Table 3.

In view of the results [16], one may expect that higher order finite difference schemes allow an
order of accuracy, which is the best possible for a given noise level δ. Using Table 3, we can conclude
that for a fixed step-size it is not the case. For example, in the case of the function (20), which belongs
to C r

[0, 1], r = 6, the best guaranteed order of accuracy in terms of the noise level is known to be
δ

r−1
r . For r = 6 and δ ∼ 10−5 it gives the order of 10−4, and this order is really achieved by the formula

Sn,hs for n = n+ = 5, hs = 0.039. At the same time, direct calculations show that for the considered
function the formula S6,hs gives an accuracy only of order 10−3 for all hs from (23) (see Table 5).
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Table 6
The approximation errors produced by Sn+(h+),h+

yδ .

Function (20) (21) (22)

Order of accuracy 10−4 10−4 10−4

Order n+ 5 5 5
Step-size h+ 0.039 0.167 0.167

2.1.1. Combination of the balancing principle and the quasi-optimality criterion
Table 3 also shows that the accuracy of the formulae Sn+,hs depends on hs, as one could expect.

Therefore, in the situation, when one has some choice in the selection of the value of hs, as in (23),
for example, it is natural to utilize it. For this purpose, one can use a heuristic approach known as the
quasi-optimality criterion [28,11].

Once n = n+ = n+(hs) has been specified as a function of hs (see, for example, Table 3), the
quasi-optimality criterion can be implemented as follows. For all available hs one needs to calculate
approximations Sn+(hs),hsyδ given by (5). Then one needs to calculate the absolute difference

σ(s) = |Sn+(hs),hsyδ − Sn+(hs−1),hs−1yδ|

and finds

h+ = hp : p = argmin{σ(s), s = 5, . . . , 11}. (24)

The approximation errors produced by Sn+(h+),h+
yδ for considered functions are presented in

Table 6.
As it can be seen from Tables 3 and 6, in all three cases the proposed combination of the quasi-

optimality criterion and the balancing principle really allows the best choice of the values of hs.

Remark 2. Note that to avoid ill-conditioning of numerical differentiation one may use standard
regularization methods. As it has been mentioned in [24], this approach typically involves writing
the derivative as the solution to an integral Volterra equation and then reducing the integral equation
to a family ofwell-posed problems that depend on a regularization parameter. Then several parameter
choice strategies can be used to find an optimal value of this parameter (see, e.g. [14] and references
therein). Unfortunately, as it follows from the paper [8] (see Example 5 there) even for some analytic
functions the order of accuracy O


δ

1
3


cannot be improved in this way. Therefore, to guarantee the

accuracy of better order O

δ

r−1
r


for sufficiently smooth functions one should use another approach.

One of them has been described above. We are grateful to an anonymous referee who inspired us to
make this remark.

3. One-sided finite difference schemes in blood glucose prediction

In this section, we discuss a possibility to use the proposed approach in the diabetes therapy
management, in particular, for blood glucose prediction.

Management of the diabetes mainly focuses on keeping BG concentration as close to normal range
as possible without causing dangerous events, namely hypo- and hyperglycaemia, when BG lower
than 70 (mg/dL) or higher than 180 (mg/dL) respectively. This can be achieved by balancing the
amount of insulin injections, meals and physical exercises. Keeping in mind that the onset of rapid-
acting insulin occurs within 10–15 (min), and the onset of meal responses on glucose levels occurs
approximately within 5–10 (min), it is of great importance to know the future BG level at least 15
(min) ahead of time.

Recent progress in the diabetes therapymanagement is related to the so-called ContinuousGlucose
Monitoring (CGM) systems. In short, these devices provide ongoing monitoring of glucose level on an
automated basis during the day, namely BG estimations each 5 or 10 (min). For mathematical details,
see [17].
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Thus, the promising concept in the diabetes therapy management is the prediction of the future
BG evolution using CGM data [26]. The importance of such prediction has been shown by several
applications [3,19].

Mathematically the problem can be formulated as follows. Assume that at the time moment
t = tN = B we are given n estimates yN , yN−1, yN−2, . . . , yN−n+1 of a patient’s BG concentration
sampled correspondingly at the timemoments tN > tN−1 > tN−2 > · · · > tN−n+1 within the sampling
horizon SH = tN − tN−n+1. The goal is to construct a predictor that uses these past measurements
to predict BG concentration yj = y(tj) for m subsequent future time moments {tj}N+m

j=N+1 within the
prediction horizon PH = tN+m − tN such that tN < tN+1 < tN+2 < · · · < tN+m.

