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Abstract

In this work we propose a Cauchy-like method for solving smooth unconstrained vector optimization problems.
When the partial order under consideration is the one induced by the nonnegative orthant, we regain the steepest
descent method for multicriteria optimization recently proposed by Fliege and Svaiter. We prove that every accu-
mulation point of the generated sequence satisfies a certain first-order necessary condition for optimality, which
extends to the vector case the well known “gradient equal zero” condition for real-valued minimization. Finally,
under some reasonable additional hypotheses, we prove (global) convergence to a weak unconstrained minimizer.
As a by-product, we show that the problem of finding a weak constrained minimizer can be viewed as a particular

case of the so-called Abstract Equilibrium problem.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Inmulticriteria optimization, several objective functions have to beminimized simultaneously. Usually,
no single point will minimize all given objective functions at once (i.e., there does not exist anideal
minimizer), and so the concept of optimality has to be replaced by the concept ofPareto-optimality
or efficiency. A point is called Pareto-optimal or efficient, if there does not exist a different point with

∗ Corresponding author. Tel.: +55-21-2529-5112; fax: +55-21-2529-5129.
E-mail addresses:lm@ondaalta.com.br(L.M. Graña Drummond),benar@impa.br(B.F. Svaiter).
1 Partially supported by FAPERJ under Grant E-26/152.107/1999-Bolsa.
2 Partially supported by CNPq Grant 302748/2002-4, PRONEX-Optimization and FAPERJ.

0377-0427/$ - see front matter © 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.cam.2004.06.018

http://www.elsevier.com/locate/cam
mailto:lm@ondaalta.com.br
mailto:benar@impa.br


396 L.M. Graña Drummond, B.F. Svaiter / Journal of Computational and Applied Mathematics 175 (2005) 395–414

smaller than or equal objective function values, such that there is a decrease in at least one objective
function value. Applications for this type of problem can be found in engineering design[12] (mainly
truss optimization[8]), location science[5], statistics[6], management science[13] (specially portfolio
analysis[24]), etc.
Among the main solution strategies for multicriteria optimization problems, we mention the scalar-

ization approaches[15,16,19,21,23]. Here, one or several parameterized single-objective (i.e., classical)
optimization problems are solved. Frequently, some parameters have to be specified in advance, leav-
ing the modeler and the decision-maker with the burden of choosing them. Moreover, in the weighting
method, for example, bad choices of these parameters can lead to unbounded scalar problems. Other
scalarization techniques are parameter-free[7,8,21]but try to compute a discrete approximation to the
whole set of Pareto-optimal points.
Parameter-freemulticriteria optimization techniques use in general an ordering of the different criteria,

i.e., an ordering of importance of the components of the objective function vector. In this case, the ordering
has to be specified. Moreover, the optimization process is usually augmented by an interactive procedure
[20], adding an additional burden to the task of the decision-maker.
In a recent paper, Fliege andSvaiter[14] proposed aPareto descentmethod formultiobjective optimiza-

tion. This procedure is parameter-free and relies upon a suitable extension for vector-valued functions
of the classical steepest descent direction. Neither ordering information nor weighting factors for the
different objective functions is assumed to be known in this new method, which may be interpreted as a
“Cauchy’s method” for multicriteria optimization.
We recall that the steepest descent method (also known as gradient or Cauchy’s method) is one of

the oldest and more basic minimization schemes for scalar unconstrained optimization. Despite its com-
putational shortcomings, like, for instance, “hemstitching” phenomena, the Cauchy’s method can be
considered among the most important procedures for minimization of real-valued functions defined on
Rn, since it is the departure point formany othermore sophisticated and efficient algorithms. For instance,
it is partially used in some “globally convergent” modifications of Newton’s method for unconstrained
optimization. Here, “globally convergent” means that all sequences produced by the method have de-
creasing objective function values, and that all accumulation points of these sequences are critical points.
We refer the reader to[9], where the “double dog-leg” method is discussed. The simple idea of decreasing
the value of the objective function is also used in many other modifications of Newton’s method. We
refer the reader again to[9] for a very clear exposition. It remains an open question how to extend more
efficient procedures, as Newton’s method, to vector optimization.
The purpose of this paper is to take a step further on the direction of Fliege and Svaiter’s[14] work.

Based on their ideas, we present a Cauchy-like method for smooth vector optimization. In this setting,
the partial order is induced by a general closed convex pointed coneK, with nonempty interior in a
finite-dimensional space. Our procedure depends on the choice of an arbitrary initial point, as well as on
a certain compact set which characterizes the positive polar cone (see Section 3). On the final remarks
we make more comments on this issue. When the cone is the nonnegative orthant, our procedure turns
out to be the very same proposed by them for the unconstrained case. Our convergence results extend
theirs and, furthermore, under some additional (and quite reasonable) hypotheses, we also show that all
sequences produced by the method converge to a weakly efficient point, no matter how poor is the initial
guess. We point out that we are not attempting to find the set of all efficient or weak efficient optima.
Regarding the importance of vector optimization, we point out that even though the vast majority of

real life problems formulated as vector-valued problems deals with the component-wise partial order, i.e.,
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the one which arises from the Paretian cone, there are many others that require preference orders induced
by closed convex cones other than the nonnegative orthant. Such cones have been recently analyzed, for
example in[1] (based on the theoretical results of[2]), where problems of portfolio selection in security
markets require finding weak Pareto minimal points with respect to feasible portfolio cones, which are
nonlattice, that is to say cones with more extreme rays than the ambience space dimension.
The outline of this work is as follows. In Section 2, we introduce the unconstrainedK-minimization

