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Abstract

In this work we propose a Cauchy-like method for solving smooth unconstrained vector optimization problems.
When the partial order under consideration is the one induced by the nonnegative orthant, we regain the steepest
descent method for multicriteria optimization recently proposed by Fliege and Svaiter. We prove that every accu-
mulation point of the generated sequence satisfies a certain first-order necessary condition for optimality, which
extends to the vector case the well known “gradient equal zero” condition for real-valued minimization. Finally,
under some reasonable additional hypotheses, we prove (global) convergence to a weak unconstrained minimizer.

As a by-product, we show that the problem of finding a weak constrained minimizer can be viewed as a particular
case of the so-called Abstract Equilibrium problem.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

In multicriteria optimization, several objective functions have to be minimized simultaneously. Usually,
no single point will minimize all given objective functions at once (i.e., there does not exigdeah
minimizer), and so the concept of optimality has to be replaced by the conc&atretb-optimality
or efficiency A point is called Pareto-optimal or efficient, if there does not exist a different point with
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smaller than or equal objective function values, such that there is a decrease in at least one objective
function value. Applications for this type of problem can be found in engineering dgs2jimainly

truss optimizatior8]), location sciencgb], statistic§6], management scien¢&3] (specially portfolio
analysig24]), etc.

Among the main solution strategies for multicriteria optimization problems, we mention the scalar-
ization approached 5,16,19,21,23]Here, one or several parameterized single-objective (i.e., classical)
optimization problems are solved. Frequently, some parameters have to be specified in advance, leav-
ing the modeler and the decision-maker with the burden of choosing them. Moreover, in the weighting
method, for example, bad choices of these parameters can lead to unbounded scalar problems. Othe
scalarization techniques are parameter-fie8,21] but try to compute a discrete approximation to the
whole set of Pareto-optimal points.

Parameter-free multicriteria optimization techniques use in general an ordering of the different criteria,
i.e., an ordering of importance of the components of the objective function vector. In this case, the ordering
has to be specified. Moreover, the optimization process is usually augmented by an interactive procedure
[20], adding an additional burden to the task of the decision-maker.

Inarecent paper, Fliege and Sva[tet] proposed a Pareto descent method for multiobjective optimiza-
tion. This procedure is parameter-free and relies upon a suitable extension for vector-valued functions
of the classical steepest descent direction. Neither ordering information nor weighting factors for the
different objective functions is assumed to be known in this new method, which may be interpreted as a
“Cauchy’s method” for multicriteria optimization.

We recall that the steepest descent method (also known as gradient or Cauchy’s method) is one of
the oldest and more basic minimization schemes for scalar unconstrained optimization. Despite its com-
putational shortcomings, like, for instance, “hemstitching” phenomena, the Cauchy’s method can be
considered among the most important procedures for minimization of real-valued functions defined on
R", since itis the departure point for many other more sophisticated and efficient algorithms. For instance,
it is partially used in some “globally convergent” modifications of Newton’s method for unconstrained
optimization. Here, “globally convergent” means that all sequences produced by the method have de-
creasing objective function values, and that all accumulation points of these sequences are critical points.
We refer the reader {8], where the “double dog-leg” method is discussed. The simple idea of decreasing
the value of the objective function is also used in many other modifications of Newton’s method. We
refer the reader again {8] for a very clear exposition. It remains an open question how to extend more
efficient procedures, as Newton’s method, to vector optimization.

The purpose of this paper is to take a step further on the direction of Fliege and Sya#grisork.

Based on their ideas, we present a Cauchy-like method for smooth vector optimization. In this setting,
the partial order is induced by a general closed convex pointed i€pmdéth nonempty interior in a
finite-dimensional space. Our procedure depends on the choice of an arbitrary initial point, as well as on
a certain compact set which characterizes the positive polar cone (see Section 3). On the final remarks
we make more comments on this issue. When the cone is the nonnegative orthant, our procedure turns
out to be the very same proposed by them for the unconstrained case. Our convergence results extenc
theirs and, furthermore, under some additional (and quite reasonable) hypotheses, we also show that all
sequences produced by the method converge to a weakly efficient point, no matter how poor is the initial
guess. We point out that we are not attempting to find the set of all efficient or weak efficient optima.

Regarding the importance of vector optimization, we point out that even though the vast majority of
real life problems formulated as vector-valued problems deals with the component-wise partial order, i.e.,
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the one which arises from the Paretian cone, there are many others that require preference orders induce
by closed convex cones other than the nonnegative orthant. Such cones have been recently analyzed, fo
example in1] (based on the theoretical resultg?f), where problems of portfolio selection in security
markets require finding weak Pareto minimal points with respect to feasible portfolio cones, which are
nonlattice, that is to say cones with more extreme rays than the ambience space dimension.