There are several prediction techniques, and a variety of glucose predictors has been recently
proposed; see, for example, [26,7,20,25,27]. In this section we discuss the predictors based on the
numerical differentiation. Note that such approach has been used in several BG predictors. In [13]
it is even mentioned that practically all BG predictions are based on projection ahead of the current
glucose trend (or derivative). For example, one of such predictors is described in the patent [10], and
another one has been recently discussed, in particular, in [26].

In the context of the diabetes therapy management, such predictors estimate the rate of change of
BG concentration at the predictionmoment t = tN = B from current and pastmeasurements. Keeping
in mind that the above mentioned rate is nothing but the value of the derivative y′(B) of the function
y(t) describing the BG evolution, it is clear that only one-sided numerical differentiation scheme (5)
can be used in this approach.

In this section, we assess the performance of the BG predictor that is based on the adaptive
parameter choice rule (16), (24) implemented on the set of one-sided formulae from Example 1. It
is remarkable that this BG predictor outperforms the predictors based on any of the formulae from
the above mentioned set.

To illustrate this we use data set of 100 virtual subjects which are obtained from Padova/University
of Virginia simulator [12]. For each in silico patient the CGM readings have been simulated and
sampled with a frequency of 1 (min) during 3 days. We perform our illustrative tests with data of
the same 10 virtual subjects that have been considered in [26]. Data of the first three subjects (Virtual
ID 1, 2, and 3) have been randomly chosen from 100 traces generated by the simulator. The other
seven data traces (Virtual ID 17, 18, 24, 33, 34, 42, and 47) have been chosen because they contain
dangerous events, i.e. hypo- and hyperglycaemic periods.

Following [10], in our numerical experiments we consider the predictors, which are based on the
linear extrapolation. To bemore specific, a future BG concentration at any timemoment t ∈ [tN , tN+m]

can be estimated from the given past BG observations z = ((tN−n+1, yN−n+1), . . . , (tN , yN)) as follows

y(t) = y′(B) · t + yN − y′(B) · tN , (25)

where y′(B) = y′(tN) is estimated by means of the one-sided finite difference schemes from
Example 1.

To quantify the clinical accuracy of considered predictors,weuse the Prediction Error-GridAnalysis
(PRED-EGA) [26],whichhas beendesigned especially for the blood glucose predictors. This assessment
methodology records reference glucose estimates paired with the estimates predicted for the same
moments and looks at two essential aspects of the clinical accuracy: rate error grid analysis (R-EGA)
and point error grid analyses (P-EGA). The first one is measured, in fact, by values of time derivatives
calculated at the assessment moments for reference as well as for assessed glucose profile, whereas
the P-EGA account for accuracy, point-by-point, in comparison with a reference value. As a result,
the PRED-EGA distinguishes Accurate (Acc.), Benign (Benign) and Erroneous (Error) predictions in
hypoglycaemic (0–70 mg/dL), euglycaemic (70–180 mg/dL) and hyperglycaemic (180–450 mg/dL)
ranges. This stratification is of great importance because consequences caused by a prediction error
in the hypoglycaemic range are very different from ones in the euglycaemic range [4].

First of all, we assess the performance of considered predictors (25) in the so-called ideal situation,
when simulated data used as predictor inputs and references in the PRED-EGA assumed to be noise-
free. Note that even though the simulator can produce virtual CGM readings every 1 (min), in our tests
we try tomimic the data flow from somewidely used CGMsensors, when a new reading appears every
5 (min) and updates the prediction input. It means that a new predicted glucose profile is produced
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Table 7
The performance assessment matrix given by the PRED-EGA for the predictors (25), (5), based on any of the
formulae from Example 1, operating on simulated noise-free data with PH = 15 (min).

