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xntroduction 

In this paper we strengthen a theorem by Esnault, Schechtman and Viehweg [3], 
which states that one can compute the cohomology of a complement of hyperplanes 
in a complex affine space with coefficients in a local system using only logarithmic 
global differential forms, provided certain “Aomoto non-resonance conditions” for mon- 
odromies are fulfilled at some “edges” (intersections of hyperplanes) . We prove that it 
is enough to check these conditions on a smaller subset of edges, see Theorem 9. 

We show that for certain known one-dimensional local systems over configuration 
spaces of points in a projective line defined by a root system and a finite set of affme 
weights (these local systems arise in the geometric study of Knizhnik-Zamolodchikov 
differential equations, cf. [ 81) , the Aomoto resonance conditions at non-diagonal edges 
coincide with the Kac-Kazhdan conditions of reducibility of Verma modules over affine 
Lie algebras, see Theorem 18. 

1. Quasi-isomorphiims 

Let {Hi}iCr be an affine arrangement of hyperplanes, i.e., {Hi}ar is a finite collection 
of (distinct) hyperplanes in the affine complex space Cc”. Define U = Cn - UiCl Hi. We 
denote by ti” the sheaves of holomorphic forms on U for 0 5 p 5 n. We set 0~ = @“. 
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For any i E I, choose a degree-one polynomial function fi on Cc” whose zero locus 
is CX@ to Hi. Define Oi = d log fi = dfi/fi E I’(U, 0;). For a given r E N - (0) we 
choose matrices Pi E End C?, i E I. Define 

W= c wi @ Pi E r( U, L!:) @ End C. 
iEI 

The form w defines the connection d + w on the trivial bundle kY = 0;. We suppose 
that (d + w) is integrable which is equivalent to the condition w A w = 0 as do = 0. 
Let 0;(E) = 0; 18’0~ ,Z be the de Rham complex with the differential d + w. 

Define finite-dimensional subspaces 

AP c T(u, flu(E)) = r(u, @) @c C 

as the C-linear subspaces generated by all forms Wit A . . . A Wip @I u, u E U?. Then the 
exterior product by w defines 

A’ : ()-A’-%A’ A . ..&A”-0 

as a subcomplex of r( U, fi; (I) ) . 

Let c” be any smooth compactification of Cn such that H, is a divisor. Write 
H = H, U (U,, Hi). Then U = c” - H. (Typical examples for c” include the complex 
projective space P”, (P’ ) n and any toric manifold.) Note that w E r( U, 0:) @ End Cc” 
can be uniquely extended to be an EndP-coefficient rational l-form Z on c”. 

Theorem 1. Suppose 7r : X -+ c” is a blowing up of? with centers in H such that 
( 1) X is nonsingular, 
(2) 7~~~ H is a normal crossing divisor, and 
(3) none of the eigenvulues of the residue of ~-lcT along any component of rTT-’ H 

lies in N - (0). 
Then the inclusion 

is a quasi-isomorphism. 

Proof. Same as the proof of the first theorem in [ 33. 0 

2. Decomposable arrangements 

Let A be a central arrangement in V, i.e., a finite collection of hyperplanes with 
nAEA A # 0. Then A is called decomposable if there exist nonempty subarrangements 
dt and d2 with A = A1 u dz (disjoint) and, after a certain linear coordinate change, 
defining equations for A1 and dz have no common variables. 

Let A be a nonempty central arrangement in C”. Let T = nAEA A # 8. Suppose 
codim T = k+ 1 > 0. Then the points of PT = pk parametrize the (dim X+ 1 )-dimensional 
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linear subspaces of C3” which contain T. In particular, if H is a hyperplane containing 
T, it uniquely determines a hyperplane H’ in Pk. Define P(d) = Pk - UHEA H’. 

Definition 2. Define the beta invuriunt of a central arrangement A by 

P(d) = (-l)‘x(P(d)) 

where x denotes the Euler characteristic. 

Let L(d) be the set of all edges of A. We regard L(d) as a lattice with the reverse 
inclusion as its partial order. Then C” itself is the minimum element of L(d). Let ,u 

be the Mobius function of L(d). 