The outline of this work is as follows. In Section 2, we introduce the unconstrdrmthimization
problem and discuss a necessary (but in general nonsufficient) first-order optimality condition, called
K-criticality. This condition extends to vector optimization the classical “gradient equal zero” condition
for scalar minimization. The notion &f-criticality allows us to derive a generi¢-descent scheme. We
discuss an Armijo-like strategy for choosing the stepsizes. In Section 3, we characterize the negative cone
and its interior in terms of a convex function. This function is used to define the steepest descent direction,
as well as its approximations. We present the complete steepest descent method for vector optimization,
with approximations of the steepest descent direction, and show its well definedness. In Section 4, we
discuss the convergence of the method. We prove that all the cluster points of any sequence generatec
by the algorithm ard-critical. In Section 5, we discuss the relationship between vector steepest descent
direction and the scalarization approach. In Section 6, assuktitmnvexity of the objective function
and a certain very reasonable condition on the objective, we prove, based upon the notion of quasi-
Fejér convergence, that, with the pure steepest descent direction choice or even with other more genera
directions, called-compatibles, the method is globally convergent to a weak unconstidin@dimizer.
In Section 7, using the scalar function defined in Section 3, we show that the problem of finding a weak
constrainedK-minimizer of a vector-valued function can be viewed as a particular case of the well known
abstract equilibrium problem. Finally, in Section 8 we make some final remarks about our work.

2. Basic definitions

LetK be a closed pointed convex coneRdf, with nonempty interior. The partial order &" induced
by K, <k , is defined by:

u<sgv if v—uek.
Consider also the following relation induced by(ikt) in R™, <
u<gv if v—u eint(K).

Given a continuously differentiable functidn : R" — R™, we consider the problem of finding an
unconstrained K-minimizefor K-optimun) of F, i.e., a pointx* € R" such that there exists no other
x € R"with F(x)<g F(x*)andF (x) # F(x*).Inotherwords, we are seeking unconstrained minimizers
for F in the partial order induced by the coeWe denote this problem as

ming F(x). (1)
A necessary, but, in general, nonsufficient, conditioridayptimality of a pointx € R” is

—int(K) N ImageJ F(x)) = @, (2
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whereJ F (x) stands for the Jacobian Bfatx and ImagéJ/ F (x)) stands for the image &f" by the linear
operatorJ F(x) (see, for instancg19]). Observe that (2) generalizes to vector optimization the classical
condition “gradient equal zero” for the real-valued case.

A point x is K-critical if it satisfies (2). Therefore, if a pointis notK-critical, there exists a direction
v € R" satisfying

JF(x)v € —int(K), (3

that is to say/ F (x)v<xO. It is a well known fact that such is aK-descent directioffior the objective
F. Actually, it holds that (sefl9]), if v satisfies (3), there exists> 0 such that,

F(x +tv)<gF(x) foralltre(071). (4)
If vis aK-descent direction &, we say that > 0 satisfies the “Armijo-like” rule fo3 € (0, 1) if
F(x + tv)<x F(x) + Bt JF (x)v.
As in the scalar case, given a “descent” direction, the Armijo rule is satisfied for same
Proposition 2.1. Let g € (0, 1). If JF(x)v<k0, then there exists> 0 such that
F(x+tv)y<g F(x) + ftJF(x)v
forall € (O, 7).
Proof. SinceF is differentiable, we have
F(x+tv)=Fx)+t(JF(x)v+ R(1)), (5)

with lim, .o R(z) = 0. We are assuming thdtF (x)v € —int(K). Sincep € (0,1), (1 — pJF(x)v €
—int(K). Hence, there exists> 0 such that, for all € (0, ¢], ||R(¢)| is small enough, so that

R(t)+ (1— B JF(x)v € —int(K).
Equivalently,
Rit)y<xk —(1—pBJF(x)v forallre(0,1].
Combining thisK-inequality with (5) the conclusion follows.
Proposition 2.1 opens the way for defining a genBrdescent method using the Armijo-like rule.
Algorithm 1 (Generic K-descent methpd
1. Takep € (0, 1), x° € R". Setk := 0.

2. If x* is K-critical sTor Otherwise
3. Find v* a K-descent direction at*.
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4. Find 1, > 0 such that

F(x* + 08 =< g F5) + B J F (F)oF.
5. Setx* 1 .= x* + ok, k := k + Landcoro2.

Only very general properties can be proved for this algorithm.
Proposition 2.2. Let{x*} be an infinite sequence generated by Algorithifi x is an accumulation point
of {x*} then
F®)<x F(x")

for allk andlim;_, o, F(x*)= F(x). In particular, F is constant in the set of accumulation pointg.df}.
Proof. We are supposing that an infinite sequefdg was generated by Algorithm 1. Therefore, |

are norK-critical and{F (x*)} is K-decreasing. By assumption, there is a subsequiticeconverging
to x. Take anyk € N. Forj large enouglt; > k and

F(xM)<g F(x5).

Taking the limit forj — oo we getF (x)<x F(xX). Let % be another accumulation point pf*}. Then
there exists a subsequer{aér} converging tot. Since

F®)<k F(x*r),
letting p — oo we getF (x)<k F(x). By the same reasoning;(x)<x F (x). SinceK is pointed, these
two K-inequalities imply that (x) = F(x). O

Regarding the choice of the stepsizgsf they are taken too small, the generated sequénGemay
converge to a noK-critical point. In order to choose a suitable steplength at iter&iare prescribe the
usual backtracking procedure:

3a. Set =1
3b. If F(x* + tv5)<x F(x%) + ptJ F (x*)vF then
tr =t, END (of backtracking

else
3c. Sett := t/2,coT103b.

