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Abstract

The well-known greedy algorithm MIN for finding a maximal independent set in a graph G is
based on recursively removing the closed neighborhood of a vertex which has (in the currently
existing graph) minimum degree. We give a forbidden induced subgraph condition under which
algorithm MIN always results in finding a maximum independent set of G, and hence yields the
exact value of the independence number of G in polynomial time.
© 2002 Elsevier Science B.V. All rights reserved.

1. Introduction

Throughout the paper, we consider only finite undirected graphs G =(V(G),E(G))
without loops and multiple edges. By Ng(x) we denote the neighborhood of a vertex
x€V(G), i.e., the set of all neighbors of x. We further denote by Ng[x]= Ng(x)U {x}
the closed neighborhood of x in G, by dg(x)=|Ng(x)| the degree of x in G and
by d(G)= min{dg(x) |x€V(G)} the minimum degree of G. For a set M CV(G), we
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denote by (M) the induced subgraph of G on M and we set G — M = (V(G)\M)¢.
By a(G) we denote the independence number of G, i.e., the size of a maximum
(i.e. largest) independent set in G. If Fy,...,F; are graphs, then we say that G is
{A,...,F;}-free if G does not contain a copy of any of the graphs Fj,...,F; as an
induced subgraph. For other terminology and notation not defined here, we refer to [1].

The well-known greedy algorithm MIN for finding a maximal independent set in a
graph G [4] can be stated as follows:

Algorithm MIN (Minimum degree).

1. H:=G; i:=1; Suix:=0.

2. Choose a vertex v; €V (H;) such that dy(v;)=0(H;) and set Syin:=Smm U {v:};
Hiy1:=H; — Ny[v].

If V(Hiy1)#0 then i:=i+ 1 and go to 2.

4. STOP.

W

Obviously, the set Syn, generated by Algorithm MIN, is a maximal (but not nec-
essarily maximum) independent set in G, and hence a(G) = |Smin|-

Mahadev and Reed [3] considered the following (also greedy) algorithm for finding
a maximal independent set in G, based on an ordering of the vertices of G according
to their degrees in G. This algorithm can be equivalently formulated as follows.

Algorithm VO (Vertex order).

1. Order the vertices of G into a sequence vy,...,v, such that dg(v;)<dg(vy) for
any j.k, 1<j<k<n.

2. G:=G; i:=1; Syo:=0.

3. For i:=1 to n do:
If Ng(v;)NSyo = 0, then Syo:=SyoU {Ui}.

4. STOP.

It is clear that the set Syo, generated by Algorithm VO, is a maximal independent
set in G, and hence also o(G)=|Svo|-

Note that both Algorithm MIN and Algorithm VO have polynomial time complexity
whereas the determination of o(G) is difficult since the corresponding decision problem
INDEPENDENT SET is a well-known NP-complete problem [2].

Denote by kvn(G) and kyo(G) the smallest cardinality of an independent set of G
that Algorithm MIN and Algorithm VO can create, respectively. Let Fy,...,Fs be the
graphs in Fig. 1 and let %y = {F,F>, F5, F4, F5, Fs }.

The following theorem, which forms the essential part of the main result of [3],
shows that in the class of Z-free graphs, Algorithm VO always yields a maximum
independent set.

Theorem A (Mahadev and Reed [3]). Let G be an F,-free graph. Then
kyo(G) = o(G).
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2. Main result

Let F7,...,Fi3 be the graphs shown in Fig. 2 and let # = {F}, Fs, Fs, Fg, F7,Fs, Fo,
Fio,Fi1, Fiz, Fi3}.

Since F, is an induced subgraph of F;, and Fj is an induced subgraph of each of
the graphs Fs,...,Fi3, the class of Z-free graphs is a proper subclass of the class of
Z-free graphs. Thus, the following theorem, which is the main result of this paper,
extends Theorem A in the sense that even for # -free graphs the independence number
can be calculated in polynomial time.

Theorem 1. Let G be an F-free graph of order n=7. Then

kvin(G) = a(G).
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Equivalently, Theorem 1 gives a collection of forbidden induced subgraphs which
imply that Algorithm MIN always yields a maximum independent set. The proof of
Theorem 1 is postponed to Section 3.

As already noted, Z;-free = % -free. However, the price for a more general re-
sult is paid here in larger number of forbidden subgraphs. The following corollary of
Theorem 1 avoids this drawback and still extends Theorem A.