problem and discuss a necessary (but in general nonsufficient) first-order optimality condition, called
K-criticality. This condition extends to vector optimization the classical “gradient equal zero” condition
for scalar minimization. The notion ofK-criticality allows us to derive a genericK-descent scheme. We
discuss anArmijo-like strategy for choosing the stepsizes. In Section 3, we characterize the negative cone
and its interior in terms of a convex function. This function is used to define the steepest descent direction,
as well as its approximations. We present the complete steepest descent method for vector optimization,
with approximations of the steepest descent direction, and show its well definedness. In Section 4, we
discuss the convergence of the method. We prove that all the cluster points of any sequence generated
by the algorithm areK-critical. In Section 5, we discuss the relationship between vector steepest descent
direction and the scalarization approach. In Section 6, assumingK-convexity of the objective function
and a certain very reasonable condition on the objective, we prove, based upon the notion of quasi-
Fejér convergence, that, with the pure steepest descent direction choice or even with other more general
directions, calleds-compatibles, themethod is globally convergent to a weak unconstrainedK-minimizer.
In Section 7, using the scalar function defined in Section 3, we show that the problem of finding a weak
constrainedK-minimizer of a vector-valued function can be viewed as a particular case of the well known
abstract equilibrium problem. Finally, in Section 8 we make some final remarks about our work.

2. Basic definitions

LetK be a closed pointed convex cone ofRm, with nonempty interior. The partial order inRm induced
byK, �K , is defined by:

u�Kv if v − u ∈ K.

Consider also the following relation induced by int(K) in Rm,≺K :

u≺Kv if v − u ∈ int(K).

Given a continuously differentiable functionF : Rn → Rm, we consider the problem of finding an
unconstrained K-minimizer(or K-optimum) of F, i.e., a pointx∗ ∈ Rn such that there exists no other
x ∈ RnwithF(x)�KF(x

∗)andF(x) �= F(x∗). In otherwords,weare seeking unconstrainedminimizers
for F in the partial order induced by the coneK. We denote this problem as

minK F(x). (1)

A necessary, but, in general, nonsufficient, condition forK-optimality of a pointx ∈ Rn is

−int(K) ∩ Image(JF (x))= ∅, (2)
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whereJF(x) stands for the Jacobian ofF atxand Image(JF (x)) stands for the image ofRn by the linear
operatorJF(x) (see, for instance,[19]). Observe that (2) generalizes to vector optimization the classical
condition “gradient equal zero” for the real-valued case.
A point x isK-critical if it satisfies (2). Therefore, if a pointx is notK-critical, there exists a direction

v ∈ Rn satisfying

JF(x)v ∈ −int(K) , (3)

that is to sayJF(x)v≺K0. It is a well known fact that suchv is aK-descent directionfor the objective
F. Actually, it holds that (see[19]), if v satisfies (3), there existst̄ >0 such that,

F(x + tv)≺KF(x) for all t ∈ (0, t̄). (4)

If v is aK-descent direction atx, we say thatt >0 satisfies the “Armijo-like” rule for� ∈ (0,1) if

F(x + tv)�KF(x)+ �tJF (x)v.

As in the scalar case, given a “descent” direction, the Armijo rule is satisfied for somet’s.

Proposition 2.1. Let� ∈ (0,1). If JF(x)v≺K0, then there exists̄t >0 such that,

F(x + tv)≺KF(x)+ �tJF (x)v

for all t ∈ (0, t̄).

Proof. SinceF is differentiable, we have

F(x + tv)= F(x)+ t (JF (x)v + R(t)), (5)

with lim t→0R(t) = 0. We are assuming thatJF(x)v ∈ −int(K). Since� ∈ (0,1), (1− �)JF (x)v ∈
−int(K). Hence, there exists̄t >0 such that, for allt ∈ (0, t̄], ‖R(t)‖ is small enough, so that

R(t)+ (1− �)JF (x)v ∈ −int(K).

Equivalently,

R(t)≺K − (1− �)JF (x)v for all t ∈ (0, t̄].
Combining thisK-inequality with (5) the conclusion follows.�

Proposition 2.1 opens the way for defining a genericK-descent method using the Armijo-like rule.

Algorithm 1 (Generic K-descent method).

1. Take� ∈ (0,1), x0 ∈ Rn. Setk := 0.
2. If xk is K-critical STOP.Otherwise,
3. Find vk a K-descent direction atxk.
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4. Find tk >0 such that

F(xk + tkv
k)�KF(x

k)+ �tkJF (x
k)vk.

5. Setxk+1 := xk + tkv
k, k := k + 1 andGOTO2.

Only very general properties can be proved for this algorithm.

Proposition 2.2. Let{xk} be an infinite sequence generated byAlgorithm1. If x̄ is an accumulation point
of {xk} then

F(x̄)�KF(x
k)

for all k andlimk→∞ F(xk)=F(x̄). In particular,F is constant in the set of accumulation points of{xk}.
Proof. We are supposing that an infinite sequence{xk} was generated by Algorithm 1. Therefore, allxk

are nonK-critical and{F(xk)} isK-decreasing. By assumption, there is a subsequence{xkj } converging
to x̄. Take anyk ∈ N. For j large enoughkj > k and

F(xkj )�KF(x
k).

Taking the limit forj →∞ we getF(x̄)�KF(x
k). Let x̂ be another accumulation point of{xk}. Then

there exists a subsequence{xkp} converging tox̂. Since
F(x̄)�KF(x

kp),

lettingp → ∞ we getF(x̄)�KF(x̂). By the same reasoning,F(x̂)�KF(x̄). SinceK is pointed, these
twoK-inequalities imply thatF(x̂)= F(x̄). �

Regarding the choice of the stepsizestk, if they are taken too small, the generated sequence{xk} may
converge to a nonK-critical point. In order to choose a suitable steplength at iterationk, we prescribe the
usual backtracking procedure:

3a. Sett := 1
3b. If F(xk + tvk)�KF(x

k)+ �tJF (xk)vk then

tk = t, END (of backtracking)

else
3c. Sett := t/2, GOTO3b.

