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Abstract

The well-known greedy algorithm MIN for 6nding a maximal independent set in a graph G is
based on recursively removing the closed neighborhood of a vertex which has (in the currently
existing graph) minimum degree. We give a forbidden induced subgraph condition under which
algorithm MIN always results in 6nding a maximum independent set of G, and hence yields the
exact value of the independence number of G in polynomial time.
c© 2002 Elsevier Science B.V. All rights reserved.

1. Introduction

Throughout the paper, we consider only 6nite undirected graphs G=(V (G); E(G))
without loops and multiple edges. By NG(x) we denote the neighborhood of a vertex
x∈V (G), i.e., the set of all neighbors of x. We further denote by NG[x] =NG(x)∪{x}
the closed neighborhood of x in G, by dG(x)= |NG(x)| the degree of x in G and
by �(G)= min{dG(x) | x∈V (G)} the minimum degree of G. For a set M⊂V (G), we

� Research supported by Grant GA ,CR No. 201=97=0407.
∗ Corresponding author. TU Bergakademic Freiberg, Inst. fur Theor. Mathemtik, Bernhard-von-Cotta-Str.

2, 09596 Freiberg, Germany.
E-mail addresses: harant@mathematik.tu-ilmenau.de (J. Harant), ryjacek@kma.zcu.cz (Z. Ryj0a,cek),

schierme@math.tu-freiberg.de (I. Schiermeyer).

0012-365X/02/$ - see front matter c© 2002 Elsevier Science B.V. All rights reserved.
PII: S 0012 -365X(02)00571 -X

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82058436?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


194 J. Harant et al. / Discrete Mathematics 256 (2002) 193–201

denote by 〈M 〉G the induced subgraph of G on M and we set G −M = 〈V (G)\M 〉G.
By �(G) we denote the independence number of G, i.e., the size of a maximum
(i.e. largest) independent set in G. If F1; : : : ; Fk are graphs, then we say that G is
{F1; : : : ; Fk}-free if G does not contain a copy of any of the graphs F1; : : : ; Fk as an
induced subgraph. For other terminology and notation not de6ned here, we refer to [1].
The well-known greedy algorithm MIN for 6nding a maximal independent set in a

graph G [4] can be stated as follows:

Algorithm MIN (Minimum degree).

1. H1 :=G; i := 1; SMIN := ∅.
2. Choose a vertex vi∈V (Hi) such that dHi(vi)= �(Hi) and set SMIN := SMIN ∪{vi};

Hi+1 :=Hi − NHi [vi].
3. If V (Hi+1) �= ∅ then i := i + 1 and go to 2.
4. STOP.

Obviously, the set SMIN, generated by Algorithm MIN, is a maximal (but not nec-
essarily maximum) independent set in G, and hence �(G)¿|SMIN|.

Mahadev and Reed [3] considered the following (also greedy) algorithm for 6nding
a maximal independent set in G, based on an ordering of the vertices of G according
to their degrees in G. This algorithm can be equivalently formulated as follows.

Algorithm VO (Vertex order).

1. Order the vertices of G into a sequence v1; : : : ; vn such that dG(vj)6dG(vk) for
any j; k, 16j¡k6n.

2. G1 :=G; i := 1; SVO := ∅.
3. For i := 1 to n do:

If NG(vi)∩ SVO = ∅, then SVO := SVO ∪{vi}.
4. STOP.

It is clear that the set SVO, generated by Algorithm VO, is a maximal independent
set in G, and hence also �(G)¿|SVO|.
Note that both Algorithm MIN and Algorithm VO have polynomial time complexity

whereas the determination of �(G) is diLcult since the corresponding decision problem
INDEPENDENT SET is a well-known NP-complete problem [2].
Denote by kMIN(G) and kVO(G) the smallest cardinality of an independent set of G

that Algorithm MIN and Algorithm VO can create, respectively. Let F1; : : : ; F6 be the
graphs in Fig. 1 and let FA = {F1; F2; F3; F4; F5; F6}.
The following theorem, which forms the essential part of the main result of [3],

shows that in the class of FA-free graphs, Algorithm VO always yields a maximum
independent set.