Let %, ={F,F5,F4,Fs,Fs, F7}. Note that, since F7 contains an induced F, and each
of the graphs Fy, ..., Fj3 contains an induced Fy, we have 7-free = %,-free = 7 -free.

Corollary 2. Let G be an F,-free graph of order n=7. Then
kmin(G) = o(G).

The following statement shows that Corollary 2 (and hence also Theorem 1) is
considerably stronger than Theorem A. More specifically, it says that under the as-
sumptions of Corollary 2, the difference between the output of Algorithm MIN and
that of Algorithm VO can be arbitrarily large.

Theorem 3. For every integer k there is an F,-free graph G such that
kmin(G) — kyo(G) = k.
Proof. Let % be the class of graphs defined recursively as follows:

(1) F,e9, __
(11) for any G|, €9, let also (G1+ G) VK €9 and (Gi+ Gy VK e9.

(Following [1], we denote by “+” the disjoint union and by “V” the join of two graphs,
respectively.)

We show that every graph G €% is Z,-free. We first have the following observation,
the proof of which is obvious. [J

Claim. Let FeZ, with |V(F)|=r. Then dr(x)<r — 2 for every x€V(F) and
min{dr(x),dr(y)} <r — 3 for any pair of independent vertices x, y €V (F).

Since F, ¢ %, the graph F, is Z,-free. Suppose now that G, G, are Z-free. If
(G + Gy) VK, or (G| + Gy) VK, contains an induced F € %, then, since F is con-
nected, V(F') contains at least one vertex outside V(G;)U V(G,), but then we have a
contradiction with the claim. Hence, every graph in 4 is %-free.

If we now set G| =F, and G/, =(G/ 4+ G/) VK, for i>1, then G/ €% for any i>1
and it is apparent that kyn(G!)=a(G/) =321, but kyo(G/)=2'.

Remark. By Theorem 1, in the class of #-free graphs, Algorithm MIN is always at
least as good as Algorithm VO and by Theorem 3 the difference can be arbitrarily
large. The following construction shows that without the assumption of % -freeness
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Algorithm VO can be better than Algorithm MIN (i.e., for all graphs, the two algo-
rithms are incomparable).

Let p>3 be an arbitrary integer, let G' ~ G? ~K,, G* ~K; and G*~K, be vertex-
disjoint, let G, be the graph obtained by joining by an edge all pairs of vertices x, y
for xeV(G'), yeV(G'')(mod4), and let G, be the graph obtained by adding one
new vertex to G; and joining it to all vertices of G*. Then clearly kmin(G,) =3, while
kvo(Gy)=p + 1.

Since Algorithm MIN is (clearly) polynomial, we further have the following conse-
quence of Theorem 1.

Corollary 4. In the class of F -free graphs, the independence number can be com-
puted in polynomial time.

Note that it is obvious that # -free graphs are recognizable in polynomial time.

3. Proof of Theorem 1

We basically follow the general idea of the proof of Theorem A in [3], by replacing
Algorithm VO with Algorithm MIN and the set %, by the set #;. For the sake of
clarity, whenever we list vertices of some induced subgraph F, we always order the
vertices of the list such that their degrees (in F') form a nonincreasing sequence (with
the exception of F] ~ P;, where the ordering follows the path).

Let G be a (without loss of generality) connected graph satisfying the assumptions
of Theorem 1 and suppose that Algorithm MIN creates a maximal independent set
S in G such that |S|=m<a(G), i.e., such that S is not maximum. Let the notation
of v;, H; be chosen in accordance with the description of Algorithm MIN in Sec-
tion 1, i.e., such that S={vy,...,v,}, H1 =G, dy(v;)=0(H;) and H; 1 =H; — N[v],
and set S;=SNV(H)={v,...,vm}, j=1,...,m. Choose a maximum independent set
T={ti,...,t;} in G such that [SNT| is maximum, and set ;=TNV(H;), j=1,...,m.
Since both S and T are independent, (SU T)¢ is bipartite with all its isolated vertices
in SNT. Let R be a component of (SUT)s with [RNS|<|RNT| (such an R always
exists since |S|<|T|) and set k= min{ic{l,...,m} |y, €RNS} (with a slight abuse
of notation, we will use R for both the component and its vertex set).

We have the following observations.

Claim 1. S; is a dominating set in H;, j=1,...,m.