Observe that the above backtracking procedure has always finite termination, thanks to Proposition 2.1.
Moreover
n=max2~/ | j e N, Fxk + 27708 <x F(5) + g2/ T F (F)oky.

The main problem now is the choice of. For classical optimization, we hawe= 1, K = R,.. In
this case, the natural choice is the steepest descent direétien-V F (x¥), which happens to be the
solution of

min (v, VF5) + 1/2)||v)%, v e R™. (6)
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For multiobjective optimization# > 1), whereK is the positive orthanR’?, Fliege and Svaitej14]
proposed to take* as the solution of

min  max (v, VF;,(x") + (1/2)[[v|%. v eR", 7)

i=1,...m

whereF (x) = (F1(x), ..., Fy,(x)). Observe that (6) is a particular case of (7) whea- 1.
In the following section, we will extend the notion of steepest descent direction for the partial order
<k and propose thK-steepest descent method.

3. K-steepest descent method

The positive polar cone oA € R™ is the set
A*={w e R"|(y,w)>0 Vye A}
SinceK is a closed convex con&, = K** (see[22, Theorem 14.3]and
—K={yeR"|[{y,w)<0 Ywe K"}
and
—int(K)={y € R" | (y,w) <0 Yw e K*\{0}}.

The convex hull ofA € R™ will be denoted by conjA), and the cone generated Awvill be denoted by
congA).
From now on, we assume that we have a compadf setR” such that:
0¢C, (8)
congconvC) = K*. 9)

As int(K) # ¢ andC C K*\{0}, it follows that O¢ conuC). Therefore

—K={u e R"|{u,w)<0 VYw e C}, (10)
—int(K)={u € R" | (u, w) <0 Vw e C}. (11)

In classical optimizationk = Ry and we may tak€ = {1}. For multiobjective optimizatiork and
K* are the positive orthant @& and we may tak€ as the canonical basis &". If K is a polyhedral

cone,C may be taken as a finite set of extremal rayXdf For a generi& (closed pointed convex cone
with nonempty interior), the set

C={weK"[lwl1=1

(where||lw|l1 = |w1| + - - - + |wy,,|) will satisfy conditions (8), (9).
Define nowyp : R" — R,

@(y) == sup(y, w). (12)

weC
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In view of (10)—(11) and the compactness@®fthe functione gives a “scalar” characterization efk
and—int(K):

—K={yeR"|o(y)<0} (13)
and

—int(K) ={y € R" | o(y) <0} (14)

In the following lemma we establish some elementary properties of the fungtidrich will be used in
the sequel.

Lemma 3.1. (i) Lety, y’ € R™, thenop(y + y) <o(y) + ¢(y) ando(y) — ¢(y) <eo(y — y). (i) Let
y, Y e R if y<gy (y<k)), theno(y) <o) (e(v) <e()). (iii) The functionp : R" — R is
Lipschitz continuous.

Proof. Item (i). The first inequality holds trivially and the second follows from the first. Item (ii). The
factthaty — y’ € —int(K) (y — y' € —K) is equivalent tap(y — y") <0 (¢(y — y)<0), according to
(14) and (13). Hence, the result follows from (i).

Item (iii). By virtue of what was established in ()(y) — ¢ (y") <o(y—y") andp(y") — o (y) <o (Y — ).
Hence

lp(y) — (YN I< supe(y — ), (3" — )}

Therefore, from (12) and Cauchy—Schwartz inequality,

lo(y) — o(V)I<LIly — 'l (15)

where,L := sug||w|| | w € C}, and the result follows. O

Define now forx € R?, f : R" — R as

fx() == (J F(x)v)
= sup(w, JF(x)v). (16)

weC

From (14) it follows thab is aK-descent direction a if and only if, f; (v) < 0. ThereforexisK critical
if and only if f(v) >0 for allv € R".

We can now extend the notion of steepest descent direction to the vector cade &wigrbitrary cone
satisfying the conditions stated at the beginning of Section 2).

Definition 3.2. Givenx € R", theK-steepest descent direction (foratx, denoted by, is the solution
of

min f(v) + (1/2)[[v]?, v e R". (17)

The optimal value of this problem will be denoted dy

Remark 1. In the scalar minimization case, whefe: R" — R and K = R., taking C = {1}, the
K-steepest descent direction is exactly the classical steepest descent direction=.€Y F (x).
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Remark 2. For multicriteria optimization, wher& = R, with C given by the canonical basis &f",
we retrieve the steepest descent direction proposgdin

Sincev — f;(v) is a real-valued closed convex functian, ande, are well defined. Furthermore,
asF is continuously differentiable ang is Lipschitz continuous, the mapping, v) — f;(v) is also
continuous.

Lemma 3.3.

