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Abstract

In a Ginzburg—Landau theory withfields, the anomalous dimension of the gauge-invariant nonlocal order parameter defined
by the long-distance limit of Dirac’s gauge-invariant two-point function is calculated. The result is exactfdo ditst order
ine=4—d, and for alld € (2, 4) to first order in ¥n, and coincides with the previously calculated gauge-dependent exponent
in the Landau gauge.

0 2005 Published by Elsevier B.\@pen access under CC BY license.

1. Introduction

An outstanding problem in gauge theories is the construction of physical correlation functions or propagators
of the charged matter fields. As such objects involve fields located at different points in spacetime, the standard
forms, expressed solely in terms of the matter fields, are in general not gauge invariant and, consequently, not
physical. The principle of gauge invariance by itself does not yield a unique prescription, and various solutions
have been proposed a long time ago, notably by Oithand by Schwingef2]. These proposals have been used to
investigate important physical problems such as anomalies, quark potentials, and order parameters distinguishing
the different phases of gauge theories. Recently, the issue has received considerable attention in the context o
high-temperature superconductors, where massless Dirac fermions coupled to a dynamical gauge field were put
forward as an effective theory for studying the unusual properties of the normal state of underdoped H8terials

In this Letter we contribute to this issue by showing that different gauge-invariant proposals for correlation
functions lead to different physical results. We do so by considering the Abelian Higgs or Ginzburg—Landau model,
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which describes a great variety of physical systems, ranging from scalar QED, superconductors over liquid crystals
to cosmic strings and vortex lines in superflujds The model consists of j@|*-theory coupled minimally to the
electromagnetic gauge fiell,, with =1, ..., d. Its Hamiltonian is

H =@, +ieA)d|* +m?p%+ rlg|* + %Fﬁv + %(%AM)Z, 1)
whereF,, =9,A,—9,A,. The scalar fiel¢ hasn/2 complex components and &€)-symmetric self-interaction
with coupling constank. The coefficientz andm denote electric charge and mass parameters of the complex
field, respectively. The last term with parametefixes a Lorentz-invariant gauge. We use mostly the notation of
statistical field theory in/ space dimensions. The results apply, however, equally to quantum field theéry in
spacetime dimensions in the Euclidean formulation.

In the following, we will work at criticality by settingn = 0. The free correlation functiot (x — x’) =
(¢ (x)¢T(x))o of the scalar field is the Fourier transform ofiE:

¢’k & Tr@/2-1) 1
(ij)d K2 Agd/2  yd-2°
For the free correlation functioD,, (x — x") = (A, (x) A, (x"))o of the gauge field, we must Fourier transform

G(x)= 2

1 quqv
Dp.v(CI) = ; |:6/,H) - (1 - CY) 22 }7 (3)
and obtain
r'd/2-1) XXy
Dy (x) = W[(l+a)8,w +@d—-2(1-a) iz } 4)

In the presence of interactions, the expectation vaje)¢T(x')) is an unphysical quantity since it is not
invariant under gauge transformations

p(x) > € Dp(x), AL > Au(x) — 0, A). ®)
In fact, it vanishes identically due to Elitzur’s theorg®h. A gauge-invariant correlation function was first proposed
by Dirac[1]. Adapted to our purposes, it reads

G(x — x') = ¢ () F DA T (1)), (6)

The average denoted by angle brackets is taken with respect to the full Hamil{@piand the external current
J,.(z) satisfies the equations

3 (2) =8(z —x') — 8(z — x), 92J,(2) =0, (7)

where the first ensures the conservation of the external current in the presence of a source ofistrahgind a
sink of strength-1 atx’.! The explicit form of the external current (SE&. 1) is Ju(2) = J/;(z —x')— J/L (z—x),
where

d’k ky 4. T@d/2-1_ 1
(ZjT)d ﬁel = - 4]'[d/2 8'uzd—2' (8)

J(@)=—i

1 When the mode(1) is viewed as a quantum field theory dhspacetime dimensions, the source and sink in(Zjcorrespond to an
instanton and antiinstanton, respectively. This is different from Dirac’s original construction, where that equation only refets-tb patial
components/; of the current, taking the form; J; (z) = 8(z — x’) — 8(z — x) and al?Jj (z) = 0. The source and sink then represent electric
charges which generate an electric dipole field, that is needed to satisfy Gauss’s law.
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Fig. 1. Flow lines corresponding to the Dirac proposal for the external cuffgrb specified by Eqg(7) in two dimensions.

Being nonlocal, the current in E@6) is more properly denoted by, (z; x, x"). At the critical point, the gauge-
invariant correlation functiog) is expected to have the power behavior

1

Gx)~ ———,
) xd—2+na

9)
with the Fisher exponenig,. In the ordered phase, the correlation functiéphas the large-distance behavior

Gx—x) — |8 (10)

|x—x']—00
whereg (x) is the nonlocal order parameter

(};()C) = e—iefddz J//»(Z_x)AM(Z)(b(x)_ (11)

SinceJ), (z) is a total derivative (see E(B)), #(x) reduces after a partial integration in the Landau galyge, =0
to the local formy (x) [6]. In other words,/,, becomes invisible in this gauge and the valuerfgris expected to
coincide with the gauge-dependent resultfptx)¢ T (x')) obtained in the gauge = 0.

