
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
REPORT

Mutations in ANTXR1 Cause GAPO Syndrome

Viktor Stránecký,1,9 Alexander Hoischen,2,9 Hana Hartmannová,1,9 Maha S. Zaki,3 Amit Chaudhary,4

Enrique Zudaire,4 Lenka Nosková,1 Veronika Bare�sová,1 Anna P�ristoupilová,1 Kate�rina Hoda�nová,1

Jana Sovová,1 Helena H�ulková,1 Lenka Piherová,1 Jayne Y. Hehir-Kwa,2 Deepthi de Silva,5

Manouri P. Senanayake,6 Sameh Farrag,7 Ji�rı́ Zeman,7 Pavel Martásek,7 Alice Baxová,8 Hanan H. Afifi,3

Brad St. Croix,4 Han G. Brunner,2 Samia Temtamy,3 and Stanislav Kmoch1,*

The genetic cause of GAPO syndrome, a condition characterized by growth retardation, alopecia, pseudoanodontia, and progressive vi-

sual impairment, has not previously been identified. We studied four ethnically unrelated affected individuals and identified homozy-

gous nonsensemutations (c.262C>T [p.Arg88*] and c.505C>T [p.Arg169*]) or splicingmutations (c.1435–12A>G [p.Gly479Phefs*119])

in ANTXR1, which encodes anthrax toxin receptor 1. The nonsense mutations predictably trigger nonsense-mediated mRNA decay,

resulting in the loss of ANTXR1. The transcript with the splicing mutation theoretically encodes a truncated ANTXR1 containing a neo-

peptide composed of 118 unique amino acids in its C terminus. GAPO syndrome’s major phenotypic features, which include dental

abnormalities and the accumulation of extracellular matrix, recapitulate those found in Antxr1-mutant mice and point toward an un-

derlying defect in extracellular-matrix regulation. Thus, we propose that mutations affecting ANTXR1 function are responsible for this

disease’s characteristic generalized defect in extracellular-matrix homeostasis.
GAPO syndrome (MIM 230740) is the acronym for a

complex disorder characterized by growth retardation, alo-

pecia, pseudoanodontia, and, in many but not all cases,

progressive optic atrophy.1 Although variations of these

phenotypes have been associated with other syndromes,

their combination is unique to individuals with GAPO syn-

drome, and more than 30 cases of various ethnic origins

have been described.2–8 Most of the cases are from consan-

guineous parents, and inheritance patterns within these

families have suggested that the disease is inherited as an

autosomal-recessive trait. Altough affected individuals

have no readily identifiable biochemical or endocrine ab-

normalities, histopathologic studies have revealed an

abnormal accumulation of extracellular material,9,10 and

clinical presentation has shown predominant involve-

ment of connective tissue (fibroblasts, chondrocytes, and

osteoblasts), venous malformations, and heart, lung, and

ocular abnormalities. These clinicopathologic changes

point to a generalized defect in extracellular-matrix ho-

meostasis. However, prior research has been unable to

identify the genetic roots or reveal the basic molecular

mechanisms responsible for GAPO syndrome.

To identify the genetic defect in GAPO syndrome, we

performed genomic analysis in four unrelated and ethni-

cally diverse families (Figure 1). The study was approved

by institutional review boards, and the investigations

were performed according to the Declaration of Helsinki

principles. Adults provided informed consent, and the
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affected child provided assent with parental consent. Con-

sents to publish clinical photographs in scientific journals

were also obtained.

We analyzed a previously reported Czech family trio11

(called CZE1) with one affected child (II-1 [Figures 1A

and 1B]) who died from a heart attack at the age of 19 years,

a previously reported Egyptian family (EGY1) with one

affected child (V-3 [Figures 1C and 1D])10 who died from

renal failure at the age of 12 years, and two recently iden-

tified cases in families from Egypt (EGY2) (VI-4 [Figures 1E

and 1F]) and Sri Lanka (SRI1) (III-1 [Figures 1G and 1H]). All

four cases demonstrated the major clinical hallmarks of

GAPO syndrome as summarized in Table 1.

Participants provided venous blood samples, and

genomic DNA was isolated with standard technology. We

first genotyped genomic DNA from all three Czech family

members (i.e., both unaffected parents and the affected

child) by using Affymetrix GeneChip Mapping 6.0 Arrays.

We used data from both SNP and copy-number probes and

identified in all three individuals copy-number alterations

relative to a built-in reference as previously described.12 In

our analysis of the Czech proband, II-1, no rare or poten-

tially disease-causing deletion or amplification larger

than 10 Kb was revealed to be compatible with an expected

autosomal-recessive inheritance model. Because ~0.85% of

the proband genome was found to be autozygous, we esti-

mated that the parents might be fifth-degree relatives.

