
JOURNAL OF ALGEBRA 14, 371-389 (1991) 

Actions of Divided Power Hopf Algebras 

WILLIAM CHIN 

Department of Mathematics, DePaul University, 
Chicago, Illinois 60614 

AND 

DECLAN QUINN 

Department of Mathematics, Syracuse University, 
Syracuse, New York 13244 

Communicated by Nathan Jacobson 

Received November 10, 1989 

We study prime ideals in enveloping algebra smash products and use a duality 
construction to obtain results on prime ideals in rings on which divided power 
Hopf algebras act. These actions correspond to higher derivations. First, we 
consider chains of prime ideals in an enveloping algebra smash product over an 
arbitrary ring, where the Lie algebra is assumed to be finite dimensional abelian 
over a field of positive characteristic. We give a bound on the length of such a chain 
where the ideals all have the same intersection with the coefftcient ring Then using 
an explicit construction of a duality theorem of Blattner and Montgomery in this 
context, we are able to apply results on enveloping algebra smash products to study 
the invariant ideals of prime ideals in a ring, under a locally nilpotent divided 
power Hopf algebra action. 0 1991 Academic Press, Inc. 

INTRODUCTION 

In this paper we study prime ideals in enveloping algebra smash 
products and use a duality construction to obtain results on prime ideals 
in rings with divided power Hopf algebra actions. These Hopf algebras 
have a divided power coalgebra structure as well as a divided power com- 
mutative algebra structure. Over a perfect field, they are a special case of 
general pointed irreducible cocommutative Hopf algebras which are always 
divided power coalgebras [17]. In characteristic zero, these Hopf algebras 
are just enveloping algebras of abelian Lie algebras, but in positive charac- 
teristic p, these objects may be finite or infinite dimensional, and their 
actions correspond to higher derivations. 

A crucial observation for using “duality” is that in any characteristic the 
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dual H’ of a divided power Hopf algebra H is a tensor product of an 
enveloping algebra and a restricted enveloping algebra. We use this fact to 
apply results concerning prime ideals for actions of these two types of Hopf 
algebras, along with duality, to obtain results concerning prime ideals in 
smash products and invariant ideals. While we limit the applications in this 
paper to the study of primes, it seems that the duality methods employed 
should yield other applications in this setting. 

Divided power Hopf algebra actions arise, for example, in the study of 
rings of differential operators of afline varieties [ 151 and in the study of 
purely inseparable field extensions [18]. In fact the simple algebra Af(k) 
used in this paper is precisely the ring of differential operators of the affine 
line in positive characteristic. 

The first section of the paper focuses on bounding lengths of chains of 
prime ideals in smash products of enveloping algebras of abelian Lie 
algebras over a field of nonzero characteristic. The main result in this 
section is Theorem 1.10. The proof depends on results for restricted Lie 
algebras along with the observation that the enveloping algebra here is 
actually a restricted enveloping algebra of a certain infinite dimensional 
restricted Lie algebra. The characteristic zero version of Theorem 1.10 was 
proved in [3]. If R is Noetherian and k has characteristic zero, 
Passman [12] has obtained the same result without assuming that L is 
abelian. 

The second section deals with duality for divided power Hopf algebras 
H acting “locally nilpotently” on an algebra R, describing the duality 
construction via explicit embeddings in certain simple rings of differential 
operators which are analogs of the Weyl algebras. This approach is a 
special case of the duality theorem of Blattner and Montgomery [2, 
Theorem 2.11. This duality, begun by Cohen and Montgomery [6], and 
continued by Blattner and Montgomery, has motivated similar construc- 
tions dealing with various Hopf algebra actions on rings. Cohen and 
Montgomery used their construction to apply known theorems about 
crossed products of finite groups to prove results on group-graded rings. 
For example that paper includes a generalization of Incomparability for 
crossed products of finite groups. Later, a similar but more concrete 
construction for infinite group-graded rings was employed to use results 
concerning crossed products of infinite groups to obtain results for rings 
graded by infinite groups [ 13, 51. A special case of duality for certain 
enveloping algebra actions was given in [ 111. This has been used to study 
certain smash products of enveloping algebras in characteristic zero 
[lo, 143. What is done here is to show that this latter approach can be 
employed, via the Blattner-Montgomery theorem, to study prime ideals in 
positive characteristic divided power Hopf algebra smash products, as well 
as in rings upon which such Hopf algebras act. 
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In the third section we record some results on finite dimensional 
irreducible Hopf algebra actions which we need for our applications. 

Section 4 shows how the machinery of Section 2 along with results from 
Sections 1 and 3, as well as known results on enveloping algebra smash 
products, can be applied. Let R be an algebra on which the divided power 
algebra H acts locally nilpotently. Our results focus on chains of prime and 
H-prime ideals of R, and chains of prime ideals of the smash product 
R # H. We obtain a bound on the lengths of chains of primes of R each 
having the same H-invariant ideal. Theorem 4.5 gives upper and lower 
bounds for the Krull dimension of R # U(L) in characteristic zero when L 
is a finite dimensional and abelian Lie algebra. 

