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SUMMARIES 

The remarkable Old Babylonian clay tablet which is 
commonly called Plimpton 322 was published originally by 
Neugebauer and Sachs in their now-classical Mathematical 
Cuneiform Texts of 1945. It contains, in a table with 
three preserved columns, a list of values of three quan- 
tities, which in the present paper are referred to as 
c2, b, and c. It is easy to verify that the listed val- 
ues (expressed in the usual Babylonian sexagesimal nota- 
tion) are precisely the ones that can be obtained by use 
of the triangle parameter equations 

b = ab, c = a;; b = +(t' - t), ; = $(t' + t), 

if one allows the parameter t (with the reciprocal num- 
ber t' = l/t) to vary over a conveniently chosen set of 
15 rational numbers t = s/r, and if the multiplier a is 
chosen in such a way that b and c become integers with 
no common prime factors. Hence, for every pair (b, c) 
appearing in the second and third columns of Plimpton 
322, the corresponding triple (a, b, c) is a positive 
primitive Pythagorean triple, i.e., the coprime integers 
a, b, and c are the sides of a right triangle and there- 
fore a solution of the indeterminate equation a2 + b2= c2, 
the so-called Pythagorean equation). After its publica- 
tion by Neugebauer and Sachs the Plimpton tablet was 
further discussed and interpreted by a number of other 
authors (Bruins, Price,et al.) from several different 
points of view. It is the purpose of the present paper 
to try to extract and extend the best ideas from these 
various discussions and interpretations in order to 
achieve a unified and comprehensive analysis of the con- 
struction and meaning of this unique and important Baby- 
lonian mathematical text. In the paper a few comparisons 
with related texts are also made, for the purpose of 
showing that the table on Plimpton 322 is intimately 
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associated with several other interesting aspects of 
Babylonian mathematics. 

Den m;irkliya lertavlan Plimpton 322 fr& den s k 
yammal-babyloniska perioden publicerades fijr fijrsta 
y&yen av Neuyebauer och Sachs i deras nu klassiska bok 
med matematiska kilskriftstexter (MCT) som utkom 1945. 
Lertavlan innehzller en tabell med tre bevarade kolumner 
dh'r en serie av v;irden h'r anyivna fijr tre storheter som 
i detta arbete kommer att kallas f6r c2, b och c. Det 
B'r en l;itt uppyift att verifiera att de anyivna vh'rdena 
(som Zr uttryckta i det sedvanliya babyloniska sexagesimal- 
systemet) B'r precis de v;irden som kan erhzllas med hjalp 
av triangelparameterekvationerna 

b = ab, c = ac; b = *(t' - t), c = +(t' + t), 

om man tillzter parametern t (med det inversa talet 
t' = l/t) att variera ijver en 1Bmpliyt vald m;inyd 
omfattande 15 rationella tal t = s/r, och om faktorn a 
vh'ljs & att b och c blir heltal utan niyon gemensam 
primfaktor. Fijr varje talpar (b, c) i andra och tredje 
kolumnerna pi Plimpton 322 blir ds den motsvarande 
trippeln (a, b, c) en positiv primitiv pytagoreisk 
trippel, dvs. de relativt prima heltalen a, b, c blir 
ds sidor i en r;itvinkliy triangel och utgGr alltsz en 
l&sning till den obestdmda ekvationen a2 + b2 = c2 
(Pythagoras' ekvation). Efter det att Plimton-lertavlan 
hade publicerats av Neugebauer och Sachs blev den farem% 
far ytterliyare studier och tolkningsf8rsak i en rad 
arbeten av andra farfattare (Bruins, Price, m fl.) fr& 
ett antal olika uty&gspunkter. Avsikten med det 
fijreligyande arbetet Br att fiirsijka samla och vidareut- 
veckla de b;ista uppslagen fr& alla dessa studier och 
tolkninysfijrslag fijr att kunna komma fram till en 
enhetliy och ingsende analys av konstruktion och syfte 
hos denna unika och betydelsefulla babyloniska 
matematiska text. Dessutom innehsller arbetet ett antal 
jXrnf&-elser med andra kilskriftstexter, i avsikt att Visa 
att tabellen pz Plimpton 322 har ett intimt samband med 
flera andra fenomen inom den babyloniska matematiken. 

3aMeYaTeJlbHZW ApeBHe-BaBPiJ-IOHCKaR rJUiHRHaR 
Ta6JlMLrKa, 06~1~0 HawBaeMan "~~JIUMI-ITOH 322", 6una 
nepBOHaYanbH0 OIly6naKOsaHa HeRreGayspoM H 3aKcoM 
B HX cTaBwix Tenepb KnaccwiecK5fMu MaTeMaTwneCKHi: 
KJTHHO~HCH~IX TeKCTaX B 1945. OHa COAepTMT B 
Ta6nHqe C TpeMR COXpaHHBlIEiMHCR CTOJ-l6qaMH CI-IWCOK 
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3HaseHwa Tpex BeJlHwiH, KOTOptJe B AaHHOR CTaTbe 
0603HaueHbl COOTBeTCTBeHHOC2, b M C . JIerKo 
IlpOBepHTb, 9TO yKa3aHHLde 3Ha9eHUR (BbIpaxeHHble B 
06w~oR BaBkinoHcKoR ~O-~WZHOR cxcTeMe) TOYHO Te 

xe, KOTOphle MO):(HO l-IOJ7yUWTb, ucnonbsys cnenytiwie 
ypaBHeHHR l-IapaMeTpa Tpeyl?OJlbHHKOB: 

b = ai;, c = ac; b = &(t' - it), c = 4(t' + t), 

ecnnki HOnyCTMTb, VT0 napaMeTp t (c 06paTHoR Bent- 
nIlHOfi t' = l/t ) MO)KeT MeHRTbCR Ha I'IOAXOJZRIQe 
Bbl6paHHOM MHOTeCTBe 15-TH panHOHaJIbHbJX =IHCeJl 
t = S/r M eCJ-IM MHOTElTeJIb a BbJbpaH TaK, rIT0 b H C 

BYAYT UenblMti %icnaMM Be3 OBIWX npocTblx MHO)KU- 
Teneti. CnenoBaTenbHo, JU-IR KawoGi napbl (b, cl 
BCTpe~akJmeRCR BO BTOpOM H TpeTbeM CTOJl6naX 
UnwMnToHa 322, COOTBeTCTByMmaR TpOclKa (a, b, C) eCTb 
nononwTenbH0 npocTaR n@aroposa TpoRKa, T. e. 
B3aMMHO-IlpOCTUe neJlbIe a, b, C 6ypyT CTOpOHaMH 
npRMOyrOJIbHOr0 TpeyrOJIbHMKa M, CJIe~OBaTeJlbHO, 
peueHkieM HeOnpe~eneHHOrO YpaBHeHIlR a2 + b2 = C2 

(TaK Ha3MBaeMoro ypaBHeHtiR l%iQaropa). 
nOCJ7e Ony6JUiKOBaHa~ Heare6ayspoM H 3aKCOM 

nnkiMnToHcKan Ta6nssKa B AanbHeGiimeM 06cyxnanacb 
H kiHTepnpeTkiposanacb npyrxMsi aBTopawi (Epy~~c, 
llpafic H T. ,lJ.) C pa3nMYHhlX TOrleK 3peHHFI. Uenb 
HaCTORmeti CTaTbW-nOnblTaTbCR I43BJleqb M 0606mHTb 
HaXBonee nJIO~OTBOpHbJe KnekI 3TMX JJkiCKyCCHfi I? 
aHTepnpeTaqsGi wuf Toro, rITO6bI nonynMTb enHHbIR 
M acsepnkn3aKw-iW aHanu3 3Toro yHaKanbHor0 n 
saxHeRirrrer0 BaBnnoHcKoro MaTeMaTnqecKoro TeKcTa. 
B CTaTbe CHenaHO TaK)l;e HeCKOnbKO CpaBHeHHM 
yKa3aHHblX TeKCTOB C I.JenbrJ nOKa3aTb, LIT0 TabJl?iI&a 
l-InnMnTon 322 TeCHO cBff3aHa c HeKoTophIMn ApyruMn 
MHTepeCHblMM aCl-leKTaMH BaBkinOHCKOfi MaTeMaTWKM. 

1. PLIMPTON 322; A GENERAL PRESENTATION OF THE 
CLAY TABLET WITH ITS TEXT 

The clay tablet "Plimpton 322" acquired its name from its reg 
istration number in the George A. Plimpton Collection of the Rare 
Book and Manuscript Library, Columbia University, New York. The 
tablet was originally bought by George A. Plimpton ca. 1923 from 
Edgar James Banks of Eustis, Florida, and had allegedly been 
found at Senkereh. At the time of acquisition it was dated at 
2250 B.C. (I owe these data to Kenneth A. Lohf, Librarian of 
the Rare Book and Manuscript Library of Columbia University.) 
It was first recognized as an extremely important document from 
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the early history of mathematics by Neugebauer and Sachs [1945]. 
The tablet had been provisionally classified as a "commerical 
account," but Neugebauer and Sachs established its identity as 
a mathematical table text from the Old Babylonian period (1900- 
1600 B.C.). Since they were able to show that the table on the 
tablet could only have been constructed by the systematic use 
of a generating formula for (integral or rational) Pythagorean 
triples, Neugebauer and Sachs enthusiastically pronounced Plimpton 
322 "the oldest preserved document in ancient number theory" 
[Neugebauer and Sachs 1945, 371. The text on the obverse of 
Plimpton 322 is reproduced in Figure 1.1, in a hand copy made 
after photographic originals kindly put at the author's disposal 
by the Department of Rare Books and Manuscripts of the Butler 
Library of Columbia University. The reverse is uninscribed. 
The format of the tablet is about 13 x 9 x 3 cm. A sign-by- 
sign transliteration of the cuneiform text is provided in Fig- 
ure 1.2. This transliteration is a conformal transliteration, 
in the sense that the numerical or phonetic values of the signs 
on the original have been reproduced in their respective posi- 
tions within the outline of the tablet. The cuneiform numbers, 
by the way, are easy to read even without any previous acquaint- 

Figure 1.1. The cuneiform text of Plimpton 322. 
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Figure 1.2. A conformal transliteration of Plimpton 322. 

tance with cuneiform writing, if only one knows that the signs 
for the units, 1, . . . . 9, and the "tens," 10, . . . . 50, in this 
text are the following: 

It has to be remarked here, however, that such a conformal 
transliteration is possible only if the use of zeros (which do 
not occur in the cuneiform original) is avoided in the trans- 
literation. For this reason, the cuneiform signs for the tens 
have been transliterated in Figure 1.2 by the use of the ad hoc 
notations I, . . . . 5. Thus, for instance, in the conformal trans 
literation the entries in row 5 of the first three columns are 
the sexagesimally written numbers 2 8 5 4 1 4, 1 5, 1 ? 7, 
which in a nonconformal transliteration with zeros would look 
like this: 48 54 01 40, 1 05, 1 37. In this connection it 
is important to remember that in the Babylonian sexagesimal no- 
tation missing tens and units are sometimes indicated by an 
empty space. It is convenient to indicate such missing tens and 
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units in a nonconformal transliteration by use of zeros, as in 
the examples 01, 40, and 05 above. As a matter of fact, this 
slight departure from Neugebauer's standard sexagesimal notation - - 
(in which the number 4 8 5 4 1 4 would be transliterated as 
48, 54, 1, 40) becomes a necessity when one wants to make a pro- 
gram for sexagesimal multiplication on a pocket calculator, as 
in the Appendix of the present paper. 