Theorem A (Mahadev and Reed [3]). Let G be an FA-free graph. Then

kVO(G)= �(G):
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Fig. 1.

Fig. 2.

2. Main result

Let F7; : : : ; F13 be the graphs shown in Fig. 2 and let F1 = {F1; F3; F5; F6; F7; F8; F9;
F10; F11; F12; F13}.
Since F2 is an induced subgraph of F7, and F4 is an induced subgraph of each of

the graphs F8; : : : ; F13, the class of FA-free graphs is a proper subclass of the class of
F1-free graphs. Thus, the following theorem, which is the main result of this paper,
extends Theorem A in the sense that even for F1-free graphs the independence number
can be calculated in polynomial time.

Theorem 1. Let G be an F1-free graph of order n¿7. Then

kMIN(G)= �(G):
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Equivalently, Theorem 1 gives a collection of forbidden induced subgraphs which
imply that Algorithm MIN always yields a maximum independent set. The proof of
Theorem 1 is postponed to Section 3.
As already noted, FA-free⇒F1-free. However, the price for a more general re-

sult is paid here in larger number of forbidden subgraphs. The following corollary of
Theorem 1 avoids this drawback and still extends Theorem A.
Let F2 = {F1; F3; F4; F5; F6; F7}. Note that, since F7 contains an induced F2 and each

of the graphs F8; : : : ; F13 contains an induced F4, we have FA-free⇒F2-free⇒F1-free.

Corollary 2. Let G be an F2-free graph of order n¿7. Then

kMIN(G)= �(G):

The following statement shows that Corollary 2 (and hence also Theorem 1) is
considerably stronger than Theorem A. More speci6cally, it says that under the as-
sumptions of Corollary 2, the diOerence between the output of Algorithm MIN and
that of Algorithm VO can be arbitrarily large.

Theorem 3. For every integer k there is an F2-free graph G such that

kMIN(G)− kVO(G)¿k:

Proof. Let G be the class of graphs de6ned recursively as follows:

(i) F2∈G,
(ii) for any G1; G2∈G, let also (G1 + G2)∨K1∈G and (G1 + G2)∨K2∈G.

(Following [1], we denote by “+” the disjoint union and by “∨” the join of two graphs,
respectively.)
We show that every graph G∈G is F2-free. We 6rst have the following observation,

the proof of which is obvious.

Claim. Let F∈F2 with |V (F)|= r. Then dF(x)6r − 2 for every x∈V (F) and
min{dF(x); dF(y)}6r − 3 for any pair of independent vertices x; y∈V (F).

Since F2 =∈F2, the graph F2 is F2-free. Suppose now that G1; G2 are F2-free. If
(G1 + G2)∨K1 or (G1 + G2)∨K2 contains an induced F∈F2, then, since F is con-
nected, V (F) contains at least one vertex outside V (G1)∪V (G2), but then we have a
contradiction with the claim. Hence, every graph in G is F2-free.
If we now set G′

1 =F2 and G′
i+1 = (G′

i +G′
i )∨K1 for i¿1, then G′

i ∈G for any i¿1
and it is apparent that kMIN(G′

i )= �(G′
i )= 3 · 2i−1, but kVO(G′

i )= 2i.

Remark. By Theorem 1, in the class of F1-free graphs, Algorithm MIN is always at
least as good as Algorithm VO and by Theorem 3 the diOerence can be arbitrarily
large. The following construction shows that without the assumption of F1-freeness
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Algorithm VO can be better than Algorithm MIN (i.e., for all graphs, the two algo-
rithms are incomparable).

Let p¿3 be an arbitrary integer, let G1 �G2 �Kp, G3 �K1 and G4 �Kp be vertex-
disjoint, let G′

p be the graph obtained by joining by an edge all pairs of vertices x; y
for x∈V (Gi), y∈V (Gi+1) (mod 4), and let Gp be the graph obtained by adding one
new vertex to G′

p and joining it to all vertices of G2. Then clearly kMIN(Gp)= 3, while
kVO(Gp)=p+ 1.
Since Algorithm MIN is (clearly) polynomial, we further have the following conse-

quence of Theorem 1.