The purpose of this Letter is to determing to first order ine = 4 — d and also for ald € (2, 4) to first order
in1/n.

Note that of the two equations (i7), only the source equation is needed for gauge invarian¢e)ot his can
also be solved by th&function on a lineL running fromx’ to x,

At (s) (

5 ). (12)

Ju(2) = 8,(z; L)z/ds
L

For a straight linel with x,,(s) = x"(1 —s) + sx, s € [0, 1], this leads to Schwinger’s gauge-invariant correlation
function[2]

(p(x)eiels s, 4@t (xh), (13)

whose critical properties we studied in REE1]. The Schwinger construction can be thought of having all the
external current originating from the sourcexaénd terminating at the sink at squeezed into an infinitely thin
line along the shortest path connecting the two points. In the disordered phase, the current lines have a finite line
tension, and this correlation function vanishes exponentially for large distances. Because the finite line tension
exponentially suppresses larger loops, only a few small current loops are present in this phase. Upon approaching
the critical point, the line tension vanishes and current loops can grow without energy cost. Their proliferation
signals the onset of superconductiviii-10].

The dependence of E¢L3) on the shape of. can also be seen more formally. We observe that a deformation
of L is a new type of gauge transformation discussed extensively in Re8.

Su(z; L) = 8,(z; L= 3u(z; L) + 0ud,0(z5 ), (14)
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wheres,,, (z; S) is thes-function on the surfacé swept out in the deformatioh — L’. Under this gauge trans-
formation, the correlation functiofl3) changes by a nontrivial phase

QS(X) L—>_Z/ e_iefddz Fuu(z)éw(z:S)q;(x)_ (15)

Due to the different physical content of the correlation functions involved, the critical behavior to be derived
here for Dirac’s correlation functio(6) will be quite different from that of Schwinger¥&l3) calculated in our
previous notg11].

2. e-expansion

Perturbation theory yields via Wick’s theorem, three perturbative correctid63 to lowest order ire?:

Gx—x=G+To+TL+ T, (16)

whereTy 1 » contain zero, one, and two factors of the flow fid]d
The termTy is calculated by standard methods. Infrared divergences are avoided by evaluating Feynman dia-
grams at a finite external momentumBeing the only scale available,is used to render dimensionful parameters
such ag? dimensionlessé? = ¢2c?—4. The result is the well-known gauge-dependent contribJi@rl3}
o — 3

o= "5 <a -~ 3e. (17)

The lowest-ordee-expansion on the right hand is obtained by insertingéfothe charget? = 4872¢/n at the
infrared-stable fixed point, which at one loop exists onlyfor 12(15+ 4./15) ~ 3659. At two loop, different
resummation technigues suggest the existence of a fixed point for the physicale24é 4,15]

Next, we calculate the last term in H4.6):

2
To(x —x') = —%G(x —x) | dzd%’ 1, (2) Dy (z — 2) I (2) (18)

which splits in a separate scalar and gauge part. Several integrations by part reduce the integrals in coordinate
spacetime to the generic form

4 1 1 _2nd2 TWd/2—1-p/2) 1
d’z , (19)
e X2 = p T(d/2—DI(d/2—p/2) |x —x/|4727P
and we obtain, with the abbreviatiofs = 9/0x,,, 9, = 9/dx,,,
I 2 / dd d _/ 1
To(x — ——_T13%d/2-1)G(x — 9,0 d‘z
20 —x) = 6473d/2 @/ )Gl x)( / ¢ |z —x|972|7 — 7/|4-2|7/ — x/|4—2
11- 52 /2/ d_ d s 1
049 d*zd’z ) 20
2d 4 |Z—X|d_2|Z—Z/|d_4|Z/—x/|d_2 ( )
In the limit of smalle =4 — d, this reduces to
Ta(x — x') = =P =G (x — x') In(ic|x — x']). (21)

8

Comparison with an expansion (&) in powers ofyg| gives a contribution to the Fisher exponent proportional to
the gauge-fixing parameter.
o 52

nz2= W (22)
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This result can be checked by considering the ratio of the correlation functigis)¢®(x’)) and
(e7ie/ d'2JuA. ) Adapting an argument given in RlL6], one can show that this ratio and, consequently,
the combinatiomy — n2 should be independent of the gauge-fixing parametérhe expressiongl7) and(22)
indeed fulfill this requirement. In our previous study], we found for the Schwinger correlation function as only
difference an additional contribution t@ independent o#.