1. If xis K-critical thenv, =0, «, = 0.
2. If x is not K-critical thenv,, # 0, o, <O,

fr) < = (1/2)[ve? <0
andv, is a K-descent direction.
3. The mappings +— vy, x — «, are continuous.

Proof. Item 1. Ifxis K-critical, thenf, (v) >0 Yv € R". Sincef,(0) = 0, the conclusion follows.
Item 2. Ifxis notK-critical, then, for some € R", f(v) < 0. Observe thaf, (-) is positive homoge-
neous of degree 1. Taking

f=—fc/Ivl%, =1,
we get
fe (@) + (1/5)1%= T f2 (v) + (1/272||v]1?
= — (1/2) f:)?/llv]|? < 0.

Hencex, < 0. The other statements of item 2 now follow trivially.
Item 3. Takex? € R” ande > 0. Define

S:={veR"||lv,o—v|=¢}

Note thatv o is optimal for (17) withx = x°. From (16) it follows thatf, (-) is convex, so the objective
function on the minimization problem (17) is strongly convex with modult& 1t follows that,

F0(0) + (L/2)[[v]1%= fro(v0) + (1/2)]lv,0]12 + (1/2)e> Vv € S.

Since the mappingx, v) — fy(v) is continuous, an&is compact, using this equation we conclude that
there exist® > 0 such that, ifjx — x°|| <J, then

() 4+ @/2)|v]|? > fr(veo) + (1/2)[lv,0ll? Vv € S.

Take nowx € R, ||x — x9||<6. Asv — fi(v) + (1/2)|v||? is convex, we conclude from the above
inequality thaw, , the minimizer off, (-)4(1/2)| - | 2is notin the regioiv—v,ol| >¢, hence|v, —v,o|| <e.
Continuity of, follows now trivially. O

A possible choice for* in Algorithm 1 is v, i.e., theK-steepest descent directiondt Since
the computation of, requires the solution of (17), it would be interesting to work with approximated
solutions of this problem.
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Definition 3.4. Letos € [0, 1). We say that is as-approximatel-steepest descent directiorvat R" if
fe@) + /2P <L = o),
or equivalently

Fe@) + @/ vl = (fe o) + 1/2) [ |%) <olol.

Observe that the (exadf)}steepest descent directiorxas always ar-approximate<-steepest descent
direction, because we assume [0, 1). Theexact ksteepest descent directionxas the uniquer = 0-
approximateK-steepest descent direction.

Lemma 3.5. Leto € [0, 1). If v is ag-approximate K-steepest descent direction,dahgn
Iy — vl|? <20

Proof. The function
v fe )+ (1/2)]v])?

is strongly convex with modulus/2. Sincev, is the minimizer of this function,
Fe@) + @2 0)1? = (fewo) + L/2)[[ilP) 2 (1/2)]lvx — vl

Using Definition 3.4, the conclusion follows.[]

Let s € [0, 1) be a prespecified tolerance. From Lemmas 3.3 and 3.5, it followsythad is ao-
approximateK-steepest descent directionxaif, and only if, x is K-critical. Note also that, ik is not
K-critical andv is ag-approximateK-steepest descent directiorxathenv is aK-descent direction, and
in particularv # 0.

Now we formally state th&-steepest descent method (WiKkArmijo rule, implemented with back-
tracking). This algorithm is a particular case of Algorithm 1.

Algorithm 2 (K-steepest descent method

1. Chooses € (0, 1), ¢ € [0, 1), x° € R". Setk := 0.
2. If x* is K-critical (i.e., if f.«(v)>0forall v € R") sTor. Otherwise
3. Computev®, a s-approximate K-steepest descent direction‘at
4. Compute the steplength € (0, 1] in the following way
no=max2~/|jeN, o(F(x*+ 277" — F(x*) — p277 T F(x*)vk) <0},
5. Setx*kt1 .= x*k 4+ ok, k := k + 1andcoto2.

Observe that ik¥ is notK-critical, thenv* obtained in step 3 islé-descent direction angl in step 4 is
well defined. Moreover, suchh may be obtained by a backtracking procedure, as discussed previously.
Note that, by virtue of (13), in step 4 we have,

noo=max27/|j e N, Fx*+ 27705 <x F(x*) + p2=7 T F(x*)k). (18)
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Furthermore x**1 will satisfy F(x*t1)<g F(x*). So, the objective values sequengde(x¥)} is K-
nonincreasing.

We finish this section with a generalization of Proposition 2.1, which is a simple consequence of the
fact thatF is continuously differentiable.