Corollary 4. In the class of F1-free graphs, the independence number can be com-
puted in polynomial time.

Note that it is obvious that F1-free graphs are recognizable in polynomial time.

3. Proof of Theorem 1

We basically follow the general idea of the proof of Theorem A in [3], by replacing
Algorithm VO with Algorithm MIN and the set FA by the set F1. For the sake of
clarity, whenever we list vertices of some induced subgraph F , we always order the
vertices of the list such that their degrees (in F) form a nonincreasing sequence (with
the exception of F1 �P7, where the ordering follows the path).
Let G be a (without loss of generality) connected graph satisfying the assumptions

of Theorem 1 and suppose that Algorithm MIN creates a maximal independent set
S in G such that |S|=m¡�(G), i.e., such that S is not maximum. Let the notation
of vi; Hi be chosen in accordance with the description of Algorithm MIN in Sec-
tion 1, i.e., such that S = {v1; : : : ; vm}, H1 =G, dHi(vi)= �(Hi) and Hi+1 =Hi − N [vi],
and set Sj = S ∩V (Hj)= {vj; : : : ; vm}; j=1; : : : ; m. Choose a maximum independent set
T = {t1; : : : ; t�} in G such that |S ∩T | is maximum, and set Tj =T ∩V (Hj); j=1; : : : ; m.
Since both S and T are independent, 〈S ∪T 〉G is bipartite with all its isolated vertices
in S ∩T . Let R be a component of 〈S ∪T 〉G with |R∩ S|¡|R∩T | (such an R always
exists since |S|¡|T |) and set k = min{i∈{1; : : : ; m} | vi∈R∩ S} (with a slight abuse
of notation, we will use R for both the component and its vertex set).
We have the following observations.

Claim 1. Sj is a dominating set in Hj, j=1; : : : ; m.

Proof. If x∈V (Hj)\Sj, then NG(x)∩{v1; : : : ; vj−1}= ∅, since otherwise x =∈V (Hj) by
the de6nition of Hj. Since S is a dominating set in G, necessarily NG(x)∩ Sj �= ∅,
implying NHj (x)∩ Sj �= ∅.

Claim 2. dHj (x)¿dHj (vj) for every x∈V (Hj) and for every j=1; : : : ; m.
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Proof. Follows immediately from the de6nition of Algorithm MIN.

Claim 3. R⊂V (Hk).

Proof. Obviously, R∩ S ⊂V (Hk). If y∈(R∩T )\V (Hk), then y∈NHj (vj) for some j¡k
and hence vj∈R∩ S, contradicting the choice of k. Hence also R∩T ⊂V (Hk).

The following simple observation will be often used implicitly throughout the proof.

Claim 4. If F is a subgraph of Hj for some j∈{1; : : : ; m}, then F is induced in Hj if
and only if F is induced in G.

In the sequel, we will use the following notation: |R∩ S|=p, |R∩T |= q, R∩ S =
{vi1 ; : : : ; vip}, R∩T = {t1; : : : ; tq}, and we suppose the notation of the vertices in R∩ S
is chosen such that i1 = k and ij1¡ij2 for j1¡j2.
Case 1: R contains a cycle.
If R contains an induced cycle of length ‘¿8, then R contains also an induced F1,

a contradiction.
Suppose that R contains an induced cycle C of length 6, and let C = s1t1s2t2s3t3s1,

where si∈R∩ S, ti∈R∩T , i=1; 2; 3. Since |R∩ S|¡|R∩T |, there is a t4∈R∩T , ad-
jacent to (say) s1. If s2t4∈E(G), then (since C is induced and T is independent),
〈{s2; t4; s1; t1; t2}〉G �F3, a contradiction. Hence s2t4 =∈E(G), and similarly s3t4 =∈E(G).
But then 〈{s1; t1; s2; t2; s3; t3; t4}〉G �F7, a contradiction. Hence every induced cycle in
R has length exactly 4. Since R is bipartite and F3-free, it follows easily (by induction,
starting with a C4) that R is a complete bipartite graph with 26|R∩ S|¡|R∩T |.
Consider the vertex vk ∈R∩ S. We have dR(vk)¿dR(y) for every y∈R∩T (since

|R∩ S|¡|R∩T |), but, on the other hand, by the choice of vk and by Claim 2, dHk (vk)6
dHk (y) for every y∈R∩T . It follows that there are vertices z∈V (Hk)\R and y∈R∩T
such that zy∈E(G), but zvk =∈E(G).