Consider again the three entries in row 5 of the first three 
columns of the tablet. It is clear that if we set the second of 
them equal to b = 1 05 (=65), and the third one to c = 1 37 (= 97), 
then c2 - b2 = a2, where a = 1 12 (= 72). In addition, if we set 
C = c/a, then it can be shown that C = 1.20 50, which means that 
c is a rational number with a terminating sexagesimal expansion. 
In the Babylonian sexagesimal notation, however, no "fractional 
point" was used, with the result that such terminating rational 
numbers cannot be distinguished from integers in this notation. 
Thus, if we make use of the Babylonian notation, we can write 
c simply as c = 1 20 50, and its square as c2 = 1 48 54 01 40. 
Similarly, if we write b = b/a in the Babylonian way as 54 10, 
then we can show that its square is z2 = c2 - 1 = 48 54 01 40. 
Consequently, the entry in row 5 of the first column can be ei- 
ther c2 or b2, depending on whether we do or do not believe that 
we can see the traces of a vertical cuneiform wedge, standing for 
an initial digit (l), preceding the number 48 54 01 40 precisely 
where a break has occurred along the left edge of the (preserved 
part of the) tablet. Repeating the same arguments for each of 
the 15 lines on the tablet, we can conclude that if the entries 
in the second and third columns are called b and c, respectively, 
then in each of the 15 cases it is true that c2 - b2 = a2, where 
a is a sexagesimal "integer," and that the number in the first 
column is equal either to c2 or b2, with c = c/a and b = b/a. 
Presumably the heading over the first column, if intact, would 
have informed us about the precise nature of the numbers listed 
in that column. However, the heading in question is damaged to 
such an extent that it is not possible to read and translate it 
with any appreciable degree of certainty. This fact is regret- 
table since such headings over the columns of Babylonian mathe- 
matical table texts are otherwise virtually unknown. Fortunately, 
however, it is really not very crucial for our interpretation of 
the text, or for our reconstruction of the algorithm used in the 
preparation of it, to know whether the first column listed the 
values of C2 or of 6'. 

Nevertheless, the choice between the two possibilities men- 
tioned is not an easy one. In fact, Neugebauer and Sachs, in 
their original transliteration of the text on Plimpton 322, as- 
sumed that every number in the first column was preceded by an 
initial (l), of which only a trace of the impression is left on 
the preserved part of the tablet. On the other hand, it has been 
maintained by Bruins [1955] with considerable emphasis that the 
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initial digits (1) should not be there. Bruins differs with 
Neugebauer and Sachs also in that he does not find it likely 
that the intact tablet contained any columns in addition to 
those on the preserved part of the tablet. It seems to me, how- 
ever, that much speaks in favor of the view held by Neugebauer 
and Sachs. In fact, the schematic drawing of the outlines of 
the tablet presented in Figure 1.3, which is made after the pho- 
tographic originals at my disposal, shows quite clearly that the 
tablet in its present condition is thicker at its left edge than 
at the opposite edge. Presumably an intact tablet would have had 
a more symmetric appearance. 

The nature of the break at the left edge is also such that 
it would be difficult to understand how it could have come about 
if only a small margin to the left of the first column is missing. 
On the other hand, the break would be easy to explain if we are 
allowed to assume that as much as perhaps a third of the whole 
tablet is missing, and that all the numbers in the first preserved 
column began with a vertical wedge for the digit (1). In fact, 
a look at the front and rear views of the preserved part of the 
tablet in Figure 1.3 and a comparison with the more detailed copy 
of the obverse in Figure 1.1 show quite clearly that the tablet 
has a throughgoing crack following the straight line which is in- 
dicated by a series of initial vertical wedges (the first of the 
wedges in the sexagesimal notations for 2, 3, 1, 5 . ..) in rows 

Figure 1.3. Front, rear, and side views of Plimpton 322. 
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1-6, 10-11, and 13 of the "c column," but deviating from this 
straight line in rows 7-9 where there is no initial vertical 
wedge. Hence the obvious implication is that there must have 
been a line of initial digits (1) in the "G2 column," producing 
a weakness in the surface of the tablet which ultimately caused 
the now missing portion to be broken off. All that is left of 
this presumed line of initial wedges is the series of inclining 
depressions which can still be seen along the left edge of the 
tablet. 

Our tentative conclusion must therefore be that a substantial 
part of the original tablet is missing. Judging from the curva- 
ture of the tablet, it seems reasonable to conjecture that the 
first column of Plimpton 322 must have been situated roughly in 
the middle of the intact tablet. This would give room for an 
additional two or, possibly, three short columns on the missing 
part. In this connection it is interesting to recall that ac- 
cording to Neugebauer and Sachs "the presence of modern glue, 
until the recent baking of the tablet, on the left (broken) edge 
shows that the missing part must have been lost after the exca- 
vation of the tablet" 11945, 391. Therefore the possibility 
cannot be excluded that the missing complement to Plimpton 322 
still exists in some private collection or, perhaps, uncatalogued 
in the collections of some public institution. 

2. THE RESTRICTIONS ON THE PARAMETERS 

AS observed above, if we choose the notations c2, b, and c 
for the three numbers in any of the 15 rows on Plimpton 322, then 
it can be shown (for instance using the multiplication algorithms 
offered in the Appendix) that c2 - b2 = a2, where a is a sexages- 
imal "integer" such that c = c/a. Therefore, if we set, in ad- 
dition, 5 = b/a, then it follows that c2 - b2 = (c2 - b2)/a2 = 1, 
a relation which can be written also in the factorized form 
(C + b)(Z - I;, = 1. This is an indeterminate equation for the 
pair (C , b). Looking for positive rational solutions to this 
indeterminate equation, we can let it be replaced by the equiv- 
alent system of equations 

c+b=t’,c-b=t, t rational, tt’ = 1, t’ > t > 0. (2.1) 

Hence, the general positive rational solution of the indeterminate 
equations c 2 - b2 = 1 is given by the following generating form- 
ula (well known in classical number theory): 

b = +(t' - t), c = +(t' + t), t rational, tt’ = 1, t' > t 1 0. (2. 

Let us now see what results we can obtain by making the as- 
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sumption that the equations in (2.2), which I call in the follow- 
ing the Babylonian triangle parameter equations, were used in the 
original compilation of the table on Plimpton 322. Then our first 
problem is to try to determine how the 15 values of the parameter 
t were chosen in order to yield those values of c2 = ($(t' + t))2 
which are listed in the first column of the tablet. As observed 
already by Neugebauer and Sachs (see also [Bruins 1949, 195511, 
every admissible parameter t must be such that not only t itself 
but also its reciprocal number t’ = l/t can be written in the 
Babylonian sexagesimal notation as a number with finitely many 
sexagesimal places. But this is possible only if t is what 
Neugebauer calls a regular sexagesimal number, i.e., only if t 
can be factorized into powers of 2, 3, and 5, the three prime 
factors in the base 60 of the sexagesimal number system. In 
other words, t must be of the form 

t = 2a3B5Y, a,B,y integers (not necessarily positive). 

Let us call the triple (cl,f3,y) the index of any regular number of 
this type. Then it is clear that a regular number which is also 
an integer must have a nonnegative index, and that any given 
regular number t can be written in a unique way as a product 
sr'(= s/r), where s and r are regular integers without common 
prime factors. In fact, the index of s is then equal to the 
positive part of the index of t, and the index of r' is equal to 
the negative part of the index of t. More generally, a given 
positive rational number can be written as a terminating sexages- 
imal number in the Babylonian sexagesimal notation if and only 
if it is of the form p/q, where p is an arbitrary integer, while 
q is a regular sexagesimal integer. In the following, I call 
such numbers semiregular sexagesimal numbers. 

Now it is clear that one possible way of beginning a systema- 
tic enumeration of all positive semiregular solutions of the in- 
determinate equation c2 - b2 = 1 would be to let the parameter 
t in the generating formula (2.2) vary in a systematic way over 
all regular sexagesimal numbers of the form t = s/r, where s and 
r are "sufficiently small" regular integers without common prime 
factors (see [Price 19641). Let us consider, for instance, all 
such "parameter pairs" with 0 < s < r 5 2 05 (= 125), where the 
condition 0 < s < r is included in order to ensure that 0 < t < t* 
(see (2.1)). If we indicate the respective positions of all these 

parameter pairs in an (r,s) plane with logarithmic scales on both 
coordinate axes, we obtain a diagram like the one in Figure 2.1. 
The use of logarithmic scales, which is necessary in order to 
obtain an easily readable diagram, has the additional advantage 
that all pairs (r,s) with s/r = t lie on a straight line with 
slope 1. Thus, noting where the straight line with slope 1 
through a given point (r,s) intersects the vertical line r = 1 00, 
one can read off the corresponding value of t x 1 00 as the s 
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coordinate of the point of intersection. The three lines cor- 
responding to the t values t = 1, t = 5/9 = -33 20, and t = 24 -1 
= .24 51 10 . . . are explicitly indicated in the diagram. The 
line t = 2% - 1 has the property that it separates the set of 
parameter pairs for Pythagorean triples (1, b, c) with b < 1 from 
the set of parameter pairs for triples with b > 1. In fact, 
g < 1 if and only if %(t’ : t) c 1, i.e., if and only if 
t2 f  2t - 1 > 0, so that 2% - 1 < t (< 1). The line t = 5/9, 
on the other hand, passes through the point (9, 5), and it can 
be shown that t = 5/9 is the t value which qenerates the Pythaq- 

J//l /Ill I iii1 U.!lllllilI~ 

Figure 2.1. A Diagram, with logarithmic scales on both 
coordinate axes, showing the distribution of all pairs (r, s) 
of coprime regular integers with 0 < s/r < 1 and r < 2 05. The 
15 pairs associated with Plimpton 322 are separately indicated. 
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orean triple associated with the smallest of the c2 values listed 
on Plimpton 322. As a matter of fact, it can be shown that all 
the c2 values in the first column on Plimpton 322 are associated 
with Eythagorean triples corresponding to t values in the inter- 
val 22 - 1 < t < 5/9. This observation, originally due to 
Neugebauer and Sachs, was made more precise by Price [1964], 
who realized that the t values involved in the construction of 
the tables on Plimpton 322 can be characterized as all values 
OF t = s/r which correspond to parameter pairs (r, s) with 
25 - 1 < s/r & 5/9, 1 < s < 1 00 (= 60). The corresponding 
points in Figure 2.1 a;e indicated by means of the numbers 1 
through 15. 