Accordingly, when we used the Affymetrix Genotyping
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Figure 1. Family Pedigrees, Segregation of the ANTXR1
Mutations, and Facial Appearance of the Probands with GAPO
Syndrome
(A) Pedigree of the Czech family, CZE1.
(B) Facial appearance of the Czech proband, II-1, after neurosur-
gery due to a posthemorrhagic malatic lesion in the frontal cortex.
(C) Pedigree of Egyptian family EGY1.
(D) Facial appearance of Egyptian proband V-3.
(E) Pedigree of Egyptian family EGY2. Note extensive consanguin-
ity and similarly affected relatives.
(F) Facial appearance of Egyptian proband VI-3.
(G) Pedigree of the Sri Lankan family, SRI1.
(H) Facial appearance of the Sri Lankan proband, III-1.
Black symbols denote affected individuals, and open symbols
denote unaffected parents and siblings. ‘‘NA’’ indicates that DNA
was not available for the investigation. The diagonal slash denotes
deceased individuals. The arrows indicate the probands displayed
in the corresponding pictures.

The Am
Console Software version 4.1 algorithm to compare values

from the user’s sample set and SNP-specific distributions

derived from a reference set of 200 ethnically diverse indi-

viduals,12 we identified in the proband sample two

extended autozygous regions on chromosome 2 (chr2:

60,738,227–74,103,186) and chromosome 4 (chr4:

20,458,688–32,646,855), and they contained 114 and 29

genes, respectively (Figure S1A, available online).

To directly identify potential disease-causing mutations,

we sequenced and analyzed the exomes of all three indi-

viduals from the Czech family as previously described.13

In the resulting data set, we searched for variants that

were either private or present in the internal exome data-

base or in the National Heart, Lung, and Blood Institute

(NHLBI) Exome Sequencing Project Exome Variant Server

with allele frequencies lower than 0.1% and whose geno-

types were compatible with an expected autosomal-reces-

sive model of the disease. This analysis revealed 121 candi-

date variants in proband II-1. However, the only relevant

variant compatible with a recessive disorder was a homozy-

gous nonsense mutation (c.505C>T [p.Arg169*]) in

ANTXR1, encoding anthrax toxin receptor 1, also known

as tumor endothelial marker 8 (TEM8) (RefSeq accession

number NM_032208.2) (Table S1 and S2). This mutation

is localized in one of the extended homozygous regions

identified in the proband’s genome and was inherited

from both parents, who are heterozygous carriers. We

confirmed the presence of the c.505C>T mutation in the

parents and in the proband’s genomic DNA by Sanger

sequencing (Figure S2A). The identified mutation was not

reported in dbSNP, 1000 Genomes, the Exome Variant

Server, or an internal exome database (>120 exomes). It

was absent in an additional 200 control samples that we

analyzed with an XhoI-based restriction assay of the corre-

sponding PCR-amplified genomic DNA fragments. To

confirm the recurrence of ANTXR1 mutations in another

affected family, we sequenced ANTXR1 genomic DNA of

the proband (VI-4) from family EGY2 and identified a ho-

mozygous nonsense mutation (c.262C>T [p.Arg88*])

(Figure S2B), which was also localized in an apparently au-

tozygous region (according to the homozygous genotypes

for common SNPs present across the analyzed ANTXR1

genomic sequence and quantitative-PCR results verifying

the presence of both mutated alleles; Figure S3) and was

not reported in dbSNP, 1000 Genomes, the Exome Variant

Server, an internal exome database, or 200 control samples

analyzed with a BsaJI-based restriction assay performed on

PCR-amplified genomic DNA fragments.

In parallel, DNA samples from two other cases (V-3 from

family EGY1 and III-1 from family SRI1) were indepen-

dently analyzed by exome sequencing performed essen-

tially as above and as described previously.14–17 As in a

previous study,14 autozygous regions were identified

directly from the exome data of both samples. Strikingly,

this resulted in two large overlapping regions of homozy-

gosity on chromosome 2; the total overlap was a ~27 Mb

region (chromosome 2: 43–70 Mb) containing 144 genes
erican Journal of Human Genetics 92, 792–799, May 2, 2013 793



Table 1. Main Clinical Findings in the Four Studied Individuals with GAPO Syndrome

Features

Cases

V-3 from EGY1 VI-4 from EGY2 II-1 from CZE1 III-1 from SRI1

General

Age at evaluation (years) 3 10 18 4

Gender male male male male

Parental consanguinity
(first or second cousins)