1. SMASH PRODUCTS OF POSITIVE CHARACTERISTIC ENVELOPING ALGEBRAS 

The main result of this section determines a sharp bound on the lengths 
of chains of prime ideals in a cocycle twisted smash product (crossed 
product) R * U(L) where L is an abelian Lie algebra over a field k of 
positive characteristic p and R is an algebra over k. 

Let Spec,(R * H) denote the set of prime ideals of R * H having zero 
intersection with R; H-Spec(R) denotes the set of H-prime ideals of R. 

Let L be a Lie algebra acting as derivations on R. Let U(L) and u(L) 
denote the universal enveloping algebra and restricted enveloping algebra 
(if L is a restricted Lie algebra) of L. In characteristic p > 0, we set 

LA = 1 kxP’ 
XGL 
iZ0 

the closure of L in U(L) under pth powers. This makes LA into a restricted 
Lie algebra in with the obvious pth power map. Also notice that the 
elements of LA act as restricted derivations on L. In Hopf algebraic 
language this means LA consists of primitive elements. In fact we have 

LEMMA 1.1. With L and L A as above, we have U(L) = u( L * ). 

Proof This is easily verified directly by considering PBW bases or one 
can note that U(L) is a pointed irreducible cocommutative Hopf algebra 
which is generated by its Lie algebra of primitives (which is precisely L * ). 
The result then follows from [16]. 1 

If R is an L-prime ring, S shall denote the symmetric quotient ring R. 
Twisted (restricted) enveloping algebra smash products are constructed in 
[3,4] (denoted there simply by R * L) and it is shown in those papers that 
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R * U(L) extends uniquely to S * U(L) and R * u(L) extends uniquely to 
s * u(L). 

We briefly describe the construction here. Let L be a Lie algebra where 
each element of L corresponds to a derivation of R. R * U(L) has under- 
lying k-space R @ U(L). The multiplication is determined by the formulas 

.fr - r.f = x . r, 

xj - jx = [x, y] - t(x, y), 

whereZ,jElQL,rER,andt:LxL -+ R is a bilinear twisting. R * u(L) is 
defined by using u(L) in place of U(L) and adding the relation 
Xp = 2 + n(x) where rc: L + R is an additional twisting of the restricted Lie 
algebra L. 

Given a smash product of this kind we say that L “acts” on R, although 
here the action L -+ Der, R need not be a (restricted) Lie homomorphism 
but is “cocycle” twisted so that the resulting smash product is associative. 
We shall say that L is R-inner or L is inner on R if for all XE L, there exists 
de R such that x. r = dr - rd, all r E R; that is, L acts as inner derivations 
on R. 

We are mainly interested in actions in the usual sense and in the 
ordinary smash product R # u(L), where L acts via a Lie homomorphism, 
but in dealing with these we are compelled to deal with the more general 
Lie-cocycle twisted construction. For example if K is a restricted ideal of L 
then R # u(L) = (R # u(K)) * u(L/K), an iterated twisted smash product. 
These remarks also apply for ordinary enveloping algebras. 

More about the twisted smash product constructions and extensions to 
the quotient ring may be found in [3,4]. 

Our basic strategy for dealing with U(L) = u(L A ) is to use the Ideal 
Intersection Property (nonzero L-invariant ideals of R * u(K) have nonzero 
intersection with R where K is a certain restricted ideal of L) to deal with 
the case where L h has no S-inner restricted Lie subalgebra of finite 
codimension. This allows us to reduce the problem to dealing with finite 
dimensional restricted enveloping algebra smash products and inner smash 
products of universal enveloping algebras. The following three theorems 
and their corollaries form the basic ingredients in this approach. 

Let F denote Z(S)L, the subring of L-constants of the extended center of 
the L-prime ring R. F is a field by [4, Lemma 71. Below we use the fact 
that F@ L acts as F-linear derivations on the F-algebra S. The following 
extends [4, Theorem 111. 

THEOREM 1.2. Let L be a restricted Lie algebra with Ka L a central 
restricted ideal. Let R * u(L) be given and assume that R is an L-prime ring 
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with quotient ring S. If no nonzero element of FQ L is inner in S, then 
R * u(K) has the ideal intersection property for L-invariant ideals. 

Proof. Let Z be a nonzero L-invariant ideal of R * u(K) and suppose 
that In R = 0. Fix a basis (xi> for K. Let m be minimal among the total 
degrees of nonzero elements of I. Our assumption on Z implies that m > 0. 
Let V denote the set of dim K-tuples v, over Z + with finite support and let 

(VI =C vi=m. 

Further, let W denote a subset of V of minimal size subject to the condition 
that there is a nonzero element CXEZ with Ia\ =m, and Supp,(a)=Xw= 
(X’IVE W]. 

Define, for dim K-tuples v, 

A,= rERIthereexistsa=xCrSXSEIwith 
1 

cr,=r,Sup~,(cl)cx~,andlal~m . 
I 

Observe that for y E L, c1 as in the definition of A,, and o E W, 

[j,al= C 6,(cr,)?+a_EI, k-1 cm, 
Ire w 

using the fact that [K, L] = 0. It follows that 6,(a) E A, for a E A, and thus 
A, is a nonzero L-invariant ideal of R. 