Proposition 3.6. Let 8 € (0, 1), x andv such that/ F (x)v<x0. Then there exist, 6, 8’ > 0 such tha

v' is a K-descent direction at’,
Fx' +tv)<g F(x') + ptJF(x" v

foranyr € (0,1), x' € B(x; 8), v’ € B(v; ).
Proof. By assumption/ F(x)v € —int(K). So, there exists> 0 such that

JF(xX)v+y e —int(K) VyeR", |yl <e. (19)
SinceJF is continuous, there exist, d» > 0 such that ifilx” — x| <1, ||[v" — v|| <2, then

[JF ()W — JFx)v|<e/2 (20)
and so

JF (x")v'<kO.
Continuity of JF also implies that

F(z4+tu)=F(()+tJF@u+tR(z, tu),

with lim;_.o || R(z, tu)|| = O uniformlyfor zandu in compact sets. Therefore, there exists0 such that,
forz € (0,7), |lx" — x| <d1, v/ — v[[ <52,

IR, tv) | < (¢/2)(1 — P). (21)
Now, assume thate (0, 1), ||x’ — x|| <1, ||v/ — v||<J2. Then

F(x'+t0)=F&') +tJF&) + R, tv))
= F() 4+ tBIF()W + t[(L = BT F ()W + R(x, 1v)].

Defining

w:=JFxW +@1—p IRE, 1), (22)
we have

F(x'+tv)=F&) +tpJFHV +t(1— pu. (23)

It suffices to see that< 0. Observe that

u=JFx)v+y, (24)
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wherej := JF(x)v' — JF(x)v + (1 — B~ IR(x', 1v'). Using (20) and (21),

151 <ITFQ — TF)vl + (L= ) HRE, 1)
<e.

Therefore, using (19) and (24) we conclude thaj,0 and so, the result follows from (23).0

4. Convergence analysis: the general case

From now on{x*}, {v¥}, {1} are sequences generated by Algorithm 2. If the algorithm terminates after
a finite number of iterations, it terminates & aritical point. In this section, we suppose that an infinite
sequencéx®} is generated. So, in view of Lemma 3.3, Definition 3.4 and Proposition 3.6, fir all
ak <0,
[ @) + @20 P< (L = )i <O,
FOM < FOR) + B F (v < F (D).
In particular the sequendé (x¥)} is K-decreasing.
Using the abové&-inequality, Lemma 3.1 and the positive homogeneity oit follows that for allk,
o (F (") <o (F (x*) + B F(x)v%)
<O(F () + o(BieJ F (x*)v")
= p(F (")) + (T F (X))
= o(F (")) + Bir fo 0")
<o(FE) + i (= e = /D). (25)

As a consequence of this scalar inequality we obtain the following lemma.

Lemma 4.1. If {F(x*)} is K-bounded from below.e., if there existsy such thaty<x F(x¥) for all k)

then
k2
E trlok | < 00, E ]|V < o0.

Proof. Adding inequality (25) fromk = 0 ton we get,

P(F (") <p(F () + ) (L — ok — (1/2) [0 |%)
k=0

=p(F(®) = 3 i (A= D)loel + /2 0°12)

k=0

If y<x F(x*) for all k, thene(y) < o(F (x*)) for all k and the conclusion follows. O

Now we are in conditions of studying the convergence properties of Algorithm 2.



406 L.M. Grafia Drummond, B.F. Svaiter / Journal of Computational and Applied Mathematics 175 (2005) 395-414

Theorem 4.2. All accumulation points ofx*} are K-critical.

Proof. Letx be an accumulation point ¢£*}. Then there exists a subsequeiic® } converging tor,

lim x5 = x.

Jj—o00
Note that{v «; } and{« &, } are bounded because they converge:tandoz, respectively. Therefore, using

Lemma 3.5 we conclude th&t*/} is also bounded. So (refining the original sequence if necessary), we
may also assume thét*i} converges to some,

lim % =3,

Jj—00
For allk, fu (%) + (1/2)[|v*]12< (1 — o). Taking limits alongk = k; for j — oo we get,
fi@) + 1/ BIIP< (L — o)az. (26)

Recall that Algorithm 2 is a particular case of Algorithm 1, so by PropositionR2(2) is aK-lower
bound for{ F (x*)}. Now we may apply Lemma 4.1 to conclude that,

j”—>moo tijkaj =0, (27)
lim 1, [0 =0. (28)
Jj—00

We claim that
7 =0. (29)

Suppose, for contradictory purposes, that 0. Asa; <0, using (26) we gef; (v) < 0. Using Proposition
3.6 we conclude that there exists 0 such that, fof large enough (greater than song

F(xki 4 10k < g FR) + pra F(xXRywki vr € [0, 7). (30)
Now we will show that foij larger than suchip,
21, > min{1, 7). (31)

Indeed, letj > jo. If Ik; = 1, the claim holds. Ifkj <1, then, this stepsize was obtained by a backtracking
procedure, where the “previous” possible stepsizedbes not satisfy the descend condition, or equiva-
lently, Z;; does not belong to thigth set in (18). Now using (30) we conclude tha(tjkf and the claim
holds also in this case.

The assumption # 0 also implies, by (28), that lim, « #%; = 0, which contradicts (31).