Proof. If xe V' (H;)\S;, then Ng(x)N{vi,...,v;_1} =0, since otherwise x¢ V' (H;) by
the definition of H;. Since S is a dominating set in G, necessarily Ng(x)NS;#0,
implying Ny (x)NS; #0. O

Claim 2. dp (x)>dy(v;) for every x€V(H;) and for every j=1,...,m.
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Proof. Follows immediately from the definition of Algorithm MIN. [
Claim 3. RC V(H).

Proof. Obviously, RNS C V(H;). If ye(RNT)\V(H;), then y € Ny (v;) for some j <k
and hence v;€RNS, contradicting the choice of k. Hence also RNT C V(H). O

The following simple observation will be often used implicitly throughout the proof.

Claim 4. If F is a subgraph of H; for some je{l1,...,m}, then F is induced in H; if
and only if F is induced in G.

In the sequel, we will use the following notation: |RNS|=p, |[RNT|=¢, RNS =
{vi,...,v,}, ROT ={t,...,1,}, and we suppose the notation of the vertices in RN S
is chosen such that i; =k and i;, <i;, for j; <js.

Case 1: R contains a cycle.

If R contains an induced cycle of length /=8, then R contains also an induced F7,
a contradiction.

Suppose that R contains an induced cycle C of length 6, and let C =s#1s2t2538351,
where s;€RNS, 4ERNT, i=1,2,3. Since [RNS|<|RNT|, there is a 4#,ERNT, ad-
jacent to (say) s1. If s2t4€E(G), then (since C is induced and T is independent),
({s2,t4,581, 11,1 }) 6 = F3, a contradiction. Hence s,t4 ¢ E(G), and similarly s3t4 ¢ E(G).
But then ({s1,t,52,%,53,83,11})c ~F7, a contradiction. Hence every induced cycle in
R has length exactly 4. Since R is bipartite and F;-free, it follows easily (by induction,
starting with a C,) that R is a complete bipartite graph with 2<|RNS|<|RNT].

Consider the vertex vy, €RNS. We have dr(v;)>dr(y) for every yeRNT (since
[RNS|<|RNT|), but, on the other hand, by the choice of v; and by Claim 2, dp, (v;) <
dy,(y) for every ye RN T. It follows that there are vertices z€ V(H;)\R and yeRNT
such that zy € E(G), but zv; ¢ E(G).

Claim 5. Let z€ V(Hy)\R be such that zvy ¢ E(G) and Ngar(z)#0. Then Nyqs(z) # 0
and Npar(z) = {ﬁ, e l‘q}.

Proof. Let (without loss of generality) z#; € E(G). Suppose first that Nyns(z) = 0. Then
Nr(z)=RNT, since otherwise (RU{z})y, contains an induced F5. Since S is dom-
inating, zs € E(G) for some s€S\R. Then Ngns(s)=0 (since S is independent) and
Near(s)=0 (otherwise s€R), implying Nz(s)=0 and {{z,t, v, %,5})c ~ F;3. Hence
Npns(z) # 0.

Let (without loss of generality) zv;, € E(G). Recall that i} =k, i.e., v;, = vx. If zt,, 2z, ¢
E(G) for some a,be{2,...,q}, then ({vy,,t4,0;,tp,2}) = F;, and if zt,¢ E(G) and
zt, €E(G) for some a,be{2,...,q}, then ({v;,t1,2, 1,2, })G ~ F3. Hence zt; €E(G) for
every i=1,...,q. U

Now, by Claim 5, g >4 implies ({z,v;,,v;,,t1,t2,t3,14})c ~ Fs. Hence ¢ =3 and, con-
sequently, p=2.
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Denote H = ({z,v;,,v;,,t1,t2,t3})G (note that H ~Fy). Since |V(G)| =7, there is a
vertex y€V(G)\V(H) with Ny(y)#0.

Suppose first that yv;, €E(G). If yeV(Hy) and yt; € E(G) for i=1,2,3, then ({y,z,
Uiy, Uny» 1, by 13} 18 isomorphic to one of the graphs Fij, Fip or Fi3, depending on the
existence of the edges yuv;,, yz. If ye V(Hy) and (say) vyt ¢ E(G), then, by the choice of
vx (as a vertex of minimum degree in Hy) and by Claim 2, there is a z' € V(H,)\V(H)
such that z'v; ¢ E(G), but z'ty€E(G). By Claim 5, {v,.t1,6,t3} CNy(Z'), ie.,
(V(H)\{z}U{z'})g = Fs. Then (V(H)U{z'})¢ induces Fjy or Fy, depending on
whether zz' € E(G) or not.