Patient Vir. ID BG ≤ 70 (mg/dL) (%) BG 70–180 (mg/dL) (%) BG ≥ 180 (mg/dL) (%)
Acc. Benign Error Acc. Benign Error Acc. Benign Error

1 – – – 99.88 0.12 – 100 – –
2 – – – 99.88 0.12 – – – –
3 – – – 99.88 0.12 – – – –

17 99.69 0.31 – 100 – – – – –
18 99.71 0.29 – 100 – – – – –
24 100 – – 99.81 0.19 – – – –
33 99.71 0.29 – 100 – – 100 – –
34 99.60 0.40 – 100 – – 100 – –
42 100 – – 99.83 0.17 – 100 – –
47 99.73 0.27 – 100 – – 100 – –

Avg. 99.78 0.22 – 99.93 0.07 – 100 – –

Table 8
The performance assessment matrix given by the PRED-EGA for the BG predictors (25), (5), based on the adaptive
parameter choice rule n = n+(h+) implemented on the set of formulae from Example 1, operating on simulated
noise-free data with PH = 15 (min).

Patient Vir. ID BG ≤ 70 (mg/dL) (%) BG 70–180 (mg/dL) (%) BG ≥ 180 (mg/dL) (%)
Acc. Benign Error Acc. Benign Error Acc. Benign Error

1 – – – 100 – – 100 – –
2 – – – 100 – – – – –
3 – – – 100 – – – – –

17 100 – – 100 – – – – –
18 100 – – 100 – – – – –
24 100 – – 100 – – – – –
33 100 – – 100 – – 100 – –
34 100 – – 100 – – 100 – –
42 100 – – 100 – – 100 – –
47 100 – – 100 – – 100 – –

Avg. 100 – – 100 – – 100 – –

every ∆t = 5 (min). Moreover, for our numerical experiments we consider 3 equidistant grids with
step-sizes hs = 5, 10, 15 (min).

Table 8 demonstrates the performance assessmentmatrix given by the PRED-EGA for 15min ahead
glucose predictions (25), where t = tN+m, tN+m − tN = 15 min, and y′(B) is estimated by (5) with
δ = 0, n = n(hs) and hs chosen in accordance with (16), (24) (in the considered case we formally put
δ = 1 (mg/dL) in the definition of the set (15)).

At the same time, Table 7 demonstrates the assessment given by the PRED-EGA for predictions (25)
with the same t = tN+m = tN + 15 (min), but with y′(B) estimated by any of the one-sided formulae
(5) from Example 1, where δ = 0, hs = 5 (min).

The comparison of both tables allows a conclusion that in the ideal situation of noise-free data the
BG predictor (25), (5) that is based on the adaptive parameter choice rule n = n+(h+) implemented
on the set of one-sided formulae from Example 1 outperforms the predictors (25), (5) based on any of
the formulae from the same set.

Remark 3. Note that statistical filtering techniques can also be used for constructing finite difference
formulae of numerical differentiation. For example, in [2] a filtering procedure which allows a
construction of central difference formulae of the form (3) has been presented and analysed. For
constructing one-sided finite difference formulae (5), which are the objects of the present paper,
a statistical filtering approach has been used in [10], where y′(B) has been approximated by the
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Table 9
The performance assessment matrix given by the PRED-EGA for the predictors (25), (26), based on the
Savitzky–Golay derivative filter, which operate on simulated noise-free data with PH = 15 (min).

Patient Vir. ID BG ≤ 70 (mg/dL) (%) BG 70–180 (mg/dL) (%) BG ≥ 180 (mg/dL) (%)
Acc. Benign Error Acc. Benign Error Acc. Benign Error

1 – – – 99.88 0.12 – 100 – –
2 – – – 99.88 0.12 – – – –
3 – – – 99.88 0.12 – – – –

17 99.69 0.31 – 100 – – – – –
18 99.71 0.29 – 100 – – – – –
24 100 – – 99.81 0.19 – – – –
33 99.71 0.29 – 100 – – 100 – –
34 99.60 0.40 – 94.98 4.35 0.67 57.14 42.86 –
42 100 – – 98.18 1.82 – 100 – –
47 99.73 0.27 – 96.46 3.54 – 100 – –

Avg. 99.78 0.22 – 98.91 1.03 0.07 91.43 8.57 –

Table 10
The performance assessment matrix given by the PRED-EGA for the predictors (25), (5), based on the formula S6,5 ,
operating on simulated noisy data with PH = 15 (min).