Claim 5. Let z∈V (Hk)\R be such that zvk =∈E(G) and NR∩T (z) �=∅. Then NR∩S(z) �= ∅
and NR∩T (z)= {t1; : : : ; tq}.

Proof. Let (without loss of generality) zt1∈E(G). Suppose 6rst that NR∩S(z)= ∅. Then
NR(z)=R∩T , since otherwise 〈R∪{z}〉Hk contains an induced F3. Since S is dom-
inating, zs∈E(G) for some s∈S\R. Then NR∩S(s)= ∅ (since S is independent) and
NR∩T (s)= ∅ (otherwise s∈R), implying NR(s)= ∅ and 〈{z; t1; vk ; t2; s}〉G �F3. Hence
NR∩S(z) �= ∅.
Let (without loss of generality) zvi2 ∈E(G). Recall that i1 = k; i.e., vi1 = vk . If zta; ztb =∈

E(G) for some a; b∈{2; : : : ; q}, then 〈{vi2 ; ta; vi1 ; tb; z}〉G �F3, and if zta =∈E(G) and
ztb∈E(G) for some a; b∈{2; : : : ; q}, then 〈{vi1 ; t1; z; tb; ta}〉G �F3. Hence zti∈E(G) for
every i=1; : : : ; q.

Now, by Claim 5, q¿4 implies 〈{z; vi2 ; vi1 ; t1; t2; t3; t4}〉G �F8. Hence q=3 and, con-
sequently, p=2.
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Denote H = 〈{z; vi2 ; vi1 ; t1; t2; t3}〉G (note that H �F4). Since |V (G)|¿7, there is a
vertex y∈V (G)\V (H) with NH (y) �= ∅.

Suppose 6rst that yvi1 ∈E(G). If y∈V (Hk) and yti∈E(G) for i=1; 2; 3, then 〈{y; z;
vi1 ; vi2 ; t1; t2; t3}〉G is isomorphic to one of the graphs F11, F12 or F13, depending on the
existence of the edges yvi2 ; yz. If y∈V (Hk) and (say) yt1 =∈E(G), then, by the choice of
vk (as a vertex of minimum degree in Hk) and by Claim 2, there is a z′∈V (Hk)\V (H)
such that z′vi1 =∈E(G), but z′t1∈E(G). By Claim 5, {vi2 ; t1; t2; t3}⊂NH (z′), i.e.,
〈V (H)\{z}∪ {z′}〉G �F4. Then 〈V (H)∪{z′}〉G induces F10 or F9, depending on
whether zz′∈E(G) or not.
If y =∈V (Hk), then yvi0 ∈E(G) for some i0, 16i0¡k. Note that NH (vi0 ) = ∅ (since

i0¡k). Then either NH (y)=V (H), implying 〈V (H)∪{y}〉G �F11, or y is nonadja-
cent to some vertex of H , and then it is easy to see that 〈V (H)∪{y; vi0}〉G contains
an induced F3 for any possible structure of NH (y). This contradiction proves that
yvi1 =∈E(G).
If NR∩T (y)= ∅, then yz∈E(G) or yvi2 ∈E(G), but in both cases we have an induced

F3. Hence, NR∩T (y) �= ∅. By Claim 5, yvi2 ∈E(G) and yti∈E(G) for i=1; 2; 3. Then
again 〈V (H)∪{y}〉 induces an F10 or F9, depending on whether yz∈E(G) or not.
This contradiction completes the proof in Case 1.
Case 2: R is a tree.

Claim 6. All leaves of R are in T .

Proof. If s∈S is a leaf of R and t∈T is the (only) neighbor of s in R, then T\{t}∪ {s}
is also a maximum independent set, contradicting the maximality of |S ∩T |.