Definition 3 (see [7, Definition 2.521). Define the characteristic polynomial of A by 

x(d,t) = c p(yX)PmX. 
XWd) 

Proposition 4. 

P(d) = (-l)‘$x(d, 1). 

Proof. Since P(d) is homotopy equivalent to the complement of the dccone dd [7, 
p.151 of A by 17, Proposition 2.51 and Theorem 5.931, one has 

(l+t)Poin(P(d),t) =Poin(U,t), 

where U is the complement of A and Poin stands for the Poincare polynomial. Thus, 
by [7, Definition 2.521, 

(t - I)-‘x(d, t) = (t - l)-‘tlPoin(U, -t-l) 

= (t - 1)-l&( 1 - t-l) Poin(P(d), -t-l) 

=te-‘Poin(P(d),-t-l). 

Take the limit as t approaches 1. (Note x( A, 1) = 0.) 0 

Proposition 4 shows that the beta invariant for the matroid determined by A. The beta 
invariant for a matroid was introduced by Crapo [ 21. 

Theorem 5 (see [ 2, Theorem 21) . ( 1) If A is nut empty, then /3(d) > 0. 
(2) p(d) = 0 if and only if A is decomposable. Cl 

Let A be an affine arrangement of hyperplanes in @“. Let L be an edge of A. 

Definition 6. An edge L is called dense in A if and only if the central arrangement 

dr. = {A E A 1 L G A} 
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is not decomposable. 

By Theorem 5, we have 

Proposition 7. Let L E L(d) with codim L = r + 1. Then the following conditions are 
equivalent: 

(1) L is dense, 
(2) AL is not decomposable, 

(3) x(P(&)) + 0, 
(4) P(&) = (-l)‘x(P(dL)) > 0. q 

3. Resolution of a hyperplanelike divisor 

Let Y be a smooth complex compact manifold of dimension n, D a divisor. D is 
hypelplanelike if Y can be covered by coordinate charts such that in each chart 2) is a 
union of hyperplanes. Such charts will be called linearizing. 

Let 2) be a hyperplanelike divisor, U a linearizing chart. A local edge of 2) in U is 
any nonempty irreducible intersection in U of hyperplanes of D in U. An edge of D 
is the maximal analytic continuation in Y of a local edge. Any edge is an immersed 
submanifold in Y. An edge is called dense if it is locally dense. 

For 0 < j I n - 2, let Lj be the collection of all dense edges of 23 of dimension j. 
The following theorem is essentially in [ 10, 10.81. 

Theorem 8. Let Wo = Y Let ~1 : WI + Wo be the blow up along points in Lo. In 
general, for 1 I s 5 e - 1, let rS : W, + Ws_l be the blow up along the proper 
transfomzs of the (s - 1) -dimensional dense edges in L,_I under ~1 o . . . o ~~-1. Let 

7r=lq 0*~*07r#p..1. Then W = W,,._l is nonsingular and ,-’ (D) normal crossing. 0 

4. Arrangements in P’ 

Let {Hi}ic, be an affine arrangement of hyperplanes in Cc”. Recall U, fi, Oi, Pi, W, 
&, and A’ from Section 1. Choose P as the compactification of Cc”. Let H, = P” - C:” 
and A = {Ri}iEI U {H,}. (Ei is the closure of Hi in P.) Obviously ( Ui,, TIi) U Ho0 
is a hyperplanelike divisor. Suppose ( .Q : . + . : z,) be a homogeneous coordinate system 

with H, : Z,O = 0. Then each wi is uniquely extended to a rational form Gi on P; 
Gi = wi - (da/a). Thus the form w = ‘& Oi @ Pi E r(U, fib) @ EndP. CtUl be 

uniquely extended to 7j: 

gj= 
c Gi @ Pi = C~i@P,-(dzO/~)@(CE). 
iEI iEI iEI 

Define PO0 = -‘&, Pi. For any edge L of A, let Zr. = {i E Z U (00) 1 L C Hi}. Let 

PL = &, Pi. By Theorems 1 and 8, we get 
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Theorem 9. We set C be the set of all dense edges of A. Suppose that 

(Man)* for all L E J!Z, none of the eigenvalues of PL lies in N - (0). 