Patient Vir. ID BG ≤ 70 (mg/dL) (%) BG 70–180 (mg/dL) (%) BG ≥ 180 (mg/dL) (%)
Acc. Benign Error Acc. Benign Error Acc. Benign Error

1 – – – 52.81 44.44 2.75 47.06 47.06 5.88
2 – – – 45.36 51.47 3.17 – – –
3 – – – 48.48 50.12 1.4 – – –

17 62.89 13.52 23.58 48.88 50 1.12 – – –
18 54.57 12.98 32.45 54.35 43.91 1.74 – – –
24 53.23 14.15 32.62 62.71 36.91 0.38 – – –
33 78.17 6.19 15.63 57.28 36.61 6.1 50 12.5 37.5
34 60.96 9.16 29.88 61.87 33.45 4.68 42.86 42.86 14.29
42 65.16 10.66 24.18 59.17 33.39 7.44 28.57 71.43 –
47 67.73 9.6 22.67 52.71 44.17 3.12 – 100 –

Avg. 63.25 10.89 25.86 54.36 42.45 3.19 33.7 54.77 11.53

Savitzky–Golay derivative filter of order 7 for a sampling frequency of hs = 5 (min). More precisely,
the following formula of the form (5) has been suggested in [10] for estimating y′(B) = y′(tN) in (25):

y′(B) ≈
3

140
[yδ(B)− yδ(B − 6hs)] +

2
140

[yδ(B − hs)− yδ(B − 5hs)]

+
1

140
[yδ(B − 2hs)− yδ(B − 4hs)]. (26)

In Table 9we present the performance assessmentmatrix given by the PRED-EGA for 15min ahead
predictions (25), (26) with δ = 0. By comparing Tables 7–9 one can conclude that, for given data,
the implementation of filtering approach (26) suggested in [10] is not superior to the formulae from
Example 1.

To assess the effect of the noise on the choice of the best order n = n+(hs) and the step-size h = h+

for the finite difference schemes from Example 1, we use a predictor input formed by adding white
noise to the simulated readings.

The performance assessment matrices for BG predictions (25) with PH = 15 (min) have been
calculated for the case when simulated CGM readings have been corrupted by random white noise
with an SD of 6 (mg/dL) and then used as predictor inputs.Wewould like to stress that the assessment
has been done with respect to the references given as simulated noise-free CGM readings.

The performance of the predictors (25), (5) with the adaptive parameter choice rule n = n+(h+)
is presented in Table 11 and compared with the performance of the predictors (25), (5) based on the
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Table 11
The performance assessment matrix given by the PRED-EGA for the BG predictors (25), (5), based on the adaptive
parameter choice rule n = n+(h+) implemented on the set of formulae from Example 1, operating on simulated
noisy data with PH = 15 (min).

Patient Vir. ID BG ≤ 70 (mg/dL) (%) BG 70–180 (mg/dL) (%) BG ≥ 180 (mg/dL) (%)
Acc. Benign Error Acc. Benign Error Acc. Benign Error

1 – – – 94.17 5.34 0.49 100 – –
2 – – – 92.63 7.37 – – – –
3 – – – 94.17 5.83 – – – –

17 95.9 – 4.1 94.85 5.15 – – – –
18 91.12 – 8.88 97.22 2.78 – – – –
24 92.62 – 7.38 97.48 2.52 – – – –
33 97.93 – 2.07 91.51 5.66 2.83 100 – –
34 90 – 10 96.4 2.74 0.86 85.71 14.29 –
42 96.31 – 3.69 94.92 3.22 1.86 71.43 28.57 –
47 97.06 0.53 2.41 94.64 5.15 0.21 100 – –

Avg. 94.42 0.08 5.5 94.8 4.58 0.62 91.43 8.57 –

one-sided finite difference formula of the order n = 6, displayed in Table 10. We have chosen the
formula with fixed order n = 6 for the comparison, because for ∆t = 5 (min) the sampling horizon
SH = 30 = 6∆t (min) has been suggested in [10,30] as the optimal one for BG prediction.

Comparing Tables 7, 8, 10 and 11, we can conclude that the BG predictor (25), (5) with the adaptive
parameter choice rule n = n+(h+) implemented on the set of formulae from Example 1 outperforms
all predictors (25), (5) based on any of the formulae from the given set.

Moreover, the numerical tests have shown that the constructed BG predictor (25), (5) is able to
predict more accurately the occurrences of dangerous events, i.e. hypo- and hyperglycaemic periods.
Potentially, onemay consider the combination of the proposed adaptive BG predictor with a predictor
based on more advanced techniques, such as mentioned in [26], for example.
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