Moreover, it can be seen from the diagram that there are 
precisely 23 points in the complementary set that is charac- 
terized by the restriction to parameter pairs (r, s) with 
5/9 < s/r < 1, 1 s s < 1 00. In this connection Price made the 
interesting and very plausible conjecture that the original in- 
tention of the Babylonian mathematician, who was the author of 

Figure 2.2. A list of all values of the parameter t = s/r 
and its reciprocal t’ = r/s obtained by letting (r, s) vary over 
all admissible parameter pairs satisfying the additional condition 
that s < 1 00, r <- 2 05, and for instance, 0.15 5 s/r c 1. 
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Plimpton 322, was to include in his table all those values of 
c2, b, c (etc.) with 1 < c2 < 2 (i.e., with 0 < s2 < 1 and 
consequently with 0 < b < l), which can be obtained from the 
Babylonian triangle parameter equations (2.2) when t = s/r, 
where s is a single-place regular sexagesimal integer. Price 
based this conjecture on the fact (see Figure 1.3) that the 
guide-lines separating the columns on the inscribed obverse of 
Plimpton 322 are continued onto the uninscribed reverse in a 
way suggesting that the writer of the tablet had hoped to be 
able to add perhaps as many as 23 more rows on the edges and 
the reverse to the 15 rows on the obverse. 

By writing the parameter t and its reciprocal t’ as t = s/r, 
and t’ = r/s, and by letting the pair (r, s) vary over all ad- 
missible parameter pairs (coprime pairs of regular sexagesimal 
integers) within a bounded "strip" in the (r, s) plane, one can 
generate an arbitrarily large set of parameter values in a sys- 
tematic and straightforward way. This type of procedure has 
been followed in the construction of the table in Figure 2.2. 
In order to obtain a sufficiently rich set of parameter values, 
I have chosen to include in the table all pairs (r, s) with 
0 < s < 1 00, r s 2 05, and 0.15 s s/r < 1. An index n has 
been assigned to each pair (r, s) in the table in such a way 
that t = s/r becomes an increasing function of n. In this way, 
the 38 pairs considered by Price (including the 15 pairs asso- 
ciated with Plimpton 322) have indices n = 1, . . . . 38, while for 
22 additional pairs with 0.15 2 t < 0.24, the indices are n = 
-22, . . . . -1. 

Figure 2.3. A corrected and extended version of the table 
on the preserved part of Plimpton 322, using the t and t’ values 
listed in the table of Figure 2.2. 
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Using the values of t and t’ listed in the table of Figure 2.2, 
it is easy to compute the corresponding values of b = &(t' - t) 
and c = %(t' + t) according to the triangle parameter equations 
(2.2). These values are listed in the first two columns of the 
table in Figure 2.3. Once the values of z and c are known, it is 
also quite easy to compute the corresponding values of c2, as well 
as those of b and c. These values are listed in the third, fourth, 
and fifth columns of the table in Figure 2.3, ordered by increas- 
ing values of the index n, which itself is given in the last 
column. In this way we obtain a comprehensive table containing 
the table on the preserved part of the Plimpton tablet (after 
corrections) as a subset. This subset is identified in Figure 
2.3 by means of a frame around it. 

3. THE NUMERICAL ALGORITHM USED IN THE CONSTRUCTION OF THE TABLE 

I will show below that the values of c2, b, and c can be ob- 
tained fairly easily from the values of 5 and c, using only meth- 
ods which would have been available also to a mathematician of 
the Old Babylonian period. Granted that this can be done, it is 
then possible to conjecture that the columns supposedly "broken 
off" from Plimpton 322 were columns for z and c, in other words 
that the intact tablet contained columns for the variables 

b c c2 (='l + b2) b c n, (3.1) 

just as in the extended table in Figure 2.3. (Note that there 
is no need to postulate two extra columns on the tablet for t 
and t’, because these values would be written on a second tablet 
corresponding to the table in Figure 2.2. Also, the values of 
t and t’ can be computed quite easily, if so desired, by use of 
the simple relations t = c - 5, t’ = c + b, as soon as the values 
of b and c are known.) 

Our first task is to show how the values of c2 may have been 
computed. A possible clue to the answer to this question is the 
fact that, remarkably enough, the c2 column contains only two 
errors, which, as we shall see, have quite simple explanations. 
One would, a priori, have imagined it to be very hard to compute, 
mentally or manually, the squares of so many two- to five-place 
(i.e., 4- to lo-digit) (non-regular) sexagesimal numbers without 

making several mistakes. The columns for b and c on the Plimpton 
tablet, on the other hand, contain as many as four errors of 
various types. (This fact shows also, incidentally, that it is 
hardly likely that the values in the c2 column were obtained from 
the values in the c column and in an unrecorded a column by set- 
ting c2 = (~/a)~ (= (r2 + s2)/2rs), as claimed in [Price 19641.) 
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The explanation I propose for the virtual absence of errors in 
the c2 column is that the values written in this column had been 
checked beforehand by being computed in two different ways: in 
view of the fact that c2 = 1 + b2, the checking of the values of 
c2 may have consisted in computing the values of g2 as well, to 
see whether they would be the same sexagesimal numbers except for 
the initial "1". Note, in this connection, that my interpretation 
of the first column on Plimpton 322 as representing at the same 
time both c2 and b2 = c2 - 1 is in fairly good agreement with the 
tentative translation in [Neugebauer and Sachs 1945, 401 of the 
heading of this column: "the [.. .] of the diagonal which has been 
subtracted such that the width [...I." (A similar translation 
can be found in [Bruins 19491. See also [Price 1964, 81.) 

It might be objected that it seems unlikely that anybody 
would really have gone to the trouble of computing the squares 
of both c and b in all 15 cases, in particular since c and b are 
represented by several-place nonregular sexagesimal numbers in 
all cases but one. (The Babylonian square tables for several- 
place numbers which are known to have existed listed, for several 
reasons, only squares of regular sexagesimal numbers.) This ob- 
jection, however, loses much of its strength if we assume that a 
certain Babylonian factorization method, well known in other con- 
nections, was involved in the computation of the squares in ques- 
tion in a way which is described below. In fact, the relation 
between a normalized Pythagorean triple (1, b, c) and the cor- 
responding primitive Pythagorean triple (a, b, c) is simply that 
(a, b, c) is the uniquely determined multiple of (1, 5, c) which 
can be interpreted as a triple of coprime integers. Since, ac- 
cording to (2.2), 

6, c, = ($(t’ - t), &(t’ + t)) 
= ( (r2 - s2)/2rs, (r2 + s2)/2rs) if t = s/r, (3.2) 

it follows, therefore, that 

(a, b, c) = A(2rs, r2 - s2, r2 + s2), 

where A = 1 if rs is even and X = % if rs is odd (3.3) 

(see [Friberg 1980a, 131). In particular, we see that a = 2Xrs 
for every given regular value of the parameter t = s/r, and con- 
sequently a must be a regular sexaqesimal integer. Hence, we 
have that (see (3.2)) 

(b, c) = (ba', ca'), aa' = 1 and a regular. (3.2)' 
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Therefore we obtain the pair (b, c) from the pair (b, c) simply 
by removing the common regular factor a' from the numbers b and 
c. This can be done in a number of simple steps, irrespective of 
whether the value of a (or a') is known beforehand or not. 

The method is most easily explained by means of an example. 
Consider, for instance, row 10 of the extended Plimpton table 
in Figure 2.3, with 

(b, c, = (45 56 06 40 , 1 15 33 53 20), (3.4) 

where the numbers are expressed in the Babylonian sexagesimal 
notation. What we want to do now is to remove successively, in 
several small steps, all the common regular factors in the two 
numbers. A first such factor is 20, for the obvious reason that 

i; = 45 56 06 x 60 + 40 = (45 56 06 x 3 + 2) x 20, 

and similarly for c. As is well known, however, in Old Babylonian 
mathematics division by a regular number was habitually replaced 
by the equivalent operation of multiplication by the reciprocal 
number. For this reason, it is preferable to say, not that b 
and c in our example have the common regular factor 20, but rather 
that they have the common reciprocal factor 3. (3 is the reci- 
procal of 20 in the Old Babylonian sexagesimal notation, because 
3 x 20 = 1 (= 1 OO).) This fact can be expressed by introducing 
the new "reduced pair" 

- - 
(bl’ cl) = 3 x (b, c) = (3 x 45 56 06 + 02 , 3 X 1 15 33 53 + 01) 

= (2 17 48 20 , 3 46 41 40). (3.4)I 

The reader who wants to check the multiplications can easily 
do so by use of the algorithms in the Appendix, In particular, 
the calculator program offered there, given for an HP-25, is 
particularly well suited for (repeated) multiplication of a 
given sexagesimal number of four or fewer places by (a sequence 
of) single-place reciprocal factors. Thus, the program gives 
directly the product 3 x 45 56 06 40 = 2 17 48 20, but somewhat 
less readily the product 

3 x 1 15 33 53 20 = 3 x 1 15 33 53 + 01 

= 3 46 41 39 + 01 = 3 46 41 40. 

Since b I and c 1 of the reduced pair (b , cl) also have 3 as 
1 
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a common reciprocal factor, we can repeat the process, obtaining 

(bz, 9) = 3 X 3 X (b, c) = (6 53 25 , 11 20 05). (x.4)2 

b2 and c2 of the new reduced pair (bz, ~2) have 12 (the reciprocal 
of 5) as a common reciprocal factor. Hence, 

(b3, c3) = 12 x 3 x 3 x (b, ;, = (1 22 41 , 2 16 01). (3.4)3 

Since 41 is a nonregular sexagesimal number, the process stops 
here; b3 and c3 of the pair (bg, c3) have no common reciprocal 
factor. Consequently, 

a= 12X3x3, (b, c) = (b3, c3) = (1 22 41 , 2 16 01). 