Observe that the above backtracking procedure has always finite termination, thanks to Proposition 2.1.
Moreover

tk =max{2−j | j ∈ N, F (xk + 2−j vk)�KF(x
k)+ �2−j JF (xk)vk}.

The main problem now is the choice ofvk. For classical optimization, we havem = 1,K = R+. In
this case, the natural choice is the steepest descent directionvk = −∇F(xk), which happens to be the
solution of

min 〈v,∇F(xk)〉 + (1/2)‖v‖2, v ∈ Rn. (6)
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For multiobjective optimization (m�1), whereK is the positive orthantRm+, Fliege and Svaiter[14]
proposed to takevk as the solution of

min max
i=1,...,m〈v,∇Fi(x

k)〉 + (1/2)‖v‖2, v ∈ Rn, (7)

whereF(x)= (F1(x), . . . , Fm(x)). Observe that (6) is a particular case of (7) whenm= 1.
In the following section, we will extend the notion of steepest descent direction for the partial order

�K and propose theK-steepest descent method.

3. K-steepest descent method

The positive polar cone ofA ⊆ Rm is the set

A∗ = {w ∈ Rm | 〈y,w〉�0 ∀y ∈ A}.
SinceK is a closed convex cone,K =K∗∗ (see[22, Theorem 14.1]) and

−K = {y ∈ Rm | 〈y,w〉�0 ∀w ∈ K∗}
and

−int(K)= {y ∈ Rm | 〈y,w〉<0 ∀w ∈ K∗\{0}}.
The convex hull ofA ⊆ Rm will be denoted by conv(A), and the cone generated byAwill be denoted by
cone(A).
From now on, we assume that we have a compact setC ⊆ Rm such that:

0 /∈C, (8)
cone(convC)=K∗. (9)

As int(K) �= ∅ andC ⊆ K∗\{0}, it follows that 0/∈ conv(C). Therefore
−K={u ∈ Rm | 〈u,w〉�0 ∀w ∈ C}, (10)

−int(K)={u ∈ Rm | 〈u,w〉<0 ∀w ∈ C}. (11)

In classical optimization,K = R+ and we may takeC = {1}. For multiobjective optimization,K and
K∗ are the positive orthant ofRm and we may takeC as the canonical basis ofRm. If K is a polyhedral
cone,Cmay be taken as a finite set of extremal rays ofK∗. For a genericK (closed pointed convex cone
with nonempty interior), the set

C = {w ∈ K∗ |‖w‖1= 1}
(where‖w‖1= |w1| + · · · + |wm|) will satisfy conditions (8), (9).
Define now� : Rm → R,

�(y) := sup
w∈C

〈y,w〉. (12)
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In view of (10)–(11) and the compactness ofC, the function� gives a “scalar” characterization of−K
and−int(K) :

−K = {y ∈ Rm |�(y)�0} (13)

and

−int(K)= {y ∈ Rm |�(y)<0}. (14)

In the following lemma we establish some elementary properties of the function� which will be used in
the sequel.

Lemma 3.1. (i) Let y, y′ ∈ Rm, then�(y + y′)��(y) + �(y′) and�(y) − �(y′)��(y − y′). (ii) Let
y, y′ ∈ Rm, if y≺Ky

′ (y�Ky
′), then�(y)<�(y′) (�(y)��(y′)). (iii) The function� : Rn → R is

Lipschitz continuous.

Proof. Item (i). The first inequality holds trivially and the second follows from the first. Item (ii). The
fact thaty − y′ ∈ −int(K) (y − y′ ∈ −K) is equivalent to�(y − y′)<0 (�(y − y′)�0), according to
(14) and (13). Hence, the result follows from (i).
Item (iii). By virtue ofwhatwasestablished in (i),�(y)−�(y′)��(y−y′)and�(y′)−�(y)��(y′−y).

Hence

|�(y)− �(y′)|� sup{�(y − y′),�(y′ − y)}.
Therefore, from (12) and Cauchy–Schwartz inequality,

|�(y)− �(y′)|�L‖y − y′‖, (15)

where,L := sup{‖w‖ |w ∈ C}, and the result follows. �
Define now forx ∈ Rn, fx : Rn → R as

fx(v) :=�(JF (x)v)

= sup
w∈C

〈w, JF(x)v〉. (16)

From (14) it follows thatv is aK-descent direction atx, if and only if,fx(v)<0. Therefore,x isK critical
if and only if fx(v)�0 for all v ∈ Rn.
We can now extend the notion of steepest descent direction to the vector case (withK an arbitrary cone

satisfying the conditions stated at the beginning of Section 2).

Definition 3.2. Givenx ∈ Rn, theK-steepest descent direction (forF) atx, denoted byvx is the solution
of

min fx(v)+ (1/2)‖v‖2, v ∈ Rn. (17)

The optimal value of this problem will be denoted by�x .

Remark 1. In the scalar minimization case, whereF : Rn → R andK = R+, takingC = {1}, the
K-steepest descent direction is exactly the classical steepest descent direction, i.e.,vx =−∇F(x).
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Remark 2. For multicriteria optimization, whereK = Rm+, with C given by the canonical basis ofRm,
we retrieve the steepest descent direction proposed in[14].

Sincev �→ fx(v) is a real-valued closed convex function,vx and�x are well defined. Furthermore,
asF is continuously differentiable and� is Lipschitz continuous, the mapping(x, v) �→ fx(v) is also
continuous.

Lemma 3.3.

1. If x is K-critical thenvx = 0, �x = 0.
2. If x is not K-critical thenvx �= 0, �x <0,

fx(vx)<− (1/2)‖vx‖2<0
andvx is a K-descent direction.