Then the inclusion 

A’ r-) P(U, 0;(E)) 

is a quasi-isomorphism. 0 

97 

Remark. Since “dense” implies “bad” [ 31, Theorem 9 improves the main theorem 

of [3]. 

Corollary 10. Under the assumption of Theorem 9, one has 

HP(u,S) E’ Hp(A’) for0 Ip 5 n, 

where S is the local system of Jlat sections of (E, d + w) on U Cl 

Corollary 11. Suppose that 

(Man)** for all L E I!Z, none of the eigenvalues of PL lies in N U (0). 

Also suppose that PiPj = PjPt for all i, j. Then 

Hp(U,S) =0 forp Z n. 

Proof. By Theorem 9 and [ll, 4.11. 0 

5. Discriminantal arrangements in (P’)” 

See [ 81 for discriminantal arrangements. 
Let r be a graph without loops with vertices ut , . . . , up. Let nl, . . . , nr be nonnegative 

integers, n = nl + a+-+n,,X={(i,C) IC=l,..., r, i=l,..., ne},Y=(P’)“.Label 
the factors of Y by elements of X and for every (i, 4) E X fix an affine coordinate ti (e) 
on the (i, e) -th factor. 

For pairwise distinct zt, . . . , Zk E @, Zk+l = 00, introduce in Y a discriminantal 
arrangement A of “hyperplanes” 

Hci,[),j: ti(l) = Zj for (i.Q E X, j = 1,. . . , k + 1, 

Hci,e~,ci,e): ti(l) = tj(l) for 1 5 i < j 5 ne, 

and 

H(i,O,tj,m): ti(e) = tj(m) 

for e, m such that ue and v,,, are joined by an edge in the graph and i = 1,. . . , ne, 
j=l,...,n,. The union of these “hyperplanes” is a hyperplanelike divisor. Let A C P 
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be a connected subgraph with vertices labelled by V C { 1,. . . , r}. For every 1 E V fix 
anonemptysubsetZ~~{1,...,n~}.FixjE{1,...,k+1}.Introduceedges 

L({Ze},j) = {t E Y 1 fi(i?) = Zj for ZJ E V, i E Z[}. 

Next assume that the graph A remains connected after any vertex e E V with ]I!] = 1 is 
removed. Under these assumptions, define edges 

L({Ze}) = {t E Y 1 ti(e) = t,(e), ti(e) = ts(m) for C,m E V, i, h E Ze; g E I,,,}. 

Proposition 12. (1) L({Ze},j), and L({Ze}) are dense. 
(2) Every dense edge has the form above. 

Proof. For any graph G with vertices { 1,. . . , m) and edges E, associate a central 
arrangement do in Cm consisting of {Xi = 0 ( 1 5 i < m} and {Xi = Xj 1 {i, j} E E}. 
Define a central arrangement Z3o consisting of {Xi = Xj ) {i, j} E E}. (The arrangement 
Do is called a graphic arrangement [ 7, 2.41.) In order to prove (1) and (2), it is 
enough to show the following lemma: 

Lemma 13. (a) do is not decomposable iff G is connected. 
(b) & is not decomposable ifs G is 2-connected, that is, G remains connected afier 

any vertex is removed. 

Proof. (a) If G is disconnected, & is obviously decomposable. If G is connected, let 
T be a maximal tree inside G. Choose an edge {i, j} such that j is a terminal point of T. 
Let A’ and A" be the deletion and the restriction of dT with respect to the hyperplane 
{Xi = Xj}. Since p(d') + p(d") = P(dr) [2, Theorem 11, we can prove p(dT) = 1 
for any tree by induction on the number of edges. This shows /3( do) > p(dT) = 1. 