Fix o E W and let A = A,. We may assume that our basis was chosen so 
that o = (w,, 02, . ..) with wi > 0. Define maps fv : A + 4, as follows. Let 
aE A and let a be as in the definition of A = A,. It follows from the 
minimality of W that this a depends only on a. Write 

a = C a,.? 

and define afv = a,. The fr are easily seen to be left R-module maps. 
Furthermore, if c E W, fi is actually an R-R bimodule map. Note that f. 
is the identity map. 

Let c E W and let cC be the element of the extended center of R represen- 
ted by fi. Note that c, = 1. Fix [ E W and set c = cc, f = fc. We claim that 
c E F, the L-extended center of R. To see this, let y E L and note that, by 
the formula for [ y, a] above and the definition off, we have 
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Therefore, 
d;,.(u)c = bl,(ac). 

Thus we conclude that aS,(c) = 0, and so A$( c) = 0. Therefore 6,(c) = 0, 
showing that c E F. 

Set 0’ = (0, - 1, w 2, . ..). (Recall that wi >O.) UsingrER, SEA, and crel 
as above, compute 

cw= 1 a,i?V+a,.Pr+ ... 
PC w 

where we omit terms of degree less than m except for the 2”’ term. Given 
i > 0, let p = p(i) be the element of V with pi = w( + 1. In particular 
p( 1) = o. Observe that the coefficient of 2”” in c(r depends on these i’s and 
in fact, this coefficient is 

a,,r + C a,cijP(i)i 6Jr). 

Now by the definition off,, we have 

(ar)fac = (afws)r + 1 (af,cij) PL(i)iSi(r)- 

Furthermore letting s denote the element of the left quotient of R represen- 
ted by f,,, we see that 

ars = a 
( i 

sr + C cvCi,p(i),Si(r) . 
> 

Thus 

A 
( 

rs - sr - C (~~(~)pL(i)~) ai = 0, 
I > 

so we see that 

Cs3 1 = 1 Pti)icp(i) 6i 

as a derivation of R (and hence of S). Thus 

is inner in the left quotient ring of R. But now [3, Lemma 1.11 applies to 
show that s E S. 
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We saw above that cP E F since p E W, so 

is an F-linear combination of X~E K which is inner in S. This linear com- 
bination is nonzero because when i = 1, we have p = o, cl, = 1, and 
0 < pi < p, so the proof is complete. 1 

COROLLARY 1.3. Let R * u(K) be as in the theorem and consider the 
extension to S * u(L). Then S * u(K) has the ideal intersection property for 
L-invariant ideals. 

Proof: Observe that every nonzero ideal of S * u(K) intersects R * u(K) 
in a nonzero ideal. By the ideal intersection property, this ideal has 
nonzero intersection with R and hence with S. 1 

Let Ki,, denote the restricted Lie ideal of KF (= FO K) consisting of the 
F-linear combinations of elements of K whose action on S is inner in S. In 
particular if Kin” = 0, then the hypotheses of the theorem are satisfied. 
Hence we have 

COROLLARY 1.4. Let L be a restricted Lie algebra with Ka L a central 
restricted ideal and consider R * u(K) c S * u(K); tf Kinn = 0, then both 
R * u(K) and S * u(K) have the ideal intersection property for L-invariant 
ideals. 

The following is the main result of [4]. 

THEOREM 1.5 (Incomparability). Let R * u(L) be given where L is a 
finite dimensional abelian restricted Lie algebra. If PI c P2 are prime ideals 
ofR*u(L), then P,nR<P,nR. 

The next result follows immediately from the previous theorem and [4, 
Lemma 181. 

LEMMA 1.6. Let R * u(L) be given and assume that L has a restricted 
ideal K with L/K finite dimensional abelian. Let QI < Q, be prime ideals of 
R * u(L) having equal intersections with R. Then there exist prime ideals 
Q; < Qb of R * u(K) such that Q; is the unique minimal covering prime of 
Qin(R*u(K)) (i=1,2) andQ;nR=Q;nR. 

THEOREM 1.7. (a) [3, Lemma 2.81. Let R * U(L) be given with R 
being an L-prime ring. Then Spec,(R * U(L)) embeds in Spec,(S * U(L)) via 
an inclusion preserving map. 
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(b) [4, Theorem 171. Let S he a centrally closed prime ring with 
center C. Let E be a C-algebra. Then Spec,(SOc E) is in bijection with 
Spec E via the inclusion-preserving maps 

P--+PnE, P E Spec,( S 0 E) 

L-SOL, L E Spec( E). 

COROLLARY 1.8. Let R * U(L) be given. Assume that R is a prime ring 
and the action of L is R-inner. Then Spec,(R * U(L)) embeds in Spec(E) via 
an inclusion-preserving map, where E is some twisted product C,[ U(L)] over 
a field C. 