Claim 6 immediately implies that every longest path in R has an odd number of
vertices. Since G is F1-free, a longest path in R can be only a P3 or a P5.

Subcase 2.1: R contains a P3, both endvertices of which are leaves of R.
By Claim 6, let tavi‘ tb (where 16‘6p and 16a; b6q) be the vertices of the P3.

First observe that ta; tb∈V (Hi‘) (since otherwise e.g. ta =∈V (Hi‘) would imply tavc∈
E(G) for some c, 16c¡i‘, but then for 16c¡k the vertex ta would not be in Hk ,
and for k6c¡i‘ the vertex ta would not be a leaf of R). By Claim 2, there are
vertices xa; xb∈V (Hi‘)\R such that xata∈E(G) and xbtb∈E(G), but xavi‘ ; xbvi‘ =∈E(G).
By Claim 1, each of xa, xb has a neighbor (say, va′ and vb′) in Si‘ . Note that
va′ ; vb′ are nonadjacent to ta and tb (otherwise ta, tb are not leaves). Now we have
xa �= xb (otherwise 〈{xa; ta; vi‘ ; tb; va′}〉G �F3), xatb =∈E(G) and xbta =∈E(G) (otherwise
〈{xa; tb; vi‘ ; ta; va′}〉G �F3 or 〈{xb; ta; vi‘ ; tb; vb′}〉G �F3) and, 6nally, xaxb =∈E(G) and va′
= vb′ (otherwise 〈{xa; xb; ta; tb; vi‘ ; va′ ; vb′}〉G induces F1, F6 or F5).

Since the vertex va′ (= vb′) is in Si‘ (but not necessarily in R), we have va′ = v‘′
for some ‘′, i‘¡‘′6m. Suppose that, among all common neighbors of xa, xb in Si‘ ,
va′ is chosen such that ‘′ is minimum. Then xa; xb∈H‘′ , but ta; tb =∈H‘′ . By Claim 2
(for j= ‘′), there are za; zb∈V (H‘′) such that zaxa∈E(G) and zbxb∈E(G), but
za; zb =∈NG(v‘′) (and also za; zb =∈NG(vi‘)).
Suppose 6rst that za = zb. Since 〈{xa; za; xb; v‘′ ; ta}〉G ��F3, we have taza∈E(G). Sym-

metrically, 〈{xb; za; xa; v‘′ ; tb}〉G ��F3 implies tbza∈E(G). Then za =∈S‘′ (otherwise ta; tb
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are not leaves). By Claim 1, za has a neighbor s in S, but then 〈{za; ta; vi‘ ; tb; s}〉G �F3.
Hence, za �= zb (implying zaxb =∈E(G) and zbxa =∈E(G)).
We show that zata =∈E(G). Let zata∈E(G). If zatb∈E(G), then 〈{tb; vi‘ ; ta; za; xb}〉G �

F3; hence zatb =∈E(G). Clearly za =∈S (otherwise ta is not a leaf) and hence, by Claim 1,
za has a neighbor sa in S. Obviously, sa is not adjacent to any of vi‘ ; v‘′ ; ta; tb. If
saxb =∈E(G), then 〈{sa; za; ta; vi‘ ; tb; xb; v‘′}〉G �F1; hence saxb∈E(G), but then for saxa∈
E(G) we have 〈{xb; v‘′ ; xa; sa; tb}〉G �F3, and for saxa =∈E(G) we have 〈{xa; za; sa; xb;
v‘′ ; ta}〉G �F5. Hence zata =∈E(G).
Since 〈{xa; ta; vi‘ ; tb; xb; v‘′ ; za}〉G ��F7, we obtain zatb∈E(G). Symmetrically, zbtb =∈