3. The mappingsx �→ vx , x �→ �x are continuous.

Proof. Item 1. If x isK-critical, thenfx(v)�0 ∀v ∈ Rn. Sincefx(0)= 0, the conclusion follows.
Item 2. If x is notK-critical, then, for somev ∈ Rn, fx(v)<0. Observe thatfx(·) is positive homoge-

neous of degree 1. Taking

t̃ =−fx(v)/‖v‖2, ṽ = t̃v,

we get

fx(ṽ)+ (1/2)‖ṽ‖2= t̃fx(v)+ (1/2)t̃2‖v‖2
= − (1/2)fx(v)

2/‖v‖2<0.
Hence�x <0. The other statements of item 2 now follow trivially.
Item 3. Takex0 ∈ Rn and�>0. Define

S := {v ∈ Rn | ‖vx0 − v‖ = �}.
Note thatvx0 is optimal for (17) withx = x0. From (16) it follows thatfx(·) is convex, so the objective
function on the minimization problem (17) is strongly convex with modulus 1/2. It follows that,

fx0(v)+ (1/2)‖v‖2�fx0(vx0)+ (1/2)‖vx0‖2+ (1/2)�2 ∀v ∈ S.

Since the mapping(x, v) �→ fx(v) is continuous, andSis compact, using this equation we conclude that
there exists�>0 such that, if‖x − x0‖��, then

fx(v)+ (1/2)‖v‖2>fx(vx0)+ (1/2)‖vx0‖2 ∀v ∈ S.

Take nowx ∈ Rn, ‖x − x0‖��. As v �→ fx(v) + (1/2)‖v‖2 is convex, we conclude from the above
inequality thatvx , theminimizer offx(·)+(1/2)‖·‖2 is not in the region‖v−vx0‖��, hence‖vx−vx0‖��.
Continuity of�x follows now trivially. �

A possible choice forvk in Algorithm 1 is vxk , i.e., theK-steepest descent direction atx
k. Since

the computation ofvx requires the solution of (17), it would be interesting to work with approximated
solutions of this problem.
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Definition 3.4. Let � ∈ [0,1). We say thatv is a�-approximateK-steepest descent direction atx ∈ Rn if

fx(v)+ (1/2)‖v‖2�(1− �)�x,

or equivalently

fx(v)+ (1/2)‖v‖2− (
fx(vx)+ (1/2)‖vx‖2

)
��|�x |.

Observe that the (exact)K-steepest descent direction atx is always a�-approximateK-steepest descent
direction, because we assume� ∈ [0,1). Theexact K-steepest descent direction atx is the unique�= 0-
approximateK-steepest descent direction.

Lemma 3.5. Let� ∈ [0,1). If v is a�-approximate K-steepest descent direction at x, then

‖vx − v‖2�2�|�x |.
Proof. The function

v �→ fx(v)+ (1/2)‖v‖2

is strongly convex with modulus 1/2. Sincevx is the minimizer of this function,

fx(v)+ (1/2)‖v‖2− (
fx(vx)+ (1/2)‖vx‖2

)
�(1/2)‖vx − v‖2.

Using Definition 3.4, the conclusion follows.�

Let � ∈ [0,1) be a prespecified tolerance. From Lemmas 3.3 and 3.5, it follows thatv = 0 is a�-
approximateK-steepest descent direction atx if, and only if, x is K-critical. Note also that, ifx is not
K-critical andv is a�-approximateK-steepest descent direction atx, thenv is aK-descent direction, and
in particularv �= 0.
Now we formally state theK-steepest descent method (withK-Armijo rule, implemented with back-

tracking). This algorithm is a particular case of Algorithm 1.

Algorithm 2 (K-steepest descent method).

1. Choose� ∈ (0,1), � ∈ [0,1), x0 ∈ Rn. Setk := 0.
2. If xk is K-critical (i.e., if fxk (v)�0 for all v ∈ Rn) STOP.Otherwise,
3. Computevk, a �-approximate K-steepest descent direction atxk.
4. Compute the steplengthtk ∈ (0,1] in the following way:

tk := max{2−j | j ∈ N, �(F (xk + 2−j vk)− F(xk)− �2−j JF (xk)vk)�0}.
5. Setxk+1 := xk + tkv

k, k := k + 1 andGOTO2.
Observe that ifxk is notK-critical, thenvk obtained in step 3 is aK-descent direction andtk in step 4 is

well defined. Moreover, suchtk may be obtained by a backtracking procedure, as discussed previously.
Note that, by virtue of (13), in step 4 we have,

tk := max{2−j | j ∈ N, F (xk + 2−j vk)�KF(x
k)+ �2−j JF (xk)vk}. (18)
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Furthermore,xk+1 will satisfy F(xk+1)�KF(x
k). So, the objective values sequence{F(xk)} is K-

nonincreasing.
We finish this section with a generalization of Proposition 2.1, which is a simple consequence of the

fact thatF is continuously differentiable.

Proposition 3.6. Let� ∈ (0,1), x andv such thatJF(x)v≺K0.Then there exist̂t, �, �′>0 such that,

v′ is a K-descent direction atx′,
F (x′ + tv′)≺KF(x

′)+ �tJF (x′)v′

for anyt ∈ (0, t̂), x′ ∈ B(x; �), v′ ∈ B(v; �′).
Proof. By assumption,JF(x)v ∈ −int(K). So, there exists�>0 such that

JF(x)v + y ∈ −int(K) ∀y ∈ Rm, ‖y‖��. (19)

SinceJF is continuous, there exist�1, �2>0 such that if‖x′ − x‖��1, ‖v′ − v‖��2, then

‖JF(x′)v′ − JF(x)v‖��/2 (20)

and so

JF(x′)v′≺K0.