To end the proof, use (26) and (29) to obtay0. Sincex, <0 for anyx, we conclude thaiz; =0
andx is K-critical. O

5. Scalarization and Algorithm 2

A very useful method for solving problem (1) is the so-called scalarization procedure. The method is
quite elegant; it consists of minimizing a certain scalar function, as explained in the sequel. Take some
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w € int(K*) and defingg : R" — R,

g(x) = (w, F(x)). (32)
Then, solutions of

min g(x), x eR"

are also solutions of (1). So, we only need to minimize a (smooth) scalar function, and for this problem
there are many efficient algorithms. The choiceuofe int(K*) is of capital importance. Indeed, for
very well behaved problems, many choiceswolead to unbounded scalar minimizations problems. For
example, in multiobjective optimization, lét : R — R?,

F(x) = (x,\/l+x2).

Note thatF is component-wise convex. In this contekt,= K* = Ri, andy< gy’ meansy; gylf, for
i =1, 2. Hence, suclF is K-convex. If we takew = (w1, w2) > 0, with wy > wo, then the scalarized
problem is unbounded. Of course, algorithms for choosiraye quite desirable.

Once we have a very simple example in which the “wrong” choiae bfeaks down the method, a very
natural question is how does tKesteepest descent method behave in this example. First of all, observe
that, in the above example, the setkotritical points is given by the halfliné-oc, 0]; furthermore, it
coincides with th&-optimal set. Lef{x¥} be the sequence generated by Algorithm 2. If this sequence is
finite, then the last iterate Is-critical, and therefore optimal. Suppose that the algorithm does not stop.
Observe that, in this example, for afiye R?, the set

{x € R?| F(x)<F(¥))

is bounded. A$F (x*)} isK-nonincreasing, it follows thdk* } is bounded. So, it has accumulations points,
all of which, by Theorem 4.2, arg-critical (henceK-optimal). Furthermore, ik, x are accumulation
points, thenF (x) = F(%). This readily implies (in this particular example)= x. So{x*} converges to
a solution.
It would be desirable to combine some ideas presented in the preceding sections with the scalarization
method. Indeed, they are connected. Observe thag, defined as in (32),

Vg(x)=JF(x) w.

So, the steepest descent directiondaat x is —J F(x)'w. Takex € R". We claim that for a suitable
w € K*, the steepest descent direction for the scalarized objective furg@b® coincides with the
K-steepest descent directiop. To prove this claim, define

C = conv(C).

Obviously,ff is a convex compact set andy) = sup, .z (w, y). TheK-steepest descent directioniat
the solution of (17) withe = x, which may also be written as

min max((w, J F(¥)v) + (1/2)]v]?) . (33)

veR" yeC
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The dual of this problem is

max min ((w, J F(%)v) + (1/2)[[v]|?). (34)

weC VveER!

Trivially,
arg min (w, J F()v) + (1/2)||v]]® = —J F (%) w,
min - (w, JF(®v) + (1/2)lIv]1? = (=1/2|IJ F (@) w]%.

Hence, problem (34) may be simplified to

max —(1/2)|JF &) w|? (35)

weC

or, equivalently,
min  (1/2)]|JF &) w|?. (36)
weC
SinceC is convex and compact, problem (34) has always a solutionwgdyhich may not be unique)
and there is no duality gap. In particulér;, w;) is a saddle point ofw, J F (¥)v)+(1/2)||v[2in R" x C:
(w, JF(®)vs) + (1/|vs |2 < (ws, JF (®)vz) + (1/2) [z ]P < (wz, JFE@)v) + (1/2)[[v])?
for all (v, w) € R" x C. So,
vy = —J F(X) w; (37)

andw; € C C K*. Takingw = w; in (32) we get-Vg(x) = —J F(x)'w;z, and so-Vg(x) = vz, as we
claimed.
Since there is no duality gap in (33)—(35), using (37) we get,

az = —(1/2)lvz 1%,
whereuo; is the optimal value of problem (17) far= x, so
o(J F(%)vs) = =z 1%,

Now we will prove that approximate solutions of the dual problem (34) (or (35), (36)) yield approximate
solutions of (33), i.e., approximatésteepest descent directions<at

Proposition 5.1. Letx € R" be non K-critical ands € (0, 1). There exist$ > 0 such thatif w € C and
/DT F @) B2 — (1)1 F (x) we]|* <3,
thent = —J F(x)'w is ac-approximate K-steepest descent direction at x.

Proof. Define

&= —00y.
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As x is nonK-critical, ., <0, and s > 0. Since the objective function on (12) adH are continuous,
there existg; > 0 such that

lv—vll<n = @(JFx)) + 1/2)[v[P< o] F(x)v) + (1/)]|ve]l* + &

S0, [lv — vy || <y implies thatv is ag-approximatek-steepest descent directionxat
Optimality of w, for (36), convexity ofC and the hypothesi& € C imply

(JF(x)’(zZ) — Wy), JF(x)’wx) >0.
Hence, using the equalitigs= —J F (x)'w, v, = —J F(x) wy,
1T E Q) D)2 =11 F ) w2 4 [T F(x) (0 — wy) ||
= |JF () we|l? + |5 — vel|%
Therefore,

15— el <y I F O D12 — 1 F () w12
So, itis enough to také = 42/2>0. O

Letw € C be an approximate solution of (35) (or (36)). A question of practical relevance is whether
v=—JF(x)'w is ac-approximateK-steepest descent directionxain our next proposition we give a
sufficient condition fotr-approximation.