(b) Note that the matroid associated with the arrangement & is the same as the 
matroid associated with the graph G. The matroid is connected if and only if G is 
2-connected [ 91. 0 

L42t c” = ’ - U(i,l)E* iY(i,e),k+l. Let U be the complement in Y to the union of 
“hyperplanes” of A. Recall fi,wi, Pi,@,&, and A* from Section 1. w cm be uniquely 
extended to be an End Cs-coefficient rational l-form T.5 on Y. For (i, l) E X the residue 
Of z at H(i,[),k+i is 

k 

P(i&,k+l = - c P(i,e),j - 2 P(j,O,(i.O - C P(i,O,(j.m) 9 
j=l j=l 

j#i 

where the last sum is over all m such that ue and v,,, are joined by an edge in r and 
j= l,...,n,. 

For any edge L in A, let PL be the sum of residues of 5~ at all “hyperplanes” of A 
containing L. 
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Theorem 14. Let L be the set of dense edges of A. Suppose that 

(Man)* for all L E C, none of the eigenvalues of PL lies in N - {O}. 

Then the inclusion 

A* of T(U, o;(E)) 

is a quasi-isomorphism. q 
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Corollary 15. Suppose that 

(Man)** for all L E .C, none of the eigenvalues of PL lies in N U (0). 

Also suppose that PiPj = PjPi for all i, j. Then 

HP(U,S) =0 forp # n. q 

6. Kac-Kazhdan conditions 

Let 6 be a finite-dimensional simple complex Lie algebra with Chevalley generators 
ei, fi, hi, i = 1,. . . , r. Let Q = N_ $‘FIcBN+ be the corresponding Cartan decomposition; 

W,..., (Y, E ‘FI* the simple roots, 0 the highest root. Let (-, -) be the symmetric non- 
degenerate bilinear form on 9 such that (8,0) = 2. 

Let T be an independent variable, Cc [ T] the ring of polynomials, @[T, T-’ ] the ring 
of Laurent polynomials. For f(T),g(T) E C[T,T-‘1, set 

reso(f(T)dg(T)) =coefficient at T-’ in f(T)g’(T). 

The space 6 & C [ T, T-’ ] is a Lie algebra with bracket 

[b@ff(T),c@g(T)l = [kc1 @f(T)g(T) 

for b, c E B. Define c as a central extension of 0 @c C[T,T-‘I, 

G=c~IC[T,T-~] 63(cK, 

where K is a central element of 0, and 

[b@ff(T),c@gUYl = [hcl @f(T)g(T) + (b,c)rw(f(T)dg(T))K. 

Set C+ = 0 @ C[T] $ CK; it is a Lie subalgebra of c. 
Fix a complex number k. Set K = k + g where g is the dual Coxeter number of 9, cf. 

[5, 6.11. 
For A E ‘FI* , let M(A) be the Verma module over 0 with highest weight A. Consider 

M(A) as a &-module by setting 0 8 T@[ T] to act as zero and K as multiplication by 
k. Set 
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It is a Verma module over 8. 

Proposition 16 (Kac-Kazhdan conditions). A?f (A) is reducible if and only if at least 
one of the following three conditions is satisjed. 

(1) 
(2) 

(3) 

Proof. 

K = 0. 

There exist a positive root a of Q and natural numbers p, s E M - (0) such that 

(Aa) + hAa) =p F-(S--1)K, 

where p is half-sum of positive roots of 9. 
Them exist a positive root (Y of 0 and natural numbers p, s E N - (0) such that 

(a, a) 
(A, a) + (p,(u) = -pi + SK. 

We use notations of [ 5, Chapters 6 and 71. In these notations the Kac-Kazhdan 
reducibility condition, [ 6, Theorem 11, reads as 

(A,~-l(p)) + @,v-‘<p>> -PQ$ =o 

for some positive root p of e and a positive integer p. (Here we denoted by p an 
element denoted by p in [ 51, to distinguish it from our p.) 

By [5, 6.31, every such /3 has one of the following forms: ( 1) /3 = ma, m > 0; 
(2) p = ff + ma, m 2 0; (3) p = -cr + ma, m > 0, where LY is a positive root of 
8, m an integer. From [5] it follows easily that (A, Y-t (6)) = k, (a, Y-(S)) = g and 
(b, Y-I ((Y)) = (p, a). This implies the proposition. Cl 

Let w be the longest element of the Weyl group of 0. For A E 7-1*, set A’ = -w(A). 