ProoJ Let S denote the symmetric quotient ring of R, and note that, 
since L is R-inner, L is certainly also S-inner. By [3, Theorem 1.43, S is a 
centrally closed prime ring. There it is also shown that S * U(L) is 
isomorphic to SO, E where E is of the stated form and C, the center of 
S, is a field. Thus the result follows from parts (a) and (b) of the previous 
theorem. 1 

Chains of Prime Ideals 

We need the following lemma after which we conclude with the main 
result of this section. 

LEMMA 1.9. Let L be a finite dimensional abelian Lie algebra over afield 
F of positive characteristic p. Let K be a restricted ideal of L A with the 
property that for each nonzero element x E L, (Fx) A n K is nonzero. Then K 
is of finite codimension in L A. 

Proof: Fix a basis xi, x2, . . . . xd for L over F and set x =x,. Using the 
hypothesis concerning x, multiplying by a scalar if necessary, we obtain 

m-1 

xPm - ,To C,X~‘E K, 

and thus 

m-l 
XPs+mE 1 cpsxP’+s 

(mod K), 

i=O 

where m = m(a) depends on the basis element x,. It follows by induction 
on j, that for all j 2 0, xpJ can be expressed modulo K as a linear combina- 
tion of xp’, 0 < t < m. 
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Thus LA/K is spanned by the images of the finite set 

(x[‘li= 1, . . . . d; t= 1, . . . . m(i)). 1 

The characteristic zero version of the final result of this section was 
proved in [3]. Also in characteristic zero, D. Passman [ 121 has obtained 
the same conclusion when R is Noetherian, without assuming that L is 
abelian. 

THEOREM 1.10. Let R * U(L) be a twisted smash product with L finite 
dimensional abelian and char k > 0. Zf 

P,<P,< ... <P, 

is a chain of prime ideals of R * U(L), each having the same intersection with 
R, then n < dim L. 

Proof: We begin by making some reductions. By passing to the L-prime 
factor ring R/(P, n R) we may assume that the Pi are in Spec,(R * U(L)) 
and that R is L-prime. Let S be the symmetric quotient ring of R and let 
S * U(L) be the unique extension of R * U(L). In view of Theorem 1.7(a) 
it suffices to prove the result for S * U(L). Thus we may assume that R is 
the symmetric quotient ring of some L-prime ring. Furthermore, tensoring 
up to the L-(extended) center F= Z(R)L of R, we may replace L with 
FQ L and assume that L is a Lie algebra over the field F. Let Z denote 
the restricted Lie ideal of LA consisting of elements whose action is 
R-inner. 

First suppose that there exists some nonzero XE L such that 
(Fx) h n Z= 0. Now, with K = Fx, 

R* U(L)=R*u(L^) 

= (R * U(K)) * U(L/K) 

= (R * u(K”)) * U(L/K). 

To conclude this case, note that Pin ((R * u(K” )) is an L-invariant ideal 
of R * u(K”) and that K” is central in L”. Consequently Corollary 1.4 
implies (together with the fact that Pin R=O for all i) that Pi has zero 
intersection with R * u(K” ) for all i. Thus by induction, with R * u(K^ ) in 
the role of R, we obtain n < dim L/K = dim L - 1. 

Next we consider the complementary case, where for each nonzero ele- 
ment x E L, (Fx)^ n Z is nonzero. Let xi, x2, . . . . XdimL be a basis for L over 
F. For each xi, let yi denote a fixed nonzero element of (Fx,)” which is 
S-inner. Further, let K denote the F-linear span of the yi. The yi are surely 

481/144/2-E 
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F-linearly independent so they form a basis for K, and since K < L “, K is 
an abelian Lie algebra acting as derivations on S. Also observe that KA is 
a restricted ideal of LA. Thus we may write 

R* CJ(L)=R*u(L^) 

= (R * u(K^)) * u(L”/K”) 

= (R * U(K)) * u(L^/K”), 

using Lemma 1.1. 
By Lemma 1.9 K” has finite codimension in L”, so LA/KA is a finite 

dimensional restricted Lie algebra. Thus Theorem 1.5 allows us to intersect 
the chain of primes down to a chain of LA/K”-primes 

eo<e,< ... <en 

of R * U(K). By Lemma 1.6 each Qi has a unique minimal covering prime 
Q; c R * U(K), satisfying 

Qb<Q;< ... <Q;, 

and 

Q&nR=Q;nR= ..‘=Q:,nR. 