Continuity ofJF also implies that

F(z+ tu)= F(z)+ tJF (z)u+ tR(z, tu),

with lim t→0 ‖R(z, tu)‖=0 uniformlyfor zandu in compact sets. Therefore, there existst̂ >0 such that,
for t ∈ (0, t̂), ‖x′ − x‖��1, ‖v′ − v‖��2,

‖R(x′, tv′)‖�(�/2)(1− �). (21)

Now, assume thatt ∈ (0, t̂), ‖x′ − x‖��1, ‖v′ − v‖��2. Then

F(x′ + tv′)=F(x′)+ tJF (x′)v′ + tR(x′, tv′)
=F(x′)+ t�JF(x′)v′ + t[(1− �)JF (x′)v′ + R(x′, tv′)].

Defining

u := JF(x′)v′ + (1− �)−1R(x′, tv′), (22)

we have

F(x′ + tv′)= F(x′)+ t�JF(x′)v′ + t (1− �)u. (23)

It suffices to see thatu≺K0. Observe that

u= JF(x)v + ỹ, (24)
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whereỹ := JF(x′)v′ − JF(x)v + (1− �)−1R(x′, tv′). Using (20) and (21),

‖ỹ‖�‖JF(x′)v′ − JF(x)v‖ + (1− �)−1‖R(x′, tv′)‖
��.

Therefore, using (19) and (24) we conclude thatu≺k0 and so, the result follows from (23).�

4. Convergence analysis: the general case

From now on,{xk}, {vk}, {tk} are sequences generated byAlgorithm 2. If the algorithm terminates after
a finite number of iterations, it terminates at aK-critical point. In this section, we suppose that an infinite
sequence{xk} is generated. So, in view of Lemma 3.3, Definition 3.4 and Proposition 3.6, for allk,

�xk <0,

fxk (v
k)+ (1/2)‖vk‖2�(1− �)�xk <0,

F (xk+1)�KF(x
k)+ �tkJF (x

k)vk�KF(x
k).

In particular the sequence{F(xk)} isK-decreasing.
Using the aboveK-inequality, Lemma 3.1 and the positive homogeneity of�, it follows that for allk,

�(F (xk+1))��(F (xk)+ �tkJF (x
k)vk)

��(F (xk))+ �(�tkJF (x
k)vk)

=�(F (xk))+ �tk�(JF (x
k)vk)

=�(F (xk))+ �tkfxk (v
k)

��(F (xk))+ �tk
(
(1− �)�xk − (1/2)‖vk‖2

)
. (25)

As a consequence of this scalar inequality we obtain the following lemma.

Lemma 4.1. If {F(xk)} is K-bounded from below, (i.e., if there existsȳ such thatȳ�KF(x
k) for all k)

then, ∑
tk|�xk |<∞,

∑
tk‖vk‖2<∞.

Proof. Adding inequality (25) fromk = 0 tonwe get,

�(F (xn+1))��(F (x0))+
n∑

k=0
�tk((1− �)�xk − (1/2)‖vk‖2)

=�(F (x0))−
n∑

k=0
�tk

(
(1− �)|�xk | + (1/2)‖vk‖2

)
.

If ȳ�KF(x
k) for all k, then�(ȳ)��(F (xk)) for all k and the conclusion follows.�

Now we are in conditions of studying the convergence properties of Algorithm 2.
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Theorem 4.2. All accumulation points of{xk} are K-critical.
Proof. Let x̄ be an accumulation point of{xk}. Then there exists a subsequence{xkj } converging tox̄,

lim
j→∞ xkj = x̄.

Note that{v
x
kj } and{�xkj } are bounded because they converge tovx̄ and�x̄ , respectively. Therefore, using

Lemma 3.5 we conclude that{vkj } is also bounded. So (refining the original sequence if necessary), we
may also assume that{vkj } converges to somēv,

lim
j→∞ vkj = v̄.

For allk, fxk (v
k)+ (1/2)‖vk‖2�(1− �)�xk . Taking limits alongk = kj for j →∞ we get,

fx̄(v̄)+ (1/2)‖v̄‖2�(1− �)�x̄ . (26)

Recall that Algorithm 2 is a particular case of Algorithm 1, so by Proposition 2.2,F(x̄) is aK-lower
bound for{F(xk)}. Now we may apply Lemma 4.1 to conclude that,

lim
j→∞ tkj �xkj = 0, (27)

lim
j→∞ tkj ‖vkj ‖ = 0. (28)

We claim that

v̄ = 0. (29)

Suppose, for contradictory purposes, thatv̄ �= 0.As�x̄ �0, using (26)wegetfx̄(v̄)<0.UsingProposition
3.6 we conclude that there existst̂ >0 such that, forj large enough (greater than somej0)

F(xkj + tvkj )�KF(x
kj )+ �tJF (xkj )vkj ∀t ∈ [0, t̂). (30)

Now we will show that forj larger than suchj0,

2tkj � min{1, t̂}. (31)

Indeed, letj > j0. If tkj =1, the claim holds. Iftkj <1, then, this stepsize was obtained by a backtracking
procedure, where the “previous” possible stepsize 2tkj does not satisfy the descend condition, or equiva-
lently, 2tkj does not belong to thekj th set in (18). Now using (30) we conclude that 2tkj � t̂ and the claim
holds also in this case.
The assumption̄v �= 0 also implies, by (28), that limj→∞ tkj = 0, which contradicts (31).
To end the proof, use (26) and (29) to obtain�x̄ �0. Since�x �0 for anyx, we conclude that�x̄ = 0

andx̄ isK-critical. �

5. Scalarization and Algorithm 2

A very useful method for solving problem (1) is the so-called scalarization procedure. The method is
quite elegant; it consists of minimizing a certain scalar function, as explained in the sequel. Take some
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w ∈ int(K∗) and defineg : Rn → R,

g(x)= 〈w,F(x)〉. (32)

Then, solutions of

min g(x), x ∈ Rn

are also solutions of (1). So, we only need to minimize a (smooth) scalar function, and for this problem
there are many efficient algorithms. The choice ofw ∈ int(K∗) is of capital importance. Indeed, for
very well behaved problems, many choices ofw lead to unbounded scalar minimizations problems. For
example, in multiobjective optimization, letF : R → R2,

F(x)=
(
x,

√
1+ x2

)
.