Continuing further with the same example, we can now go on 
to compute the squares of both z and c in (3.4) by use of the 
following variant of the Babylonian "factorization method": 
computing the squares of the "maximally reduced" pair (b, c) by 
any method available (for instance, by use of the calculator 
program), we obtain the pair of squares, 

(b2, c2) = (1 53 56 32 01 , 5 08 20 32 01). (3.5) 

But it follows from (3.4)3 that (b, c) = 5 X 20 X 20 X lb, C) 
= 33 20 x (b, c), hence that 

(b2, c2, = (33 20)2 x (b2, c2) 

Consequently we can compute (b2, C2) in two simple steps (using 
once more the program in the Appendix): 

(33 20) x (b2, c2) 

= (1 03 18 04 27 13 20 , 2 51 18 04 27 13 20), 

and 

G2 I i2, = (33 20)2 x (b2, c2) 

= (35 10 02 28 27 24 26 40 , 1 35 10 02 28 27 24 26 40). 
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We recognize in one or the other of these two numbers the entry 
in the first column of row 10 on the Plimpton tablet, and we no- 
tice in addition that the factorization method has allowed us to 
compute the square of the five-place number c in several easy 
steps, of which the first one was the computation of the square 
of the three-place reduced number c. The importance of such a 
reduction from, say, a five-place to a three-place number be- 
comes obvious as soon as we start trying to use the calculator 
program, with its built-in limitation to at most four-place num- 
bers in the register that is reserved for the current value of 
a. We can very well imagine that the computations of the Old 
Babylonian mathematician who constructed the table on Plimpton 
322 were subject to similar limitations, especially if he used 
some kind of "abacus" which would set a restriction on the num- 
ber of sexagesimal places in the numbers of the computation. 

It is possible to prove that the factorization method, illus- 
trated by the example just described, will always lead to the 
desired result in a finite number of steps. The proof, which is 
not very difficult, will be ommitted since it is of no particular 
importance in the present connection. 

Of more specific interest, however, is the fact that there 
exists a well-known example of a cuneiform text in which a vari- 
ant of the Babylonian factorization method is used in order to 
extract the square root of a several-place semiregular sexagesimal 
number. In fact, the foregoing discussion of the way in which 
the squares c2 on the Plimpton tablet may have been computed 
was conducted in imitation of the (reverse) procedure in this 
example. The text in question is the Sippar text 1st.S 428 
[Neugebauer 1935, Ch. 1.6.~; Huber 19571. (A similar example is 
in the text IM 54472 [Bruins 19541). The problem posed on Ist.S 
428 is to compute the square root of the number 

(x2 =) 2 02 02 02 05 05 04. 

The solution, as given on the tablet, is the following. In a 
first phase of the computation obvious regular square factors in 
the given number are removed, one at a time, through repeated 
multiplication with the corresponding reciprocal factors: 

(Xl 2 = 302 x ,2 = 15 x ,2 =) 30 30 30 31 16 16, 

(x2 2 = 152 x x12 = 3 45 x Xl2 =) 1 54 24 24 27 16, 

(x$ = 152 x x22 = 3 45 x x22 =) 7 09 01 42 15, 

(x42 = 22 x x3 2 = 4 x x12 =) 28 36 06 06 49. 
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Note that the multiplication here by the two-place number 3 45 
may have been carried out in a single operation, multiplying 
successively each sexagesimal place of XI*, or of x2*, by 3 45, 
which could be done easily by use of a Babylonian combined mul- 
tiplication table of standard type. In fact, such combined 
multiplication tables as a rule contained multiplication tables 
for, in particular, the reciprocals of almost all single-place 
regular numbers (See [Neugebauer 1935, 1,9].) The next step in 
the computation is to find the square root XL+ of the last reduced 
number, by any method available. The result can be shown to be: 

(xl+ =I 5 20 53. 

And finally, in the last line of the text, the correct value of 
the desired square root x is obtained by reversing the relation 
X4 = 2 x 15 x 15 x 30 x x: 

(x = 30 x 4 x 4 x 2 x x4 = 16 x x4 =) 1 25 34 08. 

(Remark: Interestingly enough, the number 1 25 34 08 is the 
"integral part" of the square root of the very special sexagesimal 
"integer" 2 02 02 02 02 02 02. This observation explains the 
appearance of the seemingly strange number 2 02 02 02 05 05 04-- 
a square!--in the text we have just considered.) 

Analogous applications of the factorization method seem to 
have been employed regularly by Babylonian mathematicians through- 
out the entire period of cuneiform writing. In late (Seleucid) 
times a particularly elaborate model of the factorization method 
may have been used in order to construct the well-known Babylonian 
tables of reciprocals and squares of "six-place" regular numbers. 
(See [Neugebauer 1935, 14-22; Friberg 1980bl.) 

4. THE NATURE OF THE ERRORS 

In the preceding section of this paper I conjectured that 
the following algorithm was used for the construction of the 
columns on the Plimpton tablet, including the missing part: 
First a list was made, one way or another, of admissible t values 
2 24 - 1, which were then ordered in an increasing sequence and 
labeled by an index n. Next, the corresponding values of b 
= &(t' -t) and(3=&(t' + t) were computed, and it was checked, 
by the factorization method, that the Pythagorean equation c* 
= 1 + b* was satisfied. This, incidentally, gave a valuable 
verification of the computations so far. It was observed that, 
in the process of computing E2 and c*, the maximally reduced pair 
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(bt c) had also been computed, so that the three columns for c2, 
b, and c were the outcome of a single series of computations. Of 
the 38 rows of values b, c, c2, b, and c, presumably obtained in 
this way, the first 15 were written on the obverse of the tablet, 
while the remaining 23 were saved to be written later on the re- 
verse and on the edge (although this never happened). Later, the 
part of the tablet containing the first columns was broken off 
and lost, possibly in modern times. 

Let us now see how the algorithm proposed above can be recon- 
ciled with the errors appearing in the text of the Plimpton tablet. 
These errors are (see Figure 1.2 and the corresponding part of 
the corrected table in Figure 2.3): 

in the c -2 column: 

row 2: [l 56 56158 14 56 15 instead of 1 56 56 58 14 50 06 15 

row 8: [1141 33 59 03 45 instead of 1 41 33 45 14 03 45 

in the b column: 

row 9: 9 01 instead of 8 01 

row 13: 7 12 01 instead of 2 42 

row 15: 56 instead of 28 

in the c column: 

row 2: 3 12 a1 instead of 1 20 25 

(Remark: Not exactly an error, but a puzzling departure from the 
standard practice in the first three columns, is the use in the 
n column of some unusual sign forms for the numbers 4, 7, and 8. 
A possible explanation is that the tablet is a copy of an older 
original, and that the person who made the copy happened to imi- 
tate the sign forms of the original in the n column where the 
individual number signs are relatively isolated from each other.) 

It is also customary to point out as an "error" that the pair 
(b, c) = (45 , 1 15) in row 11 is not coprime; if it is assumed 
that the purpose of Plimpton 322 is the enumeration of a certain 
set of primitive Pythagorean triples (a, b, c) by listing the 
last two coordinates (b, c) of each such triple, then the correct 
entry in row 11 would have been (3, 5), rather than (45 , 1 15). 
In my interpretation, however, the pair (45 , 1 15), while not 
maximally reduced as are the corresponding pairs in all the 
other 14 rows, is still sufficiently reduced, in the sense that 
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it is easy to compute the squares of the pair (45 , 1 15) di- 
rectly. Besides, it may well be true that the standard example 
of a Pythagorean triple which we know as the triple (3, 4, 5) 
(or 4, 3, 5)) was known to the Babylonian mathematicians as the 
triple (1, 45 , 1 15). In other words, in this particular case, 
the writer simply preferred to keep the original pair (b, c), 
because it was a pair with which he was already familiar. This 
means that the presence of this particular "error" is very close 
to a proof that no application of "number theory", in the proper 
sense of the word, was involved in the construction of the table 
on Plimpton 322. What the true purpose of the table may have 
been is discussed in the next section. 

Of the errors listed above, two occur in the column of c* 
values. Of these two errors, the one in row 2 is most easily 
explained. It consists in the absence of an empty space to 
denote a couple of missing tens and units and may have been 
caused, for example, by a misreading of the notes which must 
have been scribbled on a piece of clay in the course of the 
actual computations. The second error in the c* column seems 
to be more serious. In fact, the text gives in row 8 the in- 
correct C* value, 1 41 33 59 03 45, instead of the correct 
value, 1 41 33 45 14 03 45. Hence, at some point in the compu- 
tation a mistake must have been made, probably due to the in- 
adequacy of the Babylonian sexagesimal notation in certain sit- 
uations, with the effect that the two sexaqesimal places 45 14 
"telescoped" into the single place 59 (see [Bruins 19551). 

In order to see how this may have happened without the error 
being discovered when the relation c2 = b2 + 1 was tested (ac- 
cording to the algorithm suggested in the preceding section), 
the computation of c2 and b2 by the Babylonian factorization 
method must be examined. First the common regular factors of 
the pair (b, c) are removed: 

(5, c, = (49 56 15 , 1 18 03 45), 

(blr cl) = 4 x (b, c) = (3 19 45 , 5 12 15), 

C&r ~2) = 4 x (bl, cl) = (13 19 , 20 49). 

Next the squares of the reduced pair (b2, ~2) are found: 

(bz2, c& = (2 57 20 01 , 7 13 20 01) 

Finally, the squares of the pair (b, c) are computed by re- 
versing the facorization process: 
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(i2, 7) = 3 45 x 3 45 x (2 57 20 01 , 7 13 20 01) 

= 3 45 x (11 05 00 03 45 , 27 05 00 03 45) 

= (41 33 45 14 03 45 , 1 41 33 45 14 03 45). 

In the Babylonian sexagesimal notation there was no special 
symbol for missing tens or units, not even for entire missing 
sexagesimal places (this is true at least for most texts from the 
Old Babylonian period), although an empty space was used, when 
needed, to indicate the absence of one or more consecutive tens 
or units. Hence, the difference between the sexagesimal numbers 
11 05 00 03 45 and 11 05 03 45, in the Babylonian notation, must 
have been (at most) that the empty space indicating the three 
missing tens and units in the first number was larger than the 
empty space in the second number, which indicated only one miss- 
ing ten. Therefore, it may well be that the author of the text 
misread his notes and worked with the number 11 05 03 45, instead 
of the correct number 11 05 00 03 45. Similarly, he would have 
calculated with the number 27 05 03 45 instead of the correct 
27 05 00 03 45. In this way the error introduced in the second 
step of the computation of (b2, c2) (see above) would then have 
spread to the third step of the same computation, causing the 
"telescoping" of the two places 45 14 into the single place 59. 
In fact, 

3 45 x 11 05 03 45 = 3 45 x (11 05 00 00 + 3 45) 

= 41 33 45 00 00 + 14 03 45 = 41 33 59 03 45, 

while 

3 45 11 05 00 03 45 = 3 45 x (11 05 00 00 00 + 3 45) 

= 41 33 45 00 00 00 + 14 03 45 = 41 33 45 14 03 45. 

Since the same kind of telescoping would have occurred in the 
two sexagesimal numbers expressing the values of b2 and of c2, 
respectively, it is clear that the relation c2 = g2 + 1 would 
still hold for the telescoped numbers, and the mistake could 
therefore not have been detected, as would other types of mis- 
takes which would have occurred in just one of the two numbers. 