E(G) and zbta∈E(G). This also implies that za; zb =∈S (otherwise ta or tb is not a
leaf). By Claim 1, there are vertices sa; sb∈S‘′ such that zasa∈E(G) and zbsb∈E(G)
(possibly sa = sb). Obviously, sa and sb are not adjacent to any of ta; tb; vi‘ ; v‘′ . If
saxa∈E(G), then for sa = sb and xbsb∈E(G) we have 〈{xa; v‘′ ; xb; sa; ta}〉G �F3, other-
wise 〈{xa; ta; vi‘ ; tb; xb; v‘′ ; sa}〉G �F7. Hence saxa =∈E(G) and, similarly, saxb =∈E(G). But
then 〈{xa; za; tb; xb; v‘′ ; ta; sa}〉G �F6. This contradiction completes the proof in
Subcase 2.1.
Subcase 2.2: R contains no P3 both endvertices of which are leaves of R.
In this subcase, R contains a P5 (but no P7). Using Claim 6, it is easy to show

(by induction, starting with a P5) that R is isomorphic to the subdivision of a star
with center and leaves in R∩T and with vertices of degree 2 in R∩ S. Choose the
notation such that vij is adjacent to the center t0 and to the leaf tj, j=1; : : : ; p. By
Claim 2, there is a vertex z1∈V (Hi1 ) such that z1t1∈E(G), but z1vi1 =∈E(G). Clearly,
z1 =∈S; thus, by Claim 1, z1v‘∈E(G) for some v‘∈S with i1¡‘6m. Note that v‘ is
not adjacent to any of vi1 , t1, but possibly t0v‘∈E(G).
Suppose 6rst that z1tj∈E(G) for some j, 26j6p. Then clearly also v‘vij ;

v‘tj =∈E(G). We further have t0z1 =∈E(G) (since otherwise 〈{z1; t1; vi1 ; t0; tj}〉G �F3) and
vij z1 =∈E(G) (otherwise 〈{vij ; z1; t1; vi1 ; t0; tj}〉G �F5). Now we have t0v‘∈E(G), since
otherwise 〈{z1; t1; vi1 ; t0; vij ; tj ; v‘}〉G �F7. This implies v‘∈R∩ S and, by the structure
of R, v‘ has a (unique) neighbor t‘ in R∩T . But now 〈{t‘; v‘; z1; t1; vi1 ; t0; vij}〉G �F6
if t‘z1 =∈E(G), or 〈{v‘; z1; t1; vi1 ; t0; t‘}〉G �F5, if t‘z1∈E(G), respectively. This contra-
diction proves that z1 is not adjacent to any of t2; : : : ; tp.
Now suppose that z1via =∈E(G) for some a, 26a6p. Then t0z1 =∈E(G) (otherwise

〈{t0; vi1 ; t1; z1; via}〉G �F3) and t0v‘∈E(G) (otherwise 〈{v‘; z1; t1; vi1 ; t0; via ; ta}〉G �F1).
This implies, as before, that v‘ is in R∩ S and has a (unique) neighbor t‘ in R∩T ,
but then 〈{v‘; t0; vi1 ; t1; z1; via ; t‘}〉G �F6. Hence, z1 is adjacent to all vertices in (R∩ S)\
{vi1}. This immediately implies p= |R∩ S|=2, for otherwise 〈{t0; vi2 ; z1; vi3 ; vi1}〉G �F3.

Summarizing, it remains to consider the case when R∩ S = {vi1 ; vi2}, R∩T =
{t0; t1; t2} and NR(z1)= {t1; vi2}. We consider the graph Hi2 . Since i1¡i2, {vi1 ; t0; t1}∩
V (Hi2 ) = ∅, and since z1vi1 ; t2vi1 =∈E(G), we have z1; t2∈V (Hi2 ). By Claim 2 (for j= i2),
there is a vertex z′1∈V (Hi2 ) such that z′1z1∈E(G) but z′1vi2 =∈E(G) (and, of course,
z′1vi1 =∈E(G)). If t0z′1 =∈E(G), then for t1z′1∈E(G) we have 〈{t1; z1; vi1 ; t0; vi2 ; z′1}〉G �F5,
and for t1z′1 =∈E(G) we have 〈{z1; t1; vi1 ; t0; vi2 ; z′1; t2}〉G �F6 if z′1t2 =∈E(G) and
〈{vi2 ; t2; z′1; z1; t0}〉G �F3 if z′1t2∈E(G). Hence t0z′1∈E(G), but this implies 〈{t0; vi2 ; z1;
z′1; vi1}〉G �F3. This 6nal contradiction completes the proof.
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