Note thatF is component-wise convex. In this context,K = K∗ = R2+, andy�Ky
′ meansyi �y′i , for

i = 1,2. Hence, suchF is K-convex. If we takew = (w1, w2)>0, with w1>w2, then the scalarized
problem is unbounded. Of course, algorithms for choosingw are quite desirable.
Oncewe have a very simple example in which the “wrong” choice ofw breaks down themethod, a very

natural question is how does theK-steepest descent method behave in this example. First of all, observe
that, in the above example, the set ofK-critical points is given by the halfline(−∞,0]; furthermore, it
coincides with theK-optimal set. Let{xk} be the sequence generated by Algorithm 2. If this sequence is
finite, then the last iterate isK-critical, and therefore optimal. Suppose that the algorithm does not stop.
Observe that, in this example, for anyx̃ ∈ R2, the set

{x ∈ R2 |F(x)�F(x̃)}
is bounded.As{F(xk)} isK-nonincreasing, it follows that{xk} is bounded.So, it hasaccumulationspoints,
all of which, by Theorem 4.2, areK-critical (henceK-optimal). Furthermore, if̄x, x̂ are accumulation
points, thenF(x̄)= F(x̂). This readily implies (in this particular example)x̂ = x̄. So{xk} converges to
a solution.
It would be desirable to combine some ideas presented in the preceding sections with the scalarization

method. Indeed, they are connected. Observe that, forg defined as in (32),

∇g(x)= JF(x)tw.

So, the steepest descent direction forg at x is −JF(x)tw. Takex̄ ∈ Rn. We claim that for a suitable
w ∈ K∗, the steepest descent direction for the scalarized objective functiong at x̄ coincides with the
K-steepest descent directionvx̄ . To prove this claim, define

C̃ = conv(C).
Obviously,C̃ is a convex compact set and�(y)= supw∈C̃〈w, y〉. TheK-steepest descent direction atx̄ is
the solution of (17) withx = x̄, which may also be written as

min
v∈Rn

max
w∈C̃

(〈w, JF(x̄)v〉 + (1/2)‖v‖2) . (33)
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The dual of this problem is

max
w∈C̃

min
v∈Rn

(〈w, JF(x̄)v〉 + (1/2)‖v‖2). (34)

Trivially,

arg min
v∈Rn

〈w, JF(x̄)v〉 + (1/2)‖v‖2=−JF(x̄)tw,
min
v∈Rn

〈w, JF(x̄)v〉 + (1/2)‖v‖2= (−1/2)‖JF(x̄)tw‖2.

Hence, problem (34) may be simplified to

max
w∈C̃

−(1/2)‖JF(x̄)tw‖2 (35)

or, equivalently,

min
w∈C̃

(1/2)‖JF(x̄)tw‖2. (36)

SinceC̃ is convex and compact, problem (34) has always a solution, saywx̄ (which may not be unique)
and there is no duality gap. In particular,(vx̄, wx̄) is a saddle point of〈w, JF(x̄)v〉+(1/2)‖v‖2 inRn×C̃:

〈w, JF(x̄)vx̄〉 + (1/2)‖vx̄‖2�〈wx̄, JF (x̄)vx̄〉 + (1/2)‖vx̄‖2�〈wx̄, JF (x̄)v〉 + (1/2)‖v‖2

for all (v,w) ∈ Rn × C̃. So,

vx̄ =−JF(x̄)twx̄ (37)

andwx̄ ∈ C̃ ⊆ K∗. Takingw =wx̄ in (32) we get−∇g(x)=−JF(x)twx̄ , and so−∇g(x̄)= vx̄ , as we
claimed.
Since there is no duality gap in (33)–(35), using (37) we get,

�x̄ =−(1/2)‖vx̄‖2,
where�x̄ is the optimal value of problem (17) forx = x̄, so

�(JF (x̄)vx̄)=−‖vx̄‖2.
Nowwewill prove that approximate solutions of the dual problem (34) (or (35), (36)) yield approximate

solutions of (33), i.e., approximateK-steepest descent directions atx.

Proposition 5.1. Letx ∈ Rn be non K-critical and� ∈ (0,1).There exists�>0 such that, if w̃ ∈ C̃ and

(1/2)‖JF(x)t w̃‖2− (1/2)‖JF(x)twx‖2��,

thenṽ =−JF(x)t w̃ is a�-approximate K-steepest descent direction at x.

Proof. Define

ε =−��x.



L.M. Graña Drummond, B.F. Svaiter / Journal of Computational and Applied Mathematics 175 (2005) 395–414409

As x is nonK-critical, �x <0, and soε >0. Since the objective function on (12) andJF are continuous,
there exists�>0 such that

‖v − vx‖�� ⇒ �(JF (x)v)+ (1/2)‖v‖2��(JF (x)vx)+ (1/2)‖vx‖2+ ε.

So,‖v − vx‖�� implies thatv is a�-approximateK-steepest descent direction atx.
Optimality ofwx for (36), convexity of̃C and the hypothesis̃w ∈ C̃ imply

〈JF(x)t (w̃ − wx), JF (x)
twx〉�0.

Hence, using the equalitiesṽ =−JF(x)t w̃, vx =−JF(x)twx ,

‖JF(x)t w̃‖2�‖JF(x)twx‖2+ ‖JF(x)t (w̃ − wx)‖2
=‖JF(x)twx‖2+ ‖ṽ − vx‖2.