Note that Qb n R is a K-prime ideal of R and hence prime, since K is 
R-inner. Also the action of K is certainly still inner in R/Q; n R. Thus by 
factoring out Qb n R we may assume that Qb n R = 0 and that R is a prime 
ring with K still inner on R. Finally observe that the desired conclusion 
n < dim L now follows immediately from Corollary 1.8 and the fact that the 
twisted product C,[ U(K)] there has classical Krull dimension at most 
dim K=dim L. 1 

2. DUALITY 

We now wish to develop some machinery which will enable us to use the 
results of Section 1 to study invariant ideals for divided power Hopf 
algebra actions. This involves studying special cases of the duality theorem 
of Blattner and Montgomery [2, Theorem 2.11 in detail. In characteristic 
zero this is really an old result of Nouaze and Gabriel [ll]. In positive 
characteristic we have a special case of the Blattner-Montgomery construc- 
tion [2, Theorem 2.11. 
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We begin by recalling the characteristic zero methods. Let R be an 
algebra over a field of characteristic zero and let 6 be a locally nilpotent 
derivation on R. We define q: R + R[ Y] G A,(R) by 

fdr)=CT . 
W) yi 

I 

Here A i( R) = R @ A,(k), where A i(k) is the Weyl algebra over k. Recall 
that A,(k) is generated as an algebra over k by X and Y where 
[X, Y] = XY- YX= 1. 

It is easily checked that q is a ring monomorphism preserving the iden- 
tity. We write r” for q(r) and R for the image of R under q. The following 
is easily deduced from [ 111. 

THEOREM 2.1. In the above situation R[x; S] is isomorphic to S= &Xl 
the subring of A,(R) generated by i? and X. Furthermore Y is transcendental 
over S, S is invariant under the derivation ad y, and A,(R) is generated as a 
ring by S and Y. In particular A,(R) = S[ Y; r] is a differential operator ring 
over S, where z is the restriction of ad, to S. 

It is well known that A,(k) is the ring of differential operators on k[ Y], 
where k is a field of characteristic zero. If k has positive characteristic p, we 
let Af(k) denote the ring of differential operators on k[ Y]. This ring has 
been studied by S. P. Smith [15]. A[(k) contains the polynomial ring 
k[ Y], and it has a free (right or left) basis 1 =X,,, Xi, X,, . . . over k[ Y], 
where Xi is the operator which sends Yi to (i) Yj-‘. Multiplication is given 
by the rules XiXJ = (‘tj) Xi+i and 

BY Hm we will mean the divided power Hopf algebra with basis 
1 =x0, xi, x*, . . . where xixI= (‘Tj) x~+~, 

Ax,= i Xnei@Xi, and &(Xi) = 6i,o. 
i=O 

If k has positive characteristic p and n = p’ for some integer t, then H,, 
denotes the finite dimensional divided power Hopf algebra with basis 
l=x,,x 1, . . . . x, _ i, with the same structure as H,, except that xixi = 0 if 
i + j 2 n. Finally 
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denotes the divided power Hopf algebra 

H, @H, @ . . @H, @ H,, @ . . OH,,,, 

with n factors of H,. 
Let A,P(k)=Af(k)@ ... 0 A f(k) (n factors) and define A;(R) to be 

R@ A:(k). If we consider actions of H”, = Hcxko,. .,,,), Theorem 2.1 still 
holds as long as A i(R) is replaced by A:(R). 

IfvEZ+xZ+x...xZ+=(iZ+)“,thenX,,denotes 

A-,,, 0 x,,, 0 . . . 0 x,n E A ,P(k) 

and 
Y”= Y”@ Y”Z@ ..’ @ Y”nrsAnp(k). 

Note that {X, YP} is k-basis for A;(k) where v and p range over (Z + )“. 
We let x, denote 

x,, Ox,, @ . . 0 xun E H,“. 

By a slight abuse of terminology we say H”, acts locally nilpotently on 
the k-algebra R if, given r E R, x, . r = 0 for 

sufficiently large. 
If H is a Hopf algebra, H’ is the dual Hopf algebra consisting of those 

linear functionals on H which vanish on a power of the augmentation ideal. 
See [17] for details. This Hopf algebra H’ acts in a natural way on H via 

f--h=Ch,,,(f,h,,,) 
(h) 

so we can form the smash product H # H’. (See [2] for details.) 
Although it is not explicitly needed for our applications, the following 

lemma is a key observation in motivating the consideration of A,P(k) in this 
context. 

LEMMA 2.2. Let H be the divided power Hopf algebra H”,. Then 
H # H’ E A;(k). 

Proof: If H = L @ K as Hopf algebras, then H # H’ s (L # L’) @ 
(K # K’). Thus it suffices to prove that H, # Hk is isomorphic ,4:(k). 

Let y’ E H’ be given by ( y’, xj) = 13,,~. Then 
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Hence we have y’y’ = yi+j. Similarlydy=l@y+y@l,sothatH’=k[y] 
is the enveloping algebra of the one dimensional Lie algebra ky. Viewing 
H and H’ as contained in H # H’ via their canonical images, we get 

[y9xi]=yxj-xjy=(1 # y)(xj # 1)-(x( # l)(l #:y) 

=(Y -Xxi) # 1 + (Xi # Y)- (xi # Y) 

=x;-1 # 1=x;-,. 

It is now clear that the map sending xi to Xi and y to - Y induces an 
isomorphism from H # H’ to A:(k). 1 

In Theorem 2.4 we will give an explicit description of duality for H”, 
actions. A detailed knowledge of the duality isomorphism is necessary for 
our applications. 