We are left with the calculation of the second, or mixed term in(&6), which reads explicitly

Kl

Th(x — x/) = EZ/ddZ ddZ/ [G(X - Z)yG(Z - X/):| Jy (Z/)D;w(z - Z/), (23)
92

where the right-minus-left derivativgﬂ =0, — (B_M operates only within the square brackets. To logarithmic

accuracy, we can writg 6]

Ti(x —x )~ eG(x — x') / dizd?7 [iG(z —x) - iG(x — z)] Jo(@Z)Dpy(z — 7). (24)
0zy 0zy

Both terms in the square brackets give the same contribution. Proceeding in the same way as before, we find
ThW = -2, (25)

and therefore as contribution to the Fisher exponent
a
m=-2n2= —mé’i- (26)

This contribution, which is again proportional to the gauge-fixing parametes identical to the one found for
the Schwinger correlation functidi1]. Added together, we obtain for the manifestly gauge-invariant correlation
function(6)

3 18
Wé*% =——c. (27)
As expected, this result for the nonlocal Dirac order parameter coincides with the valgg étained in the
Landau gaugéa = 0). Whenu is considered a running coupling constant of the thgajythe Landau gauge
emerges as a fixed poiat = 0 of the renormalization groud 7]. This is a special case of the more general result
[18] thata = 0 is always a fixed point when considering a gauge-fixing term of the (dir,gm#)z/Za. The choice
L, =9, then leads to the Landau gauge, while the chdige=n,, with n,, a constant vector, leads to the axial
gauge.

The expressio(27)is to be contrasted withg| = —(3/472)¢2 we [11] derived for Schwinger’s gauge-invariant
correlation function(13). It follows that the exponer(27) characterizing Dirac’s correlation function is less neg-
ative than the one characterizing Schwinger’s. The latter coincidesnyith the gaugex = —3. For this value
of «, the external current line connectingto x’ has no effect. A similar observation in the context of quantum
chromodynamics was made in REf9].

nGl=ng +n1+n2=-—

3. Large-n expansion

The leading contribution in /lz generated by fluctuations in the gauge field is obtained by dressing its cor-
relation function with arbitrary many bubble insertions, and adding the infinite set of Feynman {@phkhe
resulting geometric series leads to the following change in the prefactor of the correlation f8xtion

1 1
27 2 2 a2
q g +ne“lc(d)/2(d — Dlgq

(28)
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where the second term in the denominator dominates the first for grfall € (2, 4). The constant (d) stands
for the 1-loop integral

4 dk 1 _re- d/2)Tr%d/2—1)
cld) = f(zn)de(k+p)2 21 (4m)d2rd—-2)

(29)

where analytic regularization is used as before to control ultraviolet divergences. To leading ordertirevalue
of g for d € (2, 4) readq21,22]
_24-d—(d-D[4d—1)—da]
T T nydle(d) T (d/2+ 1)
which depends on the gauge-fixing parameteFor d = 4 — ¢, this result reduces to E{17) obtained to first
order ine.

We next consider the gauge-invariant version of this. The t&rim (18) can be evaluated as before. To extract
the dependence on(lr — x’|) it will be useful to replace?—2 by ¢?—2%% in Eq. (28), with a dummy paramete,
which will be taken to zero at the end. Then the langlmit of the gauge-field correlation function becomes

2 d-—1 1
ne? C(d) gd—2+s
or in coordinate spacetime

8 d-1 1 1
ne2 c(d) (4m)d/2I'(d/2) x2—8
Proceeding in the same way as before, we find after various integrations by parts

1 1 d-—1

: (30)

Dyn(q) = — - aﬂ;‘gv] (31)

Dy (x) = [:—Zl(d—3+a)8,w +(1—a)xi‘%}. (32)

TZ(x_x/)zzszﬂsd/z @ rd/2—1)Gx —x')
<a g /ddzdd /I —x[472|z — zll2 Blz/ —x|d=2
+ d— ' 2:L S =0 8/2/dd ¢’z —x]4-2|7 —Zl/I_SIZ’ —x’|d—2>' (33)
Using the integral formulél9), we obtain forz:
PR et (34)

Y @) T (d)2)

This largen result valid for alld € (2, 4) is once more proportional to the gauge-fixing parametgust as for
smalle in Eq.(22). The result can again be easily checked by noting that the combingtien is independent
of the gauge-fixing parameter. As for smalle, the result for the Schwinger correlation function differs only by
an«x-independent contribution tg.

For the mixed ternf1, we also find for large: the relation(25) between the two contributiori®& and 7>, and
thusni1 = —21n». This expression fon; is identical to the one for the Schwinger correlation function. Adding the
three contributions together, we arrive at

2 (7—4d)d
n (4m)42c(d)T(d/2+ 1)’
independent of the gauge-fixing parameteThis result, valid for alll € (2, 4), is the leading contribution in/k.

As expected, it coincides with the val(&0)for 54 obtained in the Landau gauge = 0). This should be compared
to the critical exponent for the Schwinger correlation funcfibt] (13) which coincides with Eq(30) obtained in

nel = (35)
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thetraceless gauge o« = 1 — d, of whicha = —3 found in thee-expansion is a special case. In this gauge, where
the correlation functiorD,,, is traceless, the external current line connectirtg x” becomes invisible. Although
less than for Schwinger's correlation functiops found here is negative for smalland alln or for d € (2, 4)

and largen. In a recent Monte Carlo stud23] of the three-dimensional lattice model £ 2) in the London limit
where|¢| = const, the large negative valyg = —0.79(1) was obtained in the Landau gauge.
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