Proposition 5.2. Takes € [0, 1), w € C and definey = —JF(x)'w. If
Pp(JF(x)v)< — (1= 0/2)|v]|?,

thenv is as-approximate K-steepest descent direction.at x

Proof. We already know that (17) (or (33)) and (35) are a primal-dual pair of problems. Girscéual
feasible,

— (/21 F (x)' wl|® <ot
Therefore, making the substitutien= —J F (x)'w we get

1-0)(—1/2)[v]*< (1 - o)a. (38)
Hence, if

P(JF()v)< — (1 —a/2)|v]?,

from (38) it follows thatv = —J F (x)"w is ac-approximatek-steepest descent direction]

In the following section, we will show a theoretical advantage of using descent directions as discussed
in Propositions 5.1, 5.2. From now on, we will say thas scalarization compatibleor s-compatiblef
there exist soma@ < C such that

v=—JFx)'w =V, (w, F(x)).

Note thatv,, theexact ksteepest descent directionkats always s-compatible.
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6. Convergence analysis: th&-convex case

Throughout this section we will assume tlirais K-convex, i.e.,
FOx + Q= Dx)<xgiF(x)+ (1= 2)F &)

forall x, x” € R" and all € [0, 1]. Under this additional assumption we have the following extension of
the classical gradient inequality to the vector case:

F(x)+ JF(x)(x" —x)<g F(x"),

foranyx, x’ € R" (se€[19, Lemma 5.2).

As in the general case, here also optimality impHKesriticality. A pointx* € R" is aweak uncon-
strained K-minimizelor weak K-optimumof F, or weak Pareto minimal element f&r(see[19]), if
there is nax € R" with F(x)<g F(x*). A well known fact is that, under thi€-convexity assumption on
the objective functiorfr, K-criticality andweakoptimality are equivalent conditions.

If the algorithm has finite termination, the last iterateKisritical and hence a weak unconstrained
K-minimizer of F. We will study the case in which the algorithm does not have finite termination and
therefore produces infinite sequenées}, {vF} and{s}. Let us now establish the additional assumptions
under which we will prove full convergence pf*} to aK-critical point or, in view of the above discussion,
to a weak unconstraingg-minimizer of F.

Al. EveryK-decreasing sequence in the imagé-of
O S P | x e R

is K-bounded below by a point in the imagefaf _
A2. All v*'s are scalarization compatible, i.e., there exists a sequesfden C such that,

K= —JFMHwk, k=0,1,...

Some comments concerning the generality/restrictiveness of these assumptions are in order. Regardinc
Assumption Al, in the case of classical unconstrained (convex) optimization, this condition is equivalent
to existence of solutions of the optimization problem. This assumption, know@casnpletenesss
standard for ensuring existence of efficient points for vector optimization problem$l&e8ection
3]). Assumption A2 deals with the implementation of the algorithm rather thanRwilthis assumption
holds if eachv® is the exact Ksteepest descent directionadt (see (37)). Of course, Assumption A2
applies to the sequence of directiqn$} prescribed by the algorithm, i.e., we are assumingiha an
s-compatibles-approximatek-steepest descent direction for fll

We will need the following technical lemma in order to prove thatkhsteepest descent method is
convergent.

Lemma 6.1. Suppose that F is K-convex and th&is scalarization compatibl@txX). If F(£)=<x F(x%)
then

& kL2 kg2 +1 k2
1% = X FHIE<UR = 217 Al =)
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Proof. By assumption, there exists somé e C such that
vk = —JF(xk)twk.
Using theK-convexity ofF we haveF (xF) + J F (x*)( — x¥)<x F(%). SinceF ()< x F (x*), we get
JF(x5) & — xF=<x0.
Taking into account thav® e K* and using the above results we get
—H' (& - ¥ = @HTFOH G - M <o.
Recall thate*+1 = xk + #.0F, with 7, > 0. Therefore
(=@ - H<o,
which implies the desired inequality, because
12 = L2 = 18 = 2K )2+ ok — X2 4 20k — XY (R — X6, 0
Before stating our convergence result, we recall that a seqyehce R” is quasi-Fejér convergent
[10,11]to a sety c R™ if for everyu € U there exists a sequengg} C R, ¢ >0 such that
IV —ul?<iy* —ull?+ e forallk=1,2,...,

with
o

3 e < co.

k=1

We will also need the following result concerning quasi-Fejér convergent sequences, whose proof can
be found in[4,18].

Theorem 6.2. If the sequencéy*} is quasi-Fejér convergent to a nonempty et- R™, then{y*} is
bounded. If furthermore a cluster point y fof} belongs to Uthenlim;_, o, y* = y.

In [4], it is proved that the steepest descent method for smooth (scalar) convex minimization, with
stepsize obtained using backtracking and Armijo rule, is globally convergent to a solution (under the sole
assumption of existence of optima). We will extend those results t§-$teepest descent method, using
the same techniques as[#].