Suppose H = H”, acts locally nilpotently on the H-module algebra R. 
We define 

q: R-A:(R) by n(r)=1 (x,.r) Y”. 

LEMMA 2.3 [2]. n is a ring monomorphism with n( 1) = 1. 1 

Let T denote the subring of A,P(R) generated by R = n(R) and 
{X,, 1 v E (Z + )n}. Also let ei E (E + )” be the tuple with 1 in the ith position 
and zeroes elsewhere, and let Yi denote Yet. 

We now state the special case of [2, Theorem 2.11. We remark that this 
result is a generalization of Theorem 2.1 above. By replacing xi/i! by xi in 
characteristic zero one sees that k[x] = H, . Thus we allow p = 0 from here 
forward. 

THEOREM 2.4. Let H= HCnio ,,,_, ,,) act locally nilpotently on the H-module 
algebra R. Then R # H is isomorphic to T, the subring of AC(R) generated 
by i? and {X,}, via the map sending r to n(r) and x, to X,. Furthermore T 
is invariant under each of the derivations ad,, Y,, Y,, . . . . Y,, are trans- 
cendental over T, and A,P(R) is generated as an algebra by T and Y1, . . . . Y,. 
Thus A,P(R) is isomorphic to T # U(L), a smash product of the enveloping 
algebra of the abelian Lie algebra L = kY, + . . + kY,, over T. 

We note that the hypotheses of [2, Theorem 2.11 are satisfied: Since H 
is cocommutative, the RL-condition is automatic, and since the action of 
H on A is locally nilpotent, it is “H’-locally finite.” Thus, using the dual 
bases for H and H’ as in the proof of Lemma 2.2, we see that our formula 
for 9 coincides with the embedding on [2, p. 1641. 

We now give some results relating prime, H-prime, and H-invariant 
ideals for H = H”, actions which are used in Section 4. 
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If R is an H-module algebra for any Hopf atgebra A and A is an ideal 
of R, we write (A :H) for the largest H-invariant ideal of R contained in A. 
When H=k{ y}, the enveloping algebra of the one dimensional Lie 
algebra, we simply write (A : S) instead of (A : H), where y acts on R as the 
derivation 6. It is easily checked that if A is an ideal of the ring R and H 
acts on R, then (A: H)= {r~Rjh.r~A, for all ~EH]. 

If I is an ideal of R, then I= l@ A,P(k) is an ideal of A:(R). Since A,P(k) 
is simple with center k, all ideals of A:(R) are of this form. We will need 
the following 

LEMMA 2.5. Let H = H”, act locally nilpotently on R and let I be an 
ideal of R. Then In T is generated as an ideal of T by In i? = (I : H)“. 

Proof: Let J= In T. Since 1 and T are both invariant under ad r,, so 
also is J. Recall that XyYi - YiXy = A’“-” if vi > 0 and is zero otherwise. It 
follows that J=(JnR)T. Finally Jn1?=InR= (?Ix”.rEI, for all v}= 
(I: H)-. 1 

The following lemma extends [9, Proposition 1.21 and the proof is an 
easy adaptation of that proof. 

LEMMA 2.6. Let H = H”, act on R and let P be a prime ideal of R. Then 
(P : H) is again a prime ideal of R. 

Proo$ If H = L @ K where H, L, and K are Hopf algebras, and A is an 
ideal of R, then (A : H) = ((A : L) : K). Thus it suffices to prove the result 
for H,. 

Suppose (P : H) is not prime so that we can find a, b E R\(P : H) with 
aRb c (P : H). Choose s, t E Z + minimal so that x, . a and x, . b are not 
in P. Then for any rE R, x,+,(arb)~ P since aRbc (P : H). But 
x,, ,(arb) E x,(a) rx,(b) (mod P) so that x,(a) Rx,(b) E P, which con- 
tradicts our assumption that P is a prime ideal. 1 

The following proposition is generalized in Section 4. 

PROPOSITION 2.1. Let R be an H-module algebra where H = H”, acts 
locally nilpotently and suppose P, < P, < . . < P,, , is a chain of prime 
ideals of R. Then (PO : H) c (P, + , : H). 

Proof: Clearly A,P(P,) < A,P(P,) < ... < A,P(P,+I) is a chain of ideals 
of A;(R), and these ideals are prime, since every ideal of A,P(R) is of the 
form A;(Z) for some ideal I of R. Now we can apply Theorem 1.10 in 
positive characteristic, or [3, Theorem 2.1 l] in characteristic zero, to the 
smash product A,P(R) = T # U(L) given by Theorem 2.4, to conclude that 
A,P(P,) n T< A,P(P, + ,) n T is a strict inclusion. Finally, by Lemma 2.5, 
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we know- that A,P(P,) n T is generated by (Pi : H)” so that (P, : H)” < 
(Pn+ 1 :H)“,andhence(P,:H)<(P,+,:H). 1 

3. FINITE DIMENSIONAL ACTIONS 

In this section we record some results about actions of finite dimen- 
sional, irreducible Hopf algebras. A finite dimensional, irreducible Hopf 
algebra H has a coradical filtration k = H, < H, -C . . . <H,,, = H, where 
AH,c~~~~ HipjO Hi. We call m the length of this filtration. (See [16] for 
details.) The following two results are partial generalizations of [4, 
Lemma 11. 