If y¢V(Hy), then yuv,, €E(G) for some iy, 1<ip<k. Note that Ny(v;,)=0 (since
io<k). Then either Ny(y)=V(H), implying (V(H)U{y})G~F, or y is nonadja-
cent to some vertex of H, and then it is easy to see that (V(H)U{y,v;,})¢ contains
an induced F3 for any possible structure of Ny(y). This contradiction proves that
Vo, €E(G).

If Nrnr(y) =0, then yz€ E(G) or yuv;, €E(G), but in both cases we have an induced
F;3. Hence, Nxnr(y)#0. By Claim 5, yv, €E(G) and yt; € E(G) for i=1,2,3. Then
again (V(H)U{y}) induces an Fjy or Fy, depending on whether yz€E(G) or not.
This contradiction completes the proof in Case 1.

Case 2: R is a tree.

Claim 6. All leaves of R are in T.

Proof. If €S is a leaf of R and 7€ T is the (only) neighbor of s in R, then T\{¢} U {s}
is also a maximum independent set, contradicting the maximality of |[SNT|. O

Claim 6 immediately implies that every longest path in R has an odd number of
vertices. Since G is Fi-free, a longest path in R can be only a P; or a Ps.

Subcase 2.1: R contains a P;, both endvertices of which are leaves of R.

By Claim 6, let #,v;,t, (where 1 </<p and 1<a,b<q) be the vertices of the P;.
First observe that #,,¢, € V(H;,) (since otherwise e.g. #,¢ V(H;,) would imply z,0. €
E(G) for some ¢, 1<c<i,, but then for 1<c<k the vertex f, would not be in H,
and for k<c<i, the vertex f, would not be a leaf of R). By Claim 2, there are
vertices x,,xp € V(H;, )\R such that x,t, € E(G) and xpt, € E(G), but x,v;,,xpv;, ¢ E(G).
By Claim 1, each of x,, x, has a neighbor (say, v, and vy ) in S;,. Note that
vy, Uy are nonadjacent to 7, and ¢, (otherwise ¢,, #, are not leaves). Now we have
Xa #xp (otherwise ({4524, Vi), tp, V0 } )6 = F3), Xatp € E(G) and xpt, ¢ E(G) (otherwise
({Xas 1y Viys tas Var }) 6 = F5 0F ({xXp, L4, Vi), 1y, U }) 6 =~ F3) and, finally, x,x, ¢ E(G) and v,/
= vy (otherwise ({X4,Xp, 24, tp, Vi) Var, Uy }) 6 induces Fy, Fg or Fs).

Since the vertex vy (=vp ) is in S;, (but not necessarily in R), we have v, =vy
for some ¢’, iy </’ <m. Suppose that, among all common neighbors of x,, x; in S;,,
v, is chosen such that /’ is minimum. Then x,,x, € H,/, but f,,t,¢ H;. By Claim 2
(for j=/"), there are z,,z€V(H;) such that z,x,€E(G) and zyx,€E(G), but
24,2 € No(vyr) (and also zg,zp ¢ No(v;,)).

Suppose first that z, = z,. Since ({x,,24,%p, Vs, 1, }) G 7 F3, we have t,z, € E(G). Sym-
metrically, ({xp,z4,%4, Vs, 85 })G 2 F5 implies t,z, € E(G). Then z,¢ S, (otherwise t,, 1,
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are not leaves). By Claim 1, z, has a neighbor s in S, but then ({z,,2,,v;,,t,5})c ~ F5.
Hence, z, #z, (implying z,x, ¢ E(G) and zpx, ¢ E(G)).

We show that z,t, ¢ E(G). Let z,t, € E(G). If z,t, €E(G), then ({t5,v;,,24,24,%p} )G =
F3; hence z,t, ¢ E(G). Clearly z, ¢S (otherwise ¢, is not a leaf) and hence, by Claim 1,
z, has a neighbor s, in S. Obviously, s, is not adjacent to any of v;,,vsr,%,, 8. If
SaXp $ E(G), then ({84, 24, 4, Ui, th, X, U7 } )6 = F1; hence s,xp € E(G), but then for s,x, €
E(G) we have ({xp,v//,%4, 80,1 })6 >~ F3, and for s,x,¢ E(G) we have ({x,,zq,S4,Xp,
vyt }) G ~ Fs. Hence z,t, ¢ E(G).