Theorem 6.3. Suppose that F is K-convex and that AssumptiihsA2 hold. Then{x¥} converges to a
K-critical point x*.

Proof. First of all, observe that all results of Section 4 are still valid under the additional assumptions of
this theorem. In particulat,F (x¥)} is aK-decreasing sequence, so, using Assumptions Al, there exists
anx € R” such that,

F(X)<xk F(x*) VkeN. (39)
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Now observe that & ¢, <1 for all k. Hence
1
ky 2 k+1 k2 k+1 k2
o)l =gllx T = X (40)

Therefore, from (39), (40) and Lemma 4.1 it follows that
o
k=1

Define
L:={xeR"|Fx)<xF(x*) VkeN}.

Note thatx € L, soL is nonempty. Using Assumption A2 and Lemma 6.1, we conclude that for any
x € L (andk € N),

k+1,2 k2 k k+1,2
x — X" FHE< e — X512 + 6 = x5 e

Sinced 72 [xF — x**1)2 < 0o, we conclude that the sequerfad} is quasi-Fejér convergent to the set
L. As L is nonempty, from Theorem 6.2 it follows that*} has accumulation points. Let be one of
them. By Proposition 2.2* € L. Then, once again by virtue of Theorem 6.2, it follows that the whole
sequencéx®} converges ta*. We finish the proof by observing that Theorem 4.2 guarantees that
K-critical. O

7. Vector optimization and the abstract equilibrium problem

In this section, we discuss the connection between the problem of seeking a weak congtrained
minimizer and the Abstract Equilibrium problem. We will see that by means of the fungtidefined
in (12), the first problem can be viewed as a particular case of the second one.

TheWeak Constrained K-Minimization probldi9] is defined in the following way:

Given closed convex pointed cones with nonempty intekioc R™, K; ¢ R™,i=1,2,...,r, the
corresponding induced ordenszk y if y —x € int(K), usg,vif v —u € K;, and

F : R" — R™, K-convex and continuously differentiable,

G;: R" — R™, K;-convex, forali =1,2,...,r,

findx* e M ={x € R"| G;(x)<k,0, for 1<i <r} such that there does not exist any other M with,
F(x)<g F(x™).

TheAbstract Equilibrium problen3] can be stated in the following way: Givéh a nonempty closed
convex set in a Hausdorff topological vector space and

f:MxM-—R

such that
f (-, y) is upper semicontinuous for alle M,
f(x, ) is convex and lower semicontinuous for ale M,
f(x,x)=0forallx € M,
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find x € M with the property that
f(x,y)=0 forallyeM.
Taking
M={x e R"|G;(x)xk,0 for 1<i<r}
as in the weak constrainédminimization problem, and

f(x,y) == o(F(y) — F(x)),

wherep was defined in (12), we have that the solution set of this equilibrium problem is exactly the same
as the solution set of the weak constraiKethinimization problem. Observe that the weak unconstrained
K-minimization problem is a particular case of the constrained one and, therefore, can also be solved by
means of methods for solving the equilibrium problem (and conversely). So we ca&iriical points

for problem (1) via the equilibrium problem formulation.

8. Final remarks

In this work we proposed for vector unconstrained minimization an extension of the standard steepest
descent method. We showed that all cluster points of the sequences produced by the method satisfy &
certain first-order condition fdk-optimality, known ax-criticality. UnderK-convexity of the objective
function and assuming a very reasonable condition on the objective function, we proved that we have full
convergence of the method, when performed, for example, with the xsteiepest descent direction at
each iteration. In this situation, no matter how bad is our initializing point, the method will converge to a
K-critical point, or, in other words, to a weak unconstraiifechinimizer. As in the one-dimensional case,
using the notion of quasi-Fejér convergence, we could prove convergence of the method without assuming
a Lipschitz condition on the objective’s Jacobian and without bounded level sets requirement. Incidentally,
we showed that every weak constraiédinimization problem can be viewed as a particular equilibrium
problem.

It is worth mentioning that the compact seétCc K* used throughout the whole work is essential for
defining theK-steepest descent direction (or approximations of it). So, someb@hgys the role of a
sort of “gauge”. Perhaps, it would have been better to define the “galgst¥epest descent direction,
or theK-steepest descent direction modutisnstead of simply th&-steepest descent direction. This
would make the notation more clear but certainly heavier.

Regarding the implementation of the method, we mention that whétherefore K*) is finitely
generated, th&-steepest descent direction can be easily computed. In the general case, approximate
K-steepest descent direction can be computed solving approximately (36) and using Proposition 5.1 or
Proposition 5.2. Other possibility is to solve (17) using a bundle method techidigie

We expect that, in spite of the possible drawbacks of the method, as in the single-valued case, it
will furnish a prototype for more sophisticated and efficient algorithms for solving vector optimization
problems. So we think that a full understanding of the structure and convergence behaviérstébkpest
descent method is indeed relevant.

The extension to vector optimization of more efficient algorithms, as, for instance, Newton’s and
guasi-Newton methods, and its convergence analysis are left as open problems for future research.
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