LEMMA 3.1. Let H act on R, where H is finite dimensional and 
irreducible. Suppose R is H-prime and m is the length of the coradical filtra- 
tion of H. If N is an ideal of R, then 

(i) N is nilpotent if and only tf (N : H) = 0 

(ii) when N is nilpotent, N”+l =O. 

Proof First we show, by induction on j, that H,(N”) c N, ifj< n. This 
is clear if j = 0. Suppose j > 0. Note that 

Hj(N”) = HJNN”- ‘) 

zH,(N)H,(N”-‘)+Hj(N)H,(N”-‘)+Hj-,(N)H,-,(N”-’) 

c N, 

by induction. Thus H(Nm + ’ ) = H,(N” + ‘) c N, so that N” + ’ c (N : H). It 
follows now that (i) holds. 

To prove (ii), suppose N is nilpotent. Then (N : H) c N is also nilpotent 
and hence zero, since R is H-prime. Now we get that N”+’ c 
(N:H)=O. 1 

PROPOSITION 3.2. Let H be a finite dimensional, irreducible Hopf algebra 
acting on R. Let Q be an H-prime ideal of R and P a prime ideal of R. Then 
the maps P + (P : H), Q + N(Q) are inclusion preserving inverses, providing 
a bijection between Spec R and H-Spec R, where N(Q) is the unique largest 
ideal which is nilpotent module Q. 

Proof Let Q E H-Spec R. Applying Lemma 3.1 to R/Q, we see that 
N = N(Q) exists and is maximal subject to (N : H) = Q. Suppose A, B are 
ideals of R strictly containing A? Then (A : H) > Q and (B : H) > Q, so that 
Q < (A : H)(B : H) c (AB : H). Thus N does not contain AB and hence is 
a prime ideal of R. 
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Similarly, if P E Spec R, (P : H) is an H-prime ideal of R and P is 
nilpotent modulo (P : H). Being prime, P must be the unique prime ideal 
nilpotent modulo (P : H), so that P = N( (P : H)). 1 

Our next result is Incomparability for smash products over HCo;,,,,,.,,,,. 

THEOREM 3.3. Let H = HCo;, ,,_,,, n,j act on R and let P, < P, he prime 
ideals of R # H. Then PO n R < P, n R. 

Proof Let H* be the dual Hopf algebra of H. We know H* acts on 
R # H (see [2]). In fact if we let (y”} be the dual basis to {xv}, it is easily 
checked that y” - (r # x,) = r # x,_,~. From this it follows that ideals of 
R # H which are invariant under the action of H* are precisely those 
which are generated, as right ideals, by their intersection with R. 

H* is a finite dimensional irreducible Hopf algebra. (In fact H* is a 
restricted enveloping algebra of a finite dimensional restricted Lie algebra.) 
Thus Proposition 3.2 applies to give (P, : H*) < (P, : H*). Since (Pi : H*) 
is generated by Pin R, it follows that (P, n R) -C (P, n R). 1 

4. APPLICATIONS 

The main result of this section is 

THEOREM 4.1. Let R be an H-module algebra where H = H(,,;,,,,..,,,) acts 
locally nilpotently and suppose PO -C P, < ‘. < P, + 1 is a chain of prime 
ideals of R. Then (P,, : H) < (P, + , : H). 

Proof: We can write H as LO M, where L = H”, and M= HCo;, ,,.,,,“, ). 
By Proposition 2.7, (P, : L) < (P, + 1 : L) is a strict inequality and it follows 
from Lemma 2.6 that these are prime ideals of R. M= HCo;.,,,.,,n,J is a finite 
dimensional irreducible Hopf algebra so we can apply Proposition 3.2 to 
get that ((PO : L) : M) < ((P,, 1 : L) : M), which is the desired result since 
(Pi : H) = ((P, : L) : M). 1 

COROLLARY 4.2. Let R be an algebra over a field of characteristic zero 
and let 6 be a locally nilpotent derivation on R. Assume P,, < P, < P, is a 
chain of prime ideals of R. Then (P, : 6) < (P, : 6). 

Proof Let H= k[x] be the universal enveloping algebra of the one 
dimensional Lie algebra kx and let H act on R by letting x act as 6. Letting 
xi= x’/i! we have that H = H, acts locally nilpotently on R. Note that if 
A (J R, then (A : H) = (A : 6). Thus (P, : 6) < ( P2 : 6) follows from the 
previous result. 1 
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K. Goodearl has pointed out an example which shows that Corollary 4.2 
fails if 6 is not locally nilpotent: Let k be a field of characteristic zero and 
let R = k[x: ‘, . . . . x”]. Define 6 by ~(x,)=x~Y’~, for i> 1 and 6(x,)= 1. 
Then R is b-simple, so that (P : 6) = 0 for all prime ideals P. 