Now consider the errors in the b column of Plimpton 322. Of 
these the error in row 9 was simply a misreading of the notes, 
copying a "9" as an "8," which would have happened quite easily 
because of the small difference between the two number signs in 
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question. The error in row 13, which consists in writing the 
value 7 12 01 of b2, instead of the value 2 41 of b, must also 
be a mistake made in copying from the notes, where, according 
to the assumptions we have made, the successive computation of 
the values of b and b2 were two of the steps in the computation 
of the corresponding value of z2. The error in row 15, finally, 
consists in writing 56 = 2 x 28 instead of 28. A possible ex- 
planation is that the step-by-step factorization of i and C was 
carried out, not simultaneously, but separately, for b and for 
c, in the following way: 

(b =I 37 20 cc =) 1 10 40 

(bl = 3 x b =) 1 52 (Cl = 3 x c =) 3 32 

(b2 = 30 x bl =) 56 (c2 = 15 x Cl =) 53 

Since here the factorization of c was completed after two steps, 
the factorization of 5 would also have to be interrupted after 
two steps, in order to obtain the two components of the pair 
(z, c) reduced to the same degree. The mistake would consist 
in the fact that the reciprocal factor 30 had been used in the 
second reduction step of the first case, whereas the reciprocal 
factor 15 was used in the second case, perhaps due to the cir- 
cumstance that it is not quite so obvious that 4 is a factor of 
52 as it is that 4 is a factor of 32. 

The error in row 2 of the c column is of a similar type, but 
with an interesting additional complication. The following ex- 
planation is essentially due tc Bruins [1955]: The successive 
steps in the factorization of b and c would be the following: 

(b =) 58 27 17 30 cc =) 1 23 46 02 30 

. . . . . . . . . . . . 

(bq = 12 x b3 =) 56 07 (c4 = 12 x c3 =) 1 20 25 

(c5 = 12 x c4 =) 16 05 

(C6 = 12 x c5 =) 3 13 

Now clearly the last two steps in the factorization of c have 
to be canceled in order to have b and c reduced to the same de- 
gree. This would be noticed by the author of the text when he 
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used the reduced values for the computation of the squares b2 
and c2; but later, when he-referred to the same notes for the 
reduced values b and c of b and c, it is easy to see how he can 
have read the wrong values (56 07 , 3 13) instead of the correct 
ones (56 07 , 1 20 25). The additional complication is that the 
value 3 13 would have been obtained through multiplication of 
16 05 by the reciprocal factor 12, in the following way: 

12 x 16 05 = 3 12 + 1 = 3 13. 

Thus when the correct value 3 13 was misread as 3 12 01 (or 
rather as 3 F 2 1, see Figure l.l), it was because the cuneiform 
sign for 13 had been obtained by carelessly adding a "1" to the 
sign for "12," with a little too much space between them. 

In conclusion we can now say that all the errors occurring in 
the text of the Plimpton tablet can be explained as above with 
reference either to the inherent inadequacies of the Babylonian 
sexagesimal notation, with its absence of zeros and its way of 
writing the units by juxtaposition of "ones" rather than with 
individual signs as we do it, or to the difficulties in carrying 
out '$e factorization process for computing the squares of g2 
and c . In particular, the preceding analysis of the way in 
which the errors may have come about lends strong support to 
the suggestions made in the previous sections about how the 
computations were carried out when the table on Plimpton 322 
was constructed. 

5. THE PURPOSE OF THE TEXT 

In the discussion of the alleged error in row 11 of the 
Plimpton tablet, where the unreduced pair (45 , 1 15) is listed 
rather than the corresponding maximally reduced pair (3, 5), I 
suggested that the author of the text did not, after all, have 
a number-theoretical application in mind. If that is so, what 
then may the purpose of the text have been? In trying to ans- 
wer this question, I base my arguments on the assumption that 
the complete tablet contained columns for the values of the 
variables 

b = b(t’ - t), c = ?i(t’ + t), c2 = 14-g2, b=&, c = ac 

(see the "extended Plimpton table" in Figure 2.3), or, at least, 
that the values of 5 and c had been computed and were available 
to the author of the text. 

A first observation is that there can be no doubt about the 
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geometrical background of the text. Indeed, the headings over 
the three preserved columns (see Figure 1.2), not counting the 
index column, are 

[ . . . -ki]-il-ti :i-li-ip-tim ib-sd sag ib-sb .+-li-ip-tim. 

Here "sag" and "@iptum" can be translated as "front" and "di- 
agonal," respectively, while the meaning of the term "ib-sd" is 
less clear in the present connection. According to Neugebauer 
and Sachs, the term cannot here have its usual meaning of "square 
rootlW . . . . hence they suggest the intentionally vague transla- 
tion "solving number." For simplicity, I use the shorter but 
equally vague translation "root." Then the headings of the three 
columns can be translated in the following way: 

t . ..I of the diagonal root of the front root of the diagonal. 

The meaning of these headings is more or less clear: the 
"front" and the "diagonal" are, according to Babylonian standard 
terminology, respectively the shortest side and the hypotenuse 
of a right triangle. (The remaining longer side is called "us," 
which may be translated by the term "flank." The damaged word 
in the heading over the first column ought to have the meaning 
"square"(?), and the "root of the front" may be assumed to mean 
the maximally reduced value of the front, i.e., according to 
our previous discussion of the algorithm for the computation, 
the nonregular core of the sexagesimal number appearing in the 
", column" where the values of the front itself are listed. The 
translation of the word "sag" as front = shortest side is impor- 
tant, because it explains why the values in the c2 column de- 
crease from a maximum value very close to 2, or, equivalently, 
why the range of the corEesponding t values is restricted by 
the condition that t 5 22 - 1. Namely, if 2, b, and c are the 
values of the front, the flank and the diagonal, respectively, 
then the fact that a has the constant value 1 implies that 
b < 1, hence that b2 < 1 and c2 < 2. Thus we can conclude that 
it may have been the intention of the author of the tablet to 
find the front and diagonal of all rational right triangles 
with flank = 1, under the sole condition, for practical reasons, 
that the parameter t = s/r in the generating formula (2.2) must 
be a regular sexagesimal number such that, for instance, 
s < 1 00. (I am assuming here, with Price [1964], that if the 
work on the tablet had been completed, it would have contained 
38, rather-than 15, rows.) 

If (1, b, c) is a normalized Pythagorean triple with b < 1, 
obtained by use of the triangle parameter equations (2.2), with 
t regular and t > 2% - 1, then the corresponding primitive Py- 
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thagorean triple (a, b, c) satisfies the condition that a = 2~r.s 
is a regular sexagesimal number. Hence every primitive Pythag- 
orean triple obtained in this way can be identified with the 
sides of a primitive rational Pythagorean triangle with the 
flank a given by a regular sexagesimal number. As a rule, the 
front b (= a x %(t’ - t)) is only semiregular, because the dif- 
ference between two regular sexagesimal numbers is usually not 
regular. On the other hand, if we use the triangle parameter 
equations (2.2) with t regular as before, but with t < 2% - 1, 
then we can obtain, in a similar way, the sides of all primitive 
rational Pythagorean triangles with the front regular but, as a 
rule, the flank semiregular. Consider, for instance, the case 
n = -1 of the table in Figure 2.3; i.e., the case when t = 2/5 
= -24 < 2% - 1 = .24 51 . . . . Then (a, b, c) = (20, 21, 29), 
and it is clear that the flank 21 is semiregular, while the 
front 20 is regular. Thus even simple Pythagorean triples like 
this one would be missed by the algorithm used for the construc- 
tion of the table on the Plimpton tablet. This is one more 
reason why it does not seem likely that the intention of the 
author of the Plimpton text was to make a list of all (reason- 
ably small) positive primitive Pythagorean triples. The few 
cases when both the "side" and the "front" of a primitive Py- 
thagorean triangle are regular can be identified easily. In 
fact, if b/a = &(t' - t), then it is easy to see that a/b 
= %(tl’ - tl), where tl = (l-t)/(l + t). Hence, a and b are 
both regular if and only if t and tl are both regular, i.e., if 
and only if both t and 1 f t are regular. This condition is 
satisfied only for some very small values of r and s (if t is 
written in the usual way as s/r) since the condition implies 
that not only r and s, but also r + s, must be regular, at the 
same time that r and s are assumed to be coprime. It is easy 
to see that these conditions are satisfied by only four pairs 
of "conjugate parameter values," t and tl, in the range that 
we are considering, namely, the pairs 

t, tl = l/2, l/3; 2/3, l/5; 3/5, l/4; l/9, 4/5. 

The corresponding points (r, s) and (rl, ~1) are indicated by 
small arrows in Figure 2.1. The associated pairs of Pythagorear 
triples are, respectively, 

(4, 3, 5), (3, 4, 5); (12, 5, 13), (5, 12, 13); 

(15, 8, 17), (8, 15, 17); (40, 9, 41), (9, 40, 41). 

Thus there are essentially only four such primitive positive 
Pythagorean triangles with both of the shorter sides regular. 
It is worth mentioning that the primitive Pythagorean triples 
(a, b, c) with either a or b regular make up only a small frac- 



302 Jaran Friberg HM 8 

tion of the set of all primitive Pythagorean triples. Thus in 
a list of the 447 primitive Pythagorean triples (a, b, c) with 
c < 3000 [Martin 19121, only 9 of the 15 triples associated with 
the Plimpton tablet are present. The simplest of all the triples 
in this list with both a and b nonregular is (56, 33, 65). 

It still remains to explain the reason for the presence of 
the "c2 column" on the Plimpton tablet. In order to be able to 
do this we start by making the following simple but extremely 
important observation. With very few exceptions all Babylonian 
mathematical problem texts contain problems whose solutions are 
rational numbers or, more precisely, semiregular numbers which 
can be expressed by use of the Babylonian sexagesimal notation. 
It is evident that the authors of these Babylonian mathematical 
texts must have devoted a lot of work and ingenuity in choosing 
the right kind of data in their formulation of the problems, and 
in devising problems they knew would possess solutions of the 
indicated kind. For brevity, I call such problems solvable. 
For example, the problem of finding the third side of a right 
triangle when two of the sides are given becomes "solvable" only 
if the sides of the given triangle are multiples of the sides 
of a primitive Pythagorean triangle with one of the shorter 
sides regular. 