Proposition 17. I@( A’) is reducible if and only if i@(A) is reducible. The Kac- 
Kazha’an conditions for A’ expressed in terms of A coincide with the Kac-Kazhdan 
conditions for A. 

Proof. For a positive root LY, -w(a) is a positive root. This implies the proposition. 0 

7. Resonances of discriminantal arrangements 

Let r be the Dynkin diagram of a complex simple Lie algebra Q. The vertices of 
the diagram are labelled by simple roots (~1,. . . , a, of the algebra. Let nt , . . . , n, be 
nonnegative integers, n = nl + . . - + n,. For pairwise distinct ~1,. . . , Zk E C, Zk+l = 00, 

consider in Y = (P’ )” the discriminantal arrangement A associated to these data. 
Let A],..., Ak E ‘H*. get &+t = -w(Al + ..a + Ak - nlal - .ee - n,cu,). Fix a 

nonzero complex number K. Introduce an integrable connection d + w on the trivial 
bundle E = 0~ with 
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u=x.& r P(i,O,jW(i,O.j + C C P(i.e).(j,e)w(i,e).(Ae, 
(i,P)EX j=l &I 1 <i<jlnc 

I<e<m<r i=l j=l - 

where 

w(i.0.j =d(ti(l) - Zj)/(ti(l> - Zj), 

w(i,e),(j,m) =d(ti(O - tj(m))/(ti(O - tj(m>>9 

P(i,e),j = -C(yelAj>/K9 P(iJ),(j,m) = -(~e,%)IK, 

see [ 81 and [lo]. w extends to be a rational l-form 6 on Y. 
For any edge L in A, let PL be the sum of residues of ?TJ at all “hyperplanes” of A 

containing L. For p E N U {0}, we say that the connection d + w has a resonance at L 
of level p, if PL = p. 

The following theorem connects resonances of A with the Kac-Kazhdan conditions 
for the Verma modules il?Z( At ) , . . . , h(Ak+l) of the affine algebra d. Let (Y = C aecYe 
be a positive root of 0, p a natural number. Assume that alp < ne for all e. For every 
&fixasubsetZec{l,..., ne} consisting of alp elements. 

TheoremlS. (1) Foreveryj=l,...,k+l,theedgeLj=L({Ze},j) isdense. 
(2) Forj= 1,. . . , k and every natural number s, the resonance condition at Lj of 

level ps, PLY = ps, coincides with the Kac-Kazhdan condition of type (2) for A( AZ), 

(Aj,a) + (p9a) ‘p2 -SK. 

(3) For j = k + 1 and every natural number s, the resonance condition at Lk+l 

of level PS, PLY+, = ps, coincides with the Kac-Kazhdan condition of type (3) for 

@‘(Ak+l), 

C%(y) 
(Ak+l.a) + ha) = -p2 + SK. 

Remarks. (1) For resonance values of Al , . . . , Ak, K, nontrivial cohomological rela- 
tions occur in the image of A* c I’( U, i2.r~ (E) ) . The theorem suggests that the relations 
correspond to singular vectors in the Verma modules a( Al), . . . , &(A,+,). In [ 41 
this correspondence was established for the simplest singular vector in &Z( Ak+l ), the 
correspondence implied algebraic equations satisfied by conformal blocks in the WZW 
model of conformal field theory. 

(2) Forj=l,..., k and natural number p, the Kac-Kazhdan condition, (AZ, a) + 

(p,(Y) =pq% appears as a degeneration condition for a certain contravariant form of 
the arrangement A, see [ 8, Sections 3 and 61. 
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Proof. ( 1) For a positive root a = caecye consider the subset {oe 1 ae > 0) of the 
set of simple roots. The subset distinguishes a subgraph of the Dynkin diagram. The 
subgraph is connected [ 1, Chapter 7, Section 11. Now Lj is dense by Proposition 12. 

The following proves (2). 

PLj -pd r paeWe - 1) 
K[(_Aj*OP+C 2 (aeue, cue) 

r=l 

(cue, aeue) =E[-(Aj,cU) - (p*(Y) +pT -sSK I * 
Part (3) is proved by similar direct computations using Proposition 17. q 
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