Therefore,

‖ṽ − vx‖�
√
‖JF(x)t w̃‖2− ‖JF(x)twx‖2.

So, it is enough to take�= �2/2>0. �

Letw ∈ C̃ be an approximate solution of (35) (or (36)). A question of practical relevance is whether
v = −JF(x)t w̃ is a�-approximateK-steepest descent direction atx. In our next proposition we give a
sufficient condition for�-approximation.

Proposition 5.2. Take� ∈ [0,1), w ∈ C̃ and definev =−JF(x)tw. If
�(JF (x)v)� − (1− �/2)‖v‖2,

thenv is a�-approximate K-steepest descent direction at x.

Proof. We already know that (17) (or (33)) and (35) are a primal-dual pair of problems. Sincew is dual
feasible,

−(1/2)‖JF(x)tw‖2��x.

Therefore, making the substitutionv =−JF(x)tw we get
(1− �)(−1/2)‖v‖2�(1− �)�x. (38)

Hence, if

�(JF (x)v)� − (1− �/2)‖v‖2,
from (38) it follows thatv =−JF(x)tw is a�-approximateK-steepest descent direction.�

In the following section, we will show a theoretical advantage of using descent directions as discussed
in Propositions 5.1, 5.2. From now on, we will say thatv is scalarization compatible, or s-compatibleif
there exist somew ∈ C̃ such that

v =−JF(x)tw = ∇x〈w,F(x)〉.
Note thatvx , theexact K-steepest descent direction atx, is always s-compatible.
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6. Convergence analysis: theK-convex case

Throughout this section we will assume thatF isK-convex, i.e.,

F(�x + (1− �)x′)�K�F(x)+ (1− �)F (x′)

for all x, x′ ∈ Rn and all� ∈ [0,1]. Under this additional assumption we have the following extension of
the classical gradient inequality to the vector case:

F(x)+ JF(x)(x′ − x)�KF(x
′),

for anyx, x′ ∈ Rn (see[19, Lemma 5.2]).
As in the general case, here also optimality impliesK-criticality. A point x∗ ∈ Rn is aweak uncon-

strained K-minimizer(or weak K-optimum) of F, or weak Pareto minimal element forF (see[19]), if
there is nox ∈ Rn with F(x)≺KF(x

∗). A well known fact is that, under theK-convexity assumption on
the objective functionF, K-criticality andweakoptimality are equivalent conditions.
If the algorithm has finite termination, the last iterate isK-critical and hence a weak unconstrained

K-minimizer ofF. We will study the case in which the algorithm does not have finite termination and
therefore produces infinite sequences{xk}, {vk} and{tk}. Let us now establish the additional assumptions
underwhichwewill prove full convergence of{xk} to aK-critical point or, in viewof the above discussion,
to a weak unconstrainedK-minimizer ofF.

A1. EveryK-decreasing sequence in the image ofF

{yk} ⊆ {F(x) | x ∈ Rn}
isK-bounded below by a point in the image ofF.

A2. All vk ’s are scalarization compatible, i.e., there exists a sequence{wk} in C̃ such that,
vk =−JF(xk)twk, k = 0,1, . . .

Some comments concerning the generality/restrictiveness of these assumptions are in order. Regarding
AssumptionA1, in the case of classical unconstrained (convex) optimization, this condition is equivalent
to existence of solutions of the optimization problem. This assumption, known asK-completeness, is
standard for ensuring existence of efficient points for vector optimization problems (see[19, Section
3]). Assumption A2 deals with the implementation of the algorithm rather than withF. This assumption
holds if eachvk is theexact K-steepest descent direction atxk (see (37)). Of course, Assumption A2
applies to the sequence of directions{vk} prescribed by the algorithm, i.e., we are assuming thatvk is an
s-compatible�-approximateK-steepest descent direction for allk.
We will need the following technical lemma in order to prove that theK-steepest descent method is

convergent.

Lemma6.1. Suppose that F is K-convex and thatvk is scalarization compatible(atxk). If F(x̂)�KF(x
k)

then

‖x̂ − xk+1‖2�‖x̂ − xk‖2+ ‖xk+1− xk‖2.
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Proof. By assumption, there exists somewk ∈ C̃ such that

vk =−JF(xk)twk.

Using theK-convexity ofF we haveF(xk)+ JF(xk)(x̂ − xk)�KF(x̂). SinceF(x̂)�KF(x
k), we get

JF(xk)(x̂ − xk)�K0.

Taking into account thatwk ∈ K∗ and using the above results we get

−(vk)t (x̂ − xk)= (wk)tJF (xk)(x̂ − xk)�0.

Recall thatxk+1= xk + tkv
k, with tk >0. Therefore

(xk − xk+1)t (x̂ − xk)�0,

which implies the desired inequality, because

‖x̂ − xk+1‖2= ‖x̂ − xk‖2+ ‖xk − xk+1‖2+ 2(xk − xk+1)t (x̂ − xk). �

Before stating our convergence result, we recall that a sequence{yk} ⊂ Rm is quasi-Fejér convergent
[10,11] to a setU ⊂ Rm if for everyu ∈ U there exists a sequence{�k} ⊂ R, �k�0 such that

‖yk+1− u‖2�‖yk − u‖2+ �k for all k = 1,2, . . . ,
with

∞∑
k=1

�k <∞.

We will also need the following result concerning quasi-Fejér convergent sequences, whose proof can
be found in[4,18].

Theorem 6.2. If the sequence{yk} is quasi-Fejér convergent to a nonempty setU ⊂ Rm, then{yk} is
bounded. If furthermore a cluster point y of{yk} belongs to U, thenlimk→∞yk = y.