Thus it appears that the reason for the construction of the 
tables on the Plimpton tablet was not an interest in number- 
theoretical questions, but rather the need to find data for a 
"solvable" mathematical problem. More precisely, it is my be- 
lief that the purpose of the author of Plimpton 322 was to 
write a "teacher's aid" for setting up and solving problems 
involving right triangles. In fact, a typical Babylonian prob- 
lem text contains not only the formulation of the problem but 
also the details of its numerical solution for the given data. 
Hence the contents of the table on the (intact) Plimpton tablet 
would have given a teacher the opportunity to set up a large 
number of solved problems involving right triangles, with full 
numerical details, as well as to formulate a series of exer- 
cises for his students where only the necessary data were given, 
although the teacher knew that the problem was solvable, and 
where he could check the numerical details of the students' 
solutions by using the numbers in the table. For example, if 
the given problem was to find the diagonal c of a right triangle 
with flank 1 and front b, then the steps of the computation 
would be: to compute the nonregular core of b (listed in the 
b column of the tablet), then the square of this nonregular 
factor and, by means of it, the squares b2 and c2 = b2 + 1 
(listed in the c2 column), after which a root extraction, exe- 
cuted (for instance) by use of the factorization method, would 
yield the desired value of c (listed in the c column). With 
this explanation the role of the c2 column as well as of the 
b and c columns on Plimpton 322 becomes perfectly clear. 
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There is also the interesting possibility of a close con- 
nection between the "Babylonian triangle parameter ,equations" 
(2.2) and the treatment of some types of quadratic equations 
in Babylonian mathematics. In fact, suppose that either b or 
c is known and that we want to find the parameter t which gen- 
erates this particular z or c value when inserted into Eqs. (2.2). 
If c is known, then we have to solve the following equation for 
t: 

t' + t = 2c (t't = 1, 0 < t < 1). BI 

This type of equation, which is known from several Babylonian 
mathematical problem texts, is a special case of the first Baby- 
lonian type of "quadratic equation" [Gandz 1937, 405-4061. The 
equation is called "quadratic" because if t is a solution of 
B I, then t and t’ are identical with the two (positive) solu- 
tions of the following true quadratic equation (also known from 
some Babylonian texts): 

x2 + 1 = 2cx. B IX 

Similarly, if 5 is known, then t can be computed as the solution 
of the equation 

t' -t=2b (t't = 1, 0 < t < 1). B II 

This equation is a special case of the second Babylonian type of 
"quadratic equations," and if t is a solution of B II, then t 
is identical with the positive solution of the true quadratic 
equation 

x2 + 2bx = 1, B VII 

while the reciprocal number t’ is identical with the positive 
solution of the quadratic equation 

x2 - 25x = 1. B VIII 

(The remaining types of "quadratic equations" known from Baby- 
lonian texts are not discussed here. See for instance [Gandz 
19371, and also [Friberg 19791.) 

An elegant and typically Babylonian method of solving Eq. 
B I is nicely exemplified by a sequence of four solved prob- 
lems in the important Babylonian problem text A0 6484 (from the 
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Seleucid period, 321-364 B.C.; see [Neugebauer 1935, 101-1021 
The method consists in computing, in a series of simple steps 
the quantities 

CL, CL -l=b', b, c + b = t', c-b=t. (5.1) 

The given values of 2: and the solutions t’ and t obtained in 
the four cases are the following: 

(1) 2; = 2 00 00 33 20 (= 2::j 3 z,, t' = 1 00 45 (= 1:4 5), t = 59 15 33 2( 

(2) 2;=203, t’ = 1 15, t = 48, 

(3) 2; = 2 05 26 40, t' = 1 21, t = 44 26 40, 

(4) 2; = 2 00 15, t’ = 1 04, t = 56 15. 

(A special sign was used in astronomical and mathematical cunei- 
form texts from the Seleucid period in order to indicate missing 
tens or units in sexagesimal numbers: the sign in question is 
represented by a "colon" in the "conformal" transliterations of 
2; and t’, in the first of the four cases above.) 

It is important to notice that the four equations of type 
B I appearing in the problem text A0 6484 were not solved in 
the way in which they would be solved today, starting with the 
replacement of the given equation of type B I by the correspond- 
ing quadratic equation of type B IX. It is not even necessarily 
true that the Babylonian mathematicians were aware of the pos- 
sibility of transforming the two types of equations into each 
other. In any case, equations of type B I or B II were solved 
by use of an algorithm proceeding via the computation of a 
series of intermediary values as in (5.1) above; this is illus- 
trated by the four explicitly solved examples in the text A0 
6484. The connection between this algorithm and (my proposed 
reconstruction of) the table on Plimpton 322 is obvious. 

Thus it is conceivable that the idea of considering equa- 
tions of types B I and B II and solving them in a series of 
steps (as in (5.1)) originated in a study of problems concerned 
with the generation of Pythagorean triples and with methods for 
finding relations between the sides of Pythagorean triangles. 
It is also conceivable that a secondary purpose of the Plimpton 
table may have been to facilitate the setting up and solving 
of equations of types B I and B II. Indeed, if we look at the 
t values used in the formulation of the four problems involving 
B type equations on A0 6484, and if we write these t values as 
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rational numbers of the form s/r, then we obtain, in the respec- 
tive cases, 

s/r = 120/121, 4/5, 20/27, 15/16. 

The corresponding points (r, s) in Figure 2.1 are indicated by 
four small arrows. The distribution of these points in the di- 
agram suggests that the author of A0 6484 may have had recourse 
to an "extended Plimpton table" of the type proposed by Price 
119641. Of particular interest is the location in the diagram 
of the point (121, 120). This point is obviously closer to the 
line t = 1 than any other point in the diagram, a circumstance 
which is reflected in the fact that the corresponding c value, 
which is 1 00 00 16 40, is very close to 1. In fact, it is pos- 
sible that this particular case was considered by the author of 
the text for didactic reasons precisely because it involved com- 
putations with sexagesimal numbers with so many missing tens 
and units that the computations would have been quite hard to 
carry out successfully without the use of the "colon" sign for 
such missing units. 

The tablet BM 13901 of the British Museum [Neugebauer 1937, 
2-151, which is one of the oldest known Babylonian mathematical 
texts, is an important compendium of quadratic equations of 
several different types. It has been discussed in great detail 
by Gandz [1937] in his important work on the origin and develop- 
ment of quadratic equations in Babylonian, Greek, and early 
Arabic algebra. Gandz devoted particular attention to one of 
the equations, No. 23, on this tablet, because its solution was 
computed in a somewhat unexpected way. The equation, which we 
would write in the form 

x2 + 2px = q, P = 2, q = 41 40 (= 502), (5.2) 

is clearly of type B VII, in a slightly more general case than 
the case q = 1 which we have considered before. The solution 
of this equation, as given in the text, proceeds in a number of 
steps with the successive computation of the following inter- 
mediate numbers: 

15 x 41 40 = 10 25 (= 252), 

1 + 10 25 = 1 10 25 (= (1 05)2), 1 05, 5, 10. 

Thus it appears that if we set q = m2, then the method of solu- 
tion of the equation x2 + 2px = m2, in this example, consists 
in the successive computation of the numbers 
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P-2 x In2 = (m&2, 1 + (m/p)2 = (n/p)2, 

n/p, n/p - 1, P x (n/p - 1) = n - p. 

In other words, the intermediate equation (x + p)2 = p2 + m2 is 
solved by writing the term p2 + m2 in the factorized form 
p2 X (1 + (rn/~)~)‘, after which a simple reference to some table 
of the Plimpton type makes it possible to proceed with the al- 
gorithm. It is a rather remarkable fact that Gandz, to whom 
this analysis is due, was led by this example to conjecture 
[1937, 5061 that "the Babylonians may have had a table of such 

fractional squares which would give a new square with 9." In 
other words, Gandz conjectured the existence of a Babylonian 
table of the Plimpton type 8 years before the tablet Plimpton 
322 was published by Neugebauer and Sachs! 

6. REFLECTIONS ON THE ORIGIN OF THE "PYTHAGOREAN THEOREM" 

Although Plimpton 322 is a unique text of its kind, there 
are several other known texts testifying that the Pythagorean 
theorem was well known to the mathematicians of the Old Baby- 
lonian period. A particularly clear example is given by an Old 
Babylonian problem text from Tell Dhiba'i [Baqir 19621. In this 
text, which is accompanied by a simple geometric drawing, the 
problem is to compute the sides of a rectangle, given the length 
of the diagonal and the area: c = 1 15, A = 45. The algorithm 
for the solution and its subsequent verification consists in the 
successive computation of the following quantities: 

c2 - 2A = (a - b)2, %(a - b), ab + (%(a - b))2 = (%(a + b))2, 

%(a + b), $(a + b) 2 %(a - b) = a, b, a2 + b2 = c2, c, ab = A. 

As it turns out, the given rectangle is composed of two congruent 
triangles with the sides (1, 45 , 1 15). 

A couple of other examples (YBC 7289 [Neugebauer and Sachs 
19451, and VAT 6598 [Neugebauer 1935, I, 2821) show that the 
Old Babylonian mathematicians were also able to handle applica- 
tions of the Pythagorean theorem in the case of nonrational 
triangles, i.e., when the solutions of the problems involved 
approximate computations of square roots. As a rule, however, 
the Babylonians preferred to deal only with rational right tri- 
angles, in accordance with the general convention that only 
problems leading to rational (semiregular) solutions should be 
considered. Therefore, it is not surprising to find that the 
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Babylonian mathematicians were familiar with a certain type of 
cleverly devised problems (concerned with relations between the 
sides of a right triangle) leading to linear rather than quadra- 
tic equations, and, therefore, always solvable in terms of ra- 
tional numbers for arbitrarily given rational data. One such 
example is problem No. 12 in the combined problem text BM 34568 
from the Seleucid period [Neugebauer 1937, 14-221. 

A cane is leaning against a wall. 3 cubits it has come 
down, 9 cubits it has gone out. How much is the cane, 
how much the wall? I do not know their numbers. 

The solution is given in the following series of steps (see 
Figure 6.la) 

(1) u = 3, a = 9: $(a2 + u2) = 45, 1.2' = 3' = 20, 

u' X %(a2 + 2) = 15 = c; 

(2) C = 15, a = 9: C2 - a2 = 2 24 = b2, b = 12. 

Thus we see that in this problem the length of the diagonal c 
is computed by means of the formula c = %(a2 + u2)/u, while the 
side b is found by using the Pythagorean theorem. An equivalent 
way of writing this expression for c is 

c = +(a 2 + u2)/u = al, c = +(t' + t), t = u/a. (6.1) 

This is precisely the formula for c which is obtained from the 
second of the two triangle parameter equations (2.2), if both 
sides of the equation are multiplied by the same factor a. In 

Figure 6.la. The Babylonian Figure 6.lb. A geometric 
"cane-against-a-wall problem", a problem which can be solved by 
triangle parameter problem with use of the area formula and the 
the parameters a and u = c - b. "Babylonian similarity theorem.' 
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particular, (6.1) implies that b = ab = %(a2 - u2)/a, and that 
the solution (b, c) of the problem will be a pair of rational 
(semiregular) numbers for any choice of rational parameters a 
and u (with t = u/a regular). Hence the cane-against-a-wall 
problem of BM 34568:12 can be used to generate Pythagorean tri- 
ples in precisely the same way as the triangle parameter equa- 
tions (2.2). This problem is, therefore, a first example of 
what I shall refer to as various kinds of triangle parameter 
problems. 