Let d(T) denote the classical Krull dimension of a ring T. Another 
immediate corollary is 

COROLLARY 4.3. Let R be an algebra over a field of characteristic zero 
and let 6 be a locally nilpotent derivation. Zf R[x; S] is simple, then 
d(R)dl. I 

We now give a slight generalization of [S, Proposition 3.3(a)] which we 
need for our final result. 

PROPOSITION 4.4. Let k be a field of characteristic zero and let L be a 
finite dimensional solvable Lie algebra acting locally finitely on the k-algebra 
R. Then L-prime ideals of R are prime. 

Proof: We first prove the result for L one dimensional and k algebrai- 
cally closed. Let L = ky, where y acts on R as the locally finite derivation 
6. It suffices to show that if R is &prime, then R is prime. 

Suppose aRb = 0, with a, b E R\O. Let A and B be the &subspaces of R 
generated by a and b, respectively. Since 6 is locally finite and k is algebrai- 
cally closed, A and B are finite dimensional triangularizable &modules. Let 
P c A 0 B be the subspace of elements xi ai 0 bi such that xi a,rb, = 0 for 
all r E R. It is easily seen that P is invariant under 6 @ 1 + 10 6 and that 
P contains the pure tensor a @ 6. It now follows from [7, Lemma 3.7.11 
that P contains an element ii @ 5 where ii and a are nonzero &eigenvectors. 
If 2 and B are the ideals of R generated by CT and a, respectively, then 2 
and B are b-invariant and A”B = 0, which contradicts the assumption that 
R is b-prime. Thus R is prime. 

If k is not algebraically closed, let K denote its algebraic closure. Again 
assume that R is b-prime. If R is not prime, choose Zand .Z, nonzero ideals 
of R, with Z.Z= 0. Let s= 6 0 1 be the natural extension of 6 to R 6 K, 
which is again a locally finite K-derivation. We can use Zorn’s Lemma to 
find Q, and, ideal of R@ K, which is maximal with respect to being & 
invariant and having zero intersection with R. It follows easily that Q is a 
S-prime of R, and hence a prime ideal, by the argument above. Now ZQ K, 
J@I K are ideals of R@ K, not contained in Q (since Q n R=O), and 
(Z@ K)(J@ K) = ZJ@ K= 0. This implies that Q is not prime. This 
contradiction finishes the proof in the one dimensional case. 

Now let L be a finite dimensional solvable, which acts locally finitely on 
R. To complete the proof we need to show if R is L-prime, then R is prime. 
Since R is L-prime it is proved in [3, Theorem 2.61 that R # U(L) is a 
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prime ring. R # U(L) can be written as an interated differential operator 
ring R[xl; S,][x,;S,] ... [x,; S,] where 6; is locally finite on 
RCx, ; S,] “. [Xi , ; ~5~ ,] for each i. Since 0 is a prime ideal of 
RCx,; S,l... Lx,; S,], it follows that 0 is a 6,,-prime ideal of 
RCx,;G,lCx,;G,l...Cx.,;6, ,I. N ow, by the one dimensional case we 
get that R[x,;G,]...[x,-,;6,, ,] . is a prime ring. Repeating this argu- 
ment for 6, ~, , ~5,~ 2, . . . . 6, in turn, we see that R is a prime ring. 1 

We conclude by giving upper and lower bounds for d(R # U(L)), where 
L is a finite dimensional abelian Lie algebra over a field of characteristic 
zero, which acts locally nilpotently on R. Let [ ] denote the greatest 
integer function. 

THEOREM 4.5. Let L be a finite dimensional abelian Lie algebra over a 
field of characteristic zero and assume L acts locally nilpotently on R. Then 
[d(R)/(n + I)] < d(R # U(L)) -C (n + l)(d(R) + 1). 

Proof Let P, < P, < . . < P, be a chain of prime ideals in R # U(L). 
Each Pin R is an L-prime ideal of R and by Proposition 4.4, we have that 
Pi n R is a prime ideal of R. Now applying [ 3, Theorem 2.111 we get that 

P,nR<P,.,nR<P,(,+,,nR< ... 

is a chain of prime ideals of R so that m < (n + l)(d(R) + 1); thus 
d(R # U(L)) < (n + l)(d(R) + 1). 

Now let Q0 < Q, < .. . < Qt be a chain of prime ideals of R. Since 
U(L) = ff(n;O,...,O), we map apply Theorem 4.1 to get 

(Qo:L)<(Qn+, :L)<(Qan+,,:L)< ... 

and each (Q, : L) is an L-prime ideal of R. (In fact by Lemma 2.6 (Q, : L) 
is actually a prime ideal.) 

From [3, Theorem 2.61 we get that 

(Q,,:L) # U(L)<(Q,+, :L) # U(L)< ... 

is a chain of prime ideals of R # U(L) so that t < (n + 1) 
(d(R # U(L))+ 1). 

Thus t/(n + 1) < d(R # U(L)) i 1 which yields [t/(n + l)] < 
4R +I u(L)). I 
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