Since ({Xg, ta, Ui, thy X, Vsr 20} ) 7 Fr7, We obtain z,t, € E(G). Symmetrically, zpt, ¢
E(G) and zpt,€ E(G). This also implies that z,,z,¢S (otherwise #, or f, is not a
leaf). By Claim 1, there are vertices s,,s, €Sy such that z,s, € E(G) and zps, € E(G)
(possibly s, =sp). Obviously, s, and s, are not adjacent to any of #,,f,v;,,v.,. If
SaXa €E(G), then for s, =s;, and x5, €E(G) we have ({x,,v//,Xp, 414 })G = F3, other-
wise ({Xasa> Viys tp, Xpy Vg5 84} ) G = F7. Hence s,x, ¢ E(G) and, similarly, s,x, ¢ E(G). But
then  ({x4,Zq, tp, Xp, Vp's 0y Sa} ) = Fs.  This contradiction completes the proof in
Subcase 2.1.

Subcase 2.2: R contains no P; both endvertices of which are leaves of R.

In this subcase, R contains a Ps (but no P;). Using Claim 6, it is easy to show
(by induction, starting with a Ps) that R is isomorphic to the subdivision of a star
with center and leaves in RN T and with vertices of degree 2 in RNS. Choose the
notation such that Ui is adjacent to the center £y and to the leaf ¢;, j=1,..., p. By
Claim 2, there is a vertex z; € V(H;, ) such that z4; € E(G), but z,v;, ¢ E(G). Clearly,
z1 ¢S; thus, by Claim 1, zyv, € E(G) for some v, €S with i; </<m. Note that v, is
not adjacent to any of v;, #, but possibly tv,€E(G).

Suppose first that z;¢,€E(G) for some j, 2<j<p. Then clearly also v/v;,
vt ¢ E(G). We further have fyz; ¢ E(G) (since otherwise ({z1,t,v;,,%,t;})g ~ F3) and
v;z1 € E(G) (otherwise ({vj,z1,t,0;,t0,2})c ~Fs). Now we have tyv, € E(G), since
otherwise ({z1,1,v;,%,0;,1;,V/})G ~ F7. This implies v, €RNS and, by the structure
of R, v, has a (unique) neighbor #, in RN T. But now ({tr,vr,z1,t1, 0, 10,05 } )6 ~ Fs
if t,21 ¢ E(G), or ({vs,z1,0, 0, 10,87} )G = Fs, if t,z; €E(G), respectively. This contra-
diction proves that z; is not adjacent to any of #,...,1,.

Now suppose that zjv;, ¢ E(G) for some a, 2<a< p. Then #yz; ¢ E(G) (otherwise
({to,vi,, 1,21, 03, } )6 = F3) and tyv, €E(G) (otherwise ({v/,z1,t,0;,t0,Vi,,ta})c = F1).
This implies, as before, that v, is in RNS and has a (unique) neighbor #, in RN T,
but then ({v/, 2o, v;,,1,21,;,, 1, } )¢ = Fs. Hence, z; is adjacent to all vertices in (RN .S)\
{v;, }. This immediately implies p=|RNS| =2, for otherwise ({to, v;,,z1, Vs, s, } )G = F5.

Summarizing, it remains to consider the case when RNS={v;,,v,}, RNT =
{to, 1.t} and Nr(z1)={t1,v;,}. We consider the graph H;,. Since i} <ip, {v;,t0,t1} N
V(H;,)=10, and since z,v;,, v, ¢ E(G), we have z|,5, € V(H,,). By Claim 2 (for j =1;),
there is a vertex z{ €V (H,) such that z{z; €E(G) but zjv, ¢ E(G) (and, of course,
ziv, € E(G)). If tyz] ¢ E(G), then for #z{ € E(G) we have ({t1,z1,1;,,t,U,2] } )G = F5,
and for #z{¢E(G) we have ({zi,t,v,,%,0,,2],t2})c=F if 2| ¢E(G) and
{vs), 12,21, 21,0} )6 = F5 if z{t €E(G). Hence tyz] € E(G), but this implies ({¢,v;,,z1,
zi,0; })6 ~ F3. This final contradiction completes the proof. [J
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