In addition to the cane-against-a-wall problem, with the pa- 
rameters a and u = c - b, the above-mentioned Seleucid combined 
problem text BM 34568 contains also three other types of tri- 
angle parameter problems, with the parameter pairs (b, c + a), 
(a I c + b), and (ab, c + a + b), respectively. (See the system- 
atic description in [Neugebauer 1937, 201.) However, the cane- 
against-a-wall problem is the only one of the four triangle 
parameter problems in BM 34568 which is given a "dressed up," 
easily visualized form; the remaining three problems are form- 
ulated as abstract algebraic problems. Consequently, the cane- 
against-a-wall problem of BM 34568:12 could well be the prototype 
for the other types of triangle parameter problems appearing in 
BM 34568. This suspicion is confirmed by the fact that the cane- 
against-a-wall problem appears in a late Old Babylonian (or 
Kassite) text. This text is the combined problem text BM 85196 
[Neugebauer 1935, II, 43-591, which out of 18 assorted problems 
contains only 1 (No. 9) having anything to do with right trian- 
gles. A free translation of the text of this particular problem 
reads as follows: 

A wooden beam is leaning against a wall. The length of 
the beam is 30 length-units. If the top of the beam 
slides down 6 units, how much then does the lower end 
slide out along the ground? Conversely, if it slides 
out 18 units along the ground, how much does it slide 
down above? 

The answers to the two closely related questions in this problem 
are obtained by applying the Pythagorean theorem: 

(1) c = 30, u = 6: c2 = 15, (c - u)~ = b2 = 9 36, 

c2 - b2 = 5 24 = a2, a = 18. 

(2) c = 30, a = 18: a2 = 5 24, c2 - a2 = 9 36 = b2, 

b = 24, c-b=6=u. 
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Due to their solvability in terms of rational numbers, tri- 
angle parameter problems of a number of types seem to have en- 
joyed a great popularity all through the history of ancient 
mathematics. The only exception is their absence from Greek 
mathematics, although at least the generating formula (2.2) was 
known to Euclid and possibly also to Pythagoras. It is likely 
that the reason such problems were not considered by Greek math- 
ematicians is that they, through their theory of proportions and 
in other ways, had developed techniques which were independent of 
the old ways of formulating rationally solvable mathematical 
problems. In ancient Hindu mathematics, on the other hand, 
several ingeniously dressed-up variants of the basic types of 
triangle parameter problems appear in, for instance, Brahmagupta's 
Brahms-sphuta-siddhanta (628) and Bhaskara's Lilavat? (1150) 
(see [Datta and Singh 1962]), and there are good reasons to 
believe that a method allowing the systematic generation of 
Pythagorean triangles was already known to the authors of the 
Sulba-Sutras, several centuries B.C. Similarly, the oldest 
known Chinese book of mathematical problems, the Chiu Chang Suan 
Shu from the Han dynasty (202-9 B.C.), contains in its ninth 
and last chapter many triangle parameter problems of various 
types, all as ingeniously dressed-up as their counterparts in 
the LIlavat? [Vogel 19681. The "original" cane-against-a-wall 
problem also appears in the demotic Cairo Papyrus from the third 
century B.C. [Parker 1972, 34-401, and, for example, in the 
writings of Leonardo of Pisa (1170-1240 A.D.). Further refer- 
ences can be found in [Tropfke 1980, 616-625; Pottage 19731. 

As a result of the above discussion of triangle parameter 
problems in general and of the Babylonian cane-against-a-wall 
problem in particular, it is possible to assert that Plimpton 
322, with its systematic list of sides of Pythagorean triangles, 
is, after all, not an outstanding and isolated achievement of 
Old Babylonian mathematics, but rather a natural complement to 
what was probably a well-developed geometric-algebraic theory. 
In this connection it is worth mentioning that the Old Babylonian 
mathematicians were also familiar with a certain trapezoid par- 
tition problem, rationally solvable like the various types of 
triangle parameter problems. (See [Bruins and Rutten 1961, 
114-117; Vaiman 1955, 72; Friberg 1980a, 421.) In fact, the 
consideration of the trapezoid partition problem leads in a 
straightforward way to the setting up of a generating formula 
similar to (2.2) for the systematic construction of rational 
solutions of the indeterminate equation m2 + n2 = 2q2. (As is 
well known this equation is closely related to the Pythagorean 
equation, into which it can be transformed by means of the 
substitution (a, b, c) = ($ (n - m), 4 (n + m), q) .) Thus the 
relatively well-documented appearance of the trapezoid partition 
problem in texts from the Old Babylonian period (the problem is 
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not known from any later texts!) lends strong support to the con- 
jecture that the Old Babylonian mathematicians were in possession 
of a well-developed theory for analyzing certain types of ration- 
ally solvable problems involving indeterminate quadratic equations 
and for obtaining their solution formulas of type (2.2). It must 
be stressed, however, that there are reasons to believe that such 
a theory, if it ever existed, would tend to lose its attraction 
and begin to degenerate after it had been used to build up a 
sufficiently large stock of data (the table on Plimpton 322, for 
instance). A typical example of this is provided by the cane- 
against-a-wall problem of Figure 6.la. If a and u are chosen 
as the parameters in this problem, then it becomes a true tri- 
angle parameter problem, in the sense that it is rationally 
solvable for all choices of rational values of the parameters. 
If, on the other hand, c and u = c - b, or b and u = c - b are 
chosen as the parameters, then the problem becomes rationally 
solvable only for certain rational values of the parameters; it 
is therefore an inverted triangle parameter problem. This dis- 
tinction between true and inverted triangle parameter problems, 
however, is not noticeable to a person who just copies, without 
trying to change the given data, a few examples from an old text. 
This may be why the Babylonian text BM 85196:9 (quoted above), 
as well as the Cairo Papyrus, contains only variants of the 
cane-against-a-wall problem which can be classified as inverted 
triangle parameter problems. In both cases it may safely be 
assumed that the problems were randomly copied from more exten- 
sive and systematic older texts concerned exclusively with 
triangle parameter problems and related types of problems (such 
as the Seleucid text BM 34568). 

I have given an intentionally brief survey of what is known 
about the early history of the Pythagorean theorem and the re- 
lated theory of triangle parameter problems and generating form- 
ulas for Pythagorean triangles. One question still remains: 
how did the Old Babylonian mathematicians originally discover 
the Pythagorean theorem and their methods of constructing 
Pythagorean triangles, etc.? For obvious reasons, this is a 
question to which no definitive answer will ever be found. 
Nevertheless, it may be worth the effort to try to identify at 
least some way in which the Pythagorean theorem can have been 
discovered. 

It is necessary to start by making a preliminary screening 
in order to eliminate the most unlikely potential answers. In- 
deed, there is no shortage of candidates; in [Loomis 19681 are 
listed 109 "algebraic" proofs, 255 "geometric" proofs, etc., of 
the theorem. Most of these proofs, however, fail to satisfy a 
first basic requirement, precisely because of their nature as 
constructed proofs of a known or conjectured theorem. Indeed, 
the Pythagorean theorem is not the kind of theorem which, while 
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obviously true, has a proof that can be difficult to find. Also, 
the notion of a formal proof seems to have been unknown to the 
Babylonians. Thus, it appears that only one alternative remains: 
the Pythagorean theorem must have been found by accident in the 
course of some independent geometric investigation. Hence, we 
must not seek a proof of the Pythagorean theorem, but a geometric 
problem whose solution has the theorem as a corollary. Further- 
more, there is the condition that any proposed original derivation 
of the theorem can be accepted only if it makes use exclusively 
of methods and concepts that we know were available to mathema- 
ticians of the Old Babylonian period. 

Consider for instance the possibly oldest known proof of the 
Pythagorean theorem, found in Euclid's Elements I:47 [Heath 1956, 
I, 3491. Clearly this proof does not meet any of the requirements 
given above, because (1) it is without doubt a proof constructed 
for the purpose, and (2) it makes use of several concepts foreign 
to Babylonian mathematics, such as angles and parallel lines. 
On the other hand, it is possible to look at Euclid's proof as 
a clever elaboration of a certain more elementary proof, which 
from Euclid's point of view had the disadvantage that it makes 
use of the concept of similar triangles, so that it would not 
fit into the general plan for the first book of the Elements, 
where the theory of proportions has not yet been developed. 
(See Thomas [1951, 1811.) The proof in question (see the proof 
of the generalized Pythagorean theorem in the Elements, VI:31) 
is based on the observation that the altitude drawn against the 
hypotenuse divides a given right triangle into two subtriangles 
similar to the given triangle. Hence, if we use the notations 
of Figure 6.lb in the case y = 0 and x = a, we find that 

u:a = a:c, v:b = b:c, u+v=c implies 

u = a2/c, v = b2/c, c = (a2 + b2)/c. 

This simple proof looks so much like a prototype for Euclid's 
proof that it has sometimes been assumed that it is essentially 
identical with the lost original proof usually attributed to 
Pythagoras (except that Pythagoras would not have used our mod- 
ern algebraic notations). Suitably modified, the proof can 
even be made to satisfy the requirements which must be satisfied 
by a candidate for the original Babylonian proof or derivation 
of the Pythagorean theorem. In fact, such a modified proof 
would have had to be based on the following (reconstructed) 
Babylonian similarity theorem: The inclination (%-gal), i.e., 
the ratio between the front and the flank, is the same for a 
given right triangle and for every subtriangle cut out of the 
given triangle by a perpendicular to either the front, the flank, 
or the diagonal of the given triangle. In the notations of 
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Figure 6.lb (once more with y = 0 and x = a) the inclination of 
the given triangle would be equal to b = b/a, and it would follow 
from the similarity theorem that 

h = bu, v  = bh = b2u, c=u+v implies 

c = (1 + b2)u, 2A = hc = b(l + b2)u2, 

where A is the area of the triangle. Since 2A is also equal to 
ba = ba2, it would further follow that a2 = (1 + b2)u2, which is 
the Pythagorean equation for the subtriangle with the sides, u, 
h=bu, anda. Hence we see that the Pythagorean theorem could, 
indeed, have been discovered by accident, as a corollary to the 
solution of the problem of finding the length of the projection 
u of the flank on the diagonal, when the flank a and the front 
b of a right triangle are given. 