In [4], it is proved that the steepest descent method for smooth (scalar) convex minimization, with
stepsize obtained using backtracking andArmijo rule, is globally convergent to a solution (under the sole
assumption of existence of optima).We will extend those results to theK-steepest descent method, using
the same techniques as in[4].

Theorem 6.3. Suppose that F is K-convex and that AssumptionsA1, A2 hold. Then{xk} converges to a
K-critical point x∗.

Proof. First of all, observe that all results of Section 4 are still valid under the additional assumptions of
this theorem. In particular,{F(xk)} is aK-decreasing sequence, so, using Assumptions A1, there exists
an x̄ ∈ Rn such that,

F(x̄)�KF(x
k) ∀k ∈ N. (39)
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Now observe that 0< tk�1 for all k. Hence

tk‖v(xk)‖2= 1

tk
‖xk+1− xk‖2�‖xk+1− xk‖2. (40)

Therefore, from (39), (40) and Lemma 4.1 it follows that

∞∑
k=1

‖xk − xk+1‖2<∞.

Define

L := {x ∈ Rn |F(x)�KF(x
k) ∀k ∈ N}.

Note thatx̄ ∈ L, soL is nonempty. Using Assumption A2 and Lemma 6.1, we conclude that for any
x ∈ L (andk ∈ N),

‖x − xk+1‖2�‖x − xk‖2+ ‖xk − xk+1‖2.
Since

∑∞
k=1‖xk − xk+1‖2<∞, we conclude that the sequence{xk} is quasi-Fejér convergent to the set

L. As L is nonempty, from Theorem 6.2 it follows that{xk} has accumulation points. Letx∗ be one of
them. By Proposition 2.2,x∗ ∈ L. Then, once again by virtue of Theorem 6.2, it follows that the whole
sequence{xk} converges tox∗. We finish the proof by observing that Theorem 4.2 guarantees thatx∗ is
K-critical. �

7. Vector optimization and the abstract equilibrium problem

In this section, we discuss the connection between the problem of seeking a weak constrainedK-
minimizer and the Abstract Equilibrium problem. We will see that by means of the function�, defined
in (12), the first problem can be viewed as a particular case of the second one.
TheWeak Constrained K-Minimization problem[19] is defined in the following way:
Given closed convex pointed cones with nonempty interiorK ⊂ Rm,Ki ⊂ Rmi , i = 1,2, . . . , r, the

corresponding induced orders:x≺Ky if y − x ∈ int(K), u�Ki
v if v − u ∈ Ki , and

F : Rn → Rm, K-convex and continuously differentiable,
Gi : Rn → Rmi ,Ki-convex, for alli = 1,2, . . . , r,
find x∗ ∈ M={x ∈ Rn |Gi(x)�Ki

0, for 1�i�r} such that there does not exist any otherx ∈ M with,
F(x)≺KF(x

∗).
TheAbstract Equilibrium problem[3] can be stated in the following way: GivenM, a nonempty closed

convex set in a Hausdorff topological vector space and

f : M ×M → R

such that
f (·, y) is upper semicontinuous for ally ∈ M,
f (x, ·) is convex and lower semicontinuous for allx ∈ M,
f (x, x)= 0 for all x ∈ M,
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find x̄ ∈ M with the property that

f (x̄, y)�0 for all y ∈ M.

Taking

M = {x ∈ Rn |Gi(x)�Ki
0 for 1�i�r}

as in the weak constrainedK-minimization problem, and

f (x, y) := �(F (y)− F(x)),

where�was defined in (12), we have that the solution set of this equilibrium problem is exactly the same
as the solution set of the weak constrainedK-minimization problem. Observe that the weak unconstrained
K-minimization problem is a particular case of the constrained one and, therefore, can also be solved by
means of methods for solving the equilibrium problem (and conversely). So we can findK-critical points
for problem (1) via the equilibrium problem formulation.

8. Final remarks

In this work we proposed for vector unconstrained minimization an extension of the standard steepest
descent method. We showed that all cluster points of the sequences produced by the method satisfy a
certain first-order condition forK-optimality, known asK-criticality. UnderK-convexity of the objective
function and assuming a very reasonable condition on the objective function, we proved that we have full
convergence of the method, when performed, for example, with the exactK-steepest descent direction at
each iteration. In this situation, no matter how bad is our initializing point, the method will converge to a
K-critical point, or, in other words, to a weak unconstrainedK-minimizer.As in the one-dimensional case,
using the notion of quasi-Fejér convergence, we could prove convergence of themethodwithout assuming
aLipschitz condition on the objective’s Jacobian andwithout bounded level sets requirement. Incidentally,
we showed that everyweak constrainedK-minimization problemcanbeviewedasaparticular equilibrium
problem.
It is worth mentioning that the compact setC ⊂ K∗ used throughout the whole work is essential for

defining theK-steepest descent direction (or approximations of it). So, somehow,C plays the role of a
sort of “gauge”. Perhaps, it would have been better to define the “gauged”K-steepest descent direction,
or theK-steepest descent direction modulusC, instead of simply theK-steepest descent direction. This
would make the notation more clear but certainly heavier.
Regarding the implementation of the method, we mention that whenK (thereforeK∗) is finitely

generated, theK-steepest descent direction can be easily computed. In the general case, approximate
K-steepest descent direction can be computed solving approximately (36) and using Proposition 5.1 or
Proposition 5.2. Other possibility is to solve (17) using a bundle method technique[17].
We expect that, in spite of the possible drawbacks of the method, as in the single-valued case, it

will furnish a prototype for more sophisticated and efficient algorithms for solving vector optimization
problems.Sowe think that a full understandingof the structure and convergencebehavior of theK-steepest
descent method is indeed relevant.
The extension to vector optimization of more efficient algorithms, as, for instance, Newton’s and

quasi-Newton methods, and its convergence analysis are left as open problems for future research.
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