The documentation necessary to prove that the Old Babylonian 
mathematicians were familiar with a similarity theorem of the 
type indicated above is provided by the important text IM 55357 
from Tell Harmal [Baqir 19501. In this text (see Figure 6.2) 
the standard (1 , 45 , 1 15) triangle is divided into a series 
of subtriangles by means of lines alternately perpendicular to 
the diagonal and the flank of the given triangle. The areas of 
the subtriangles are given, and the problem consists in computing 
the sides of the subtriangles. This is clearly done by use of 
some similarity theorem. The computation proceeds in a series 
of steps as follows: 

a'b x 2B1 = 12 09 = v12, v1 = 27, 

(%vl)' X B1 = 36 = hl, c - Vl = 48 = u1; 

Figure 6.2. The problem of the text IM 55357: To find 
the values of ~1, ~2, ~3, etc., given the values (a, b, C) = 
(1 , 45 , 1 15) and B1 = 8 06, B2 = 5 11 02 24, B3 = 

3 19 03 56 09 36, A3 = 5 53 53 39 50 24. 
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Ul'hl x 2B2 = 7 46 33 36 = v22, vp = 21 36, (+)I x l **. 

In other words, the algorithm used here is based on the two 
relations 

v 2 = (hi.&-Q x 2Bi , hi = Bi/%vi , i 

i = 1, 2, . . . (UO = a, ho = b). 

Since 2Bi = hivi, we can remove the common factor vi from both 
sides of these two equations, obtaining an equivalent set of 
recursion formulas: 

V. 1 
= (hisl/uiml) x hi, hi = Bi/ki , i = 1, 2, . . . - 

Hence we can explain how the author of IM 55357 derived his 
algorithm if we assume that he knew the area formula for right 
triangles and the similarity theorem, described above, for 
right triangles. (The numerical values of the subareas which 
were given in the formulation of the problem could have been 
computed by use of the same similarity theorem in the following 
way: knowing that c = 1 15, it follows that hl = 2A/c = b/c, 
hence that VI = bhl = b2/c (!), and ul = c - vl. Repeating the 
same process one can compute h2, ~2, ~2, etc., and, finally, 
the areas Bl, B2, Bg, As.) 

As has been observed by Bruins [1962, 3121, the fact that 
the well-known (1 , 45 , 1 15) triangle figures in the formu- 
lation of the problem on IM 55357 is not so coincidental as it 
may appear. In fact, relatively few Pythagorean triangles 
share with the (1 , 45 , 1 15) triangle the property of having 
a diagonal which can be represented by a regular sexagesimal 
number; and if the diagonal c had not been regular, then the 
derived numbers hl = b/c, v1 = b2/c, ul = c - vl, etc., would 
not have been semiregular. For precisely this reason it can 
be assumed that the (1 , 45 , 1 15) triangle and its multiples-- 
the (3, 4, 5) triangle, for example--were favorite objects for 
geometric experimentation in the early phases of the development 
of Old Babylonian mathematics. It is perhaps against this 
background that one has to look for an explanation of the ap- 
pearance of the strangely formulated first problem of the 
Seleucid combined problem text BM 34568 [Neugebauer 1937, 14- 
221: 
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Flank 4, front 3, what is the diagonal? I do not know 
its number. 
Add one half of your flank to your front, and that is 
it: 
The flank 4 times 30 is 2; 2 plus 3 is 5; 5 is the 
diagonal. 
Add one third of your front to your flank, this is the 
diagonal: 
The front 3 times 20 is 1; 1 plus 4 is 5; 5 is the 
diagonal. 

The meaning of this "problem" is more or less clear [Gandz 1938, 
4561. The author wished to remind his readers that in any tri- 
angle which is a multiple of the basic (1 , 45, 1 15) triangle, 
the diagonal is related to the front and the flank of the tri- 
angle through one of the two equations, 

c = b + a/2, and c = a + b/3. (6.2) 

In other words, for multiples of that basic triangle one can set 
UPI say1 cane-against-a-wall problems in which one of the two 
parameters is either t = (c - b)/a = l/2 or (c - a) /b = l/3. 
(The same combined problem text contains also many other problems 
concerned with Pythagorean triangles, in particular, the cane- 
against-a-wall problem BM 34568:12.) It is tempting to hypoth- 
esize that the problem BM 34568:l contains a hint about how the 
first "triangle parameter problem" may have been discovered by 
some Old Babylonian mathematician. For, suppose that it was 
his intention to pose a geometric problem, involving the 
(1 , 45 I 1 15) triangle, in which the object was to compute 
the lengths of, say, v, h, x, and y (see Figure 6.lb) when the 
value of the parameter u was given. He would have easily found 
that v = c - u, h = bu (from the similarity theorem for right 
triangles, since in the actual case a = 1, hence 5 = b/a = b), 
y = 1 - UC (from the area formula, which can be used to show 
that 2A = b = by + but), and, finally, x = 1 - y = UC. In 
particular, he would have found, in the simple special case 
when u = k = 30, that 

v=c - 4 = 45 = b, h = &b = 22 30, 

y = 1 - +c = 22 30 = h, x = $c = 37 30. 

In other words, he would have been led "by accident" to consider 
relations such as c = b f a/2, etc., for the (1 , 45 , 1 15) 
triangle, and it would not have been a big step for him to dis- 
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cover that there are other right triangles for which similar re- 
lations hold. Although it seems to me to be very likely that 
it was through such geometric and numerical experimentation that 
formulas like (2.2) for the generation of Pythagorean triangles 
and perhaps also the Pythagorean theorem itself were first dis- 
covered, I will refrain from going into a more detailed discus- 
sion of the matter here. 

APPENDIX. ALGORITHMS FOR THE COMPUTATION OF 
PRODUCTS OF SEXAGESIMAL NUMBERS 

Multiplication of sexagesimal numbers having arbitrarily 
many places can be achieved with essentially the same multipli- 
cation algorithm as that in the case of decimal numbers (Fig. A.la), 

4JC - YXbl 

55 33 LOX 13 53 20= 6 40 q, B+c; 

(12 51 36 17 46 40) 

6 40 

17 'K1 

46 

4 20 

4 37 46 zp 

11 00 - 

46 

29 09 

57 

7 09 

7 42 57 i$ 

18 20 - 

1 17 

48 35 - 

1 36 

11 55 

12 51 95 12 

_ 
E!!! alYb2 
11166 alxb2+cll 

17 46 q23+Q; 

260 ___ alxb3 
277 alxb3+ql, 

L, 37 46 24 c~~c"c"c!I - * xb 5 3 
321O“l 321 

660 ___ yxb 1 
706 - a2xbltCi 

11 45 IQBtc; 

1749 ____ PZ 
1797 a2xb2'c;+ql 

29 57 q*Btcl; 

429 ___ aZxb3 
462 a2xb3tc;tq2 

7 42 57 ylc c3c2c1coc~ II II I, II =a2aixb3b2bl 

1100 _--_ a39 
1157 a3xbl+c; 

19 17 qlB+c;; 

2915 _--- a3Yb2 
2976 a3xb2tc;tql 

49 36 q20+c; 

715 _-_ a3*b3 
771 a3xb3+c;tq2 

g 2; 22 a? ck$~!$$c& ~a3a2alxb3b2bl 

Figure A.la. Algorithm Figure A.lb. The same algo- 
for the multiplication of rithm, but with the intermediate 
the sexagesimal numbers calculations carried out in the 
55 33 20 = 2~10~ and 13 53 20 = The notations in 
5x104. 

decimal system. 
(12 51 36 17 46 40 = 

1010.) 
the algebraic description of the 
algorithm are identical with the 
notations in the computer program 
on the next page. 
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provided one knows how to add and multiply one-place sexagesimal 
numbers. The algorithm can easily be transformed into a computer 
prcxam, making it possible to execute the multiplication of 
numbers in a given base B (= 60, for instance) on a programmable 
pocket calculator. Such a program is presented in this appendix, 
adapted for use on a Hewlett-Packard 25. Simpler programs can 
be devised for calculators having more extensive memory capaci- 
ties than that available on the small ~~-25. 

q:“ij+Lj_lE -1 

X:‘li+‘;_lB -~,Y:=B,Z:=qjB+cg_l 

x:~qj,Y:‘B,... 

q:=Z!: 
J 

II X::~iC,Y:=qjStcj_l 

x: =c'! 
1-l 

c": rc',' 
1-l 

+c"'c'.' ,-1.cg-2...c; 

X:4.... 

b't 3? (i.e. j 6n?) 

iterate if j 5n 

IJ:, --- I : ,  i;TT :  /  

t RCL il Y::.i KCL i 

ST" 7 l--i:zci (i.e. j:rl) IN'1 

RCL Y X:Zh':Zb,Y:=Ij 3: 2 

+ X'<V X:=ri,Y::b' < 

815 ST0 Y 1 r':z,,',j(zc-' n.. .c;' 'ICI - 

x X:'b'~~(~tn...b;+l,b;) ST0 + r, 
, i 

EZNTEii + XTy:zt,'fJ RCL 0 

INT x:zlt>‘dl ,Y::b' i ST0 * 5 

ST0 6 b':z[b'Jl STC i I 

13 - X::<b'">:bjl 35 HCL 6 

RCL Li X:=ai,i':=bjd x* 81 

x 
x'zaibjd 

+ ST3 114 

RCL 1 X::c'd,Y:=aibjd RCL L 

ENTER+ X,Y:=c'd,Z:=aibjd ST0 + 5 

Ii IN? X:=[c',ll,Y:=c'd,Z:~aibjd V KC'- 5 

ST@ 1 c’:~Ic’dl(~c~...,~i+l) RCL 7 

X:=<c'~>=cjd,Y:=a;b:d x 
J 

+ X:=(aibj+c;)d ENTER 4 

?.CL 0 X::d,Y:=(aibjtcj)d INP 

20 + X:=aibjtc! 
1 

45 ST0 1 

ST0 + 2 q:=aib;tc!tq. ~q~Btc;-~ 
, 1 1-l CLX 

RCL 2 X:=q.Btc'l 
1 1-l 

ST0 2 

% ST0 5 

80 X:=BIBOzB,Y:=qjB+c;-l + R+ 

Operating instructions. 
1. Read program to memory, in particular the chosen value for B: BIBo. 

2. Switch over to Rm. Store the value d: .'I1 in RO if RjlO, d= .I if BSlO. 
* 3. Store 0 in Rl, i.e. reset c' (if the program is being used more than once). 

4. Storeb=b,,...blinR3,forn54 ifE.13, farns9ifBHO. StorealinRu. 
* 5. Wess R/S and wait until the number c~+~...c~.C; appears. copy externally CT =ci. 

6. Store new value for ai in R4 and repeat from 5. if necessary. Copy final c:+~... 

X:'q,+l:x~~ ntl 
C":=C;+.~.C n rr .c; 

x:~c",Y:'c;;+l,... 

X:.d1-n,'f:..",.., 

X:Zc;+l...C;l.C;,... 

x,Y:'c~+l...c;.c~,... 

X:'c~+l...C~,‘f:'C~+l...C~~.C~' 2 1 

c':=c;;+l...c; 

x:=o,Y:~c;+l...c;.c~ 

q:=o 

c" : :o 

1, II X:x;;+l...CL.C1 
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