þ þ � þ

Family history of similarly affected case � þ � �

Height –2 SDs –3.7 SDs –4 SDs –4 SDs

Head circumference –2 SDs þ2 SDs þ1 SD –2 SDs

Bone age delayed mild delay normal for age delayed

Craniofacial

Plagiocephaly þ þ þ �

Frontal bossing þ þ þ þ

Broad forehead þ þ þ þ

Enlarged persistent anterior fontanel þ þ þ þ

Widely spaced eyes þ þ þ þ

Epicantus þ þ � þ

Depressed nasal bridge þ þ þ þ

Short nose þ þ þ þ

Long philtrum þ þ þ þ

Thick and anteverted nares þ þ þ þ

Thick lower lip þ þ þ þ

Micrognathia þ þ þ þ

Pseudoanodontia þ þ þ þ

Skin and Hair

Sparse scalp hair (alopecia) þ þ þ þ

Scalp pigmented with scars and papules � þ � �

Sparse eyebrows and eyelashes þ þ þ þ

Ophthalmologic

Megalocornea þ þ þ NR

Nystagmus þ � � þ

Esotropia þ � þ �

Shallow anterior chamber � þ þ NR

Bilateral engorged tortuous retinal vessels � þ þ þ

Bilateral optic atrophy þ � þ þ

VEP (abnormal pattern) þ � þ NR

Other

Umbilical hernia þ þ þ �

Hyperextensible joints þ � � þ

Mild webbing between fingers � þ � �

(Continued on next page)
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Table 1. Continued

Features

Cases

V-3 from EGY1 VI-4 from EGY2 II-1 from CZE1 III-1 from SRI1

Facial nerve palsy þ � � �

MRI brain changes bilateral high signal of deep white
matter at deep parietal and occipital
region and around the optic nerve

ND ND ND

Abbreviations are as follows: VEP, visual-evoked potential; NR, not recorded; and ND, not done.
(Figures S1B and S1C). The only gene harboring private or

rare homozygous coding or splice-site variants within this

overlapping region was ANTXR1. For the EGY1 case (V-3),

we identified the same nonsense mutation (c.262C>T

[p.Arg88*]) as for the EGY2 case (VI-4) (Figure S2C),

whereas in the SRI1 case (III-1), we identified a substitu-

tion, c.1435–12A>G (Figure S2D). This latter variant is pre-

dicted by ESE finder18,19 to generate an alternative strong

splice acceptor site 11 nucleotides upstream of the last

exon (Figure S4), and this would theoretically result in a

frameshift of the complete reading frame of the last exon

and proteosynthesis of a truncated ANTXR1 containing a

neopeptide composed of 118 unique amino acids in its C

terminus (p.Gly479Phefs*119) (Figure S5).

Two of the affected probands, V-3 and VI-4, from

Egyptian families EGY1 and EGY2, respectively, harbor

an identical c.262C>T [p.Arg88*] mutation. To determine

whether these two probands might be distantly related

and share a mutated chromosomal segment from a com-

mon ancestor, we examined ANTXR1 intragenic SNP hap-

lotypes obtained by exome sequencing (for V-3 from

EGY1) and Sanger sequencing (for VI-4 from EGY2). This

revealed that the c.262C>T mutations are present on two

distinct haplotypes, indicating that these mutations most

likely developed independently or that these families share

a very old ancestral allele (Figure S6). The c.262C nucleo-

tide belongs to a CpG doublet, making deamination of

the cytosine a possible explanation for the recurrence of

the mutation.

ANTXR1, also called TEM8, was initially identified as one

of the tumor endothelial markers (TEMs) that displays

elevated protein levels during tumor angiogenesis.20,21

Soon after its discovery, it was independently identified as

the anthrax toxin receptor (ATR).22 Several variants of hu-

man ANTXR1 have been proposed to exist on the basis of

the identification of rare alternative mRNA splice variants

(Figure 2A). The biosynthesis of all knownvariants is driven

by a common signal peptide (amino acids 1–27) and pro-

ceeds by cotranslational translocation in the endoplasmic

reticulum. The full-length ANTXR1 variant v1, (RefSeq

NM_032208.2) is by far themost prevalent transcript found

in databases of cDNA and expressed sequence tags. It en-

codes a single-pass type 1 transmembrane glycoprotein

that has a molecular weight of approximately 85 kDa and

that is composed of a predicted N-terminal extracellular

sequence (amino acids 28–322) containing a von Wille-
The Am
brand type A domain (amino acids 44–215), a transmem-

brane domain (amino acids 322–342), and large cyto-

plasmic domain (amino acids 343–564) (isoform 1).

Variant v2 (RefSeq NM_053034.2) encodes protein isoform

2, which is structurally similar to variant 1 but contains a

much shorter cytoplasmic domain (amino acids 343–

368).22 Variant v3 (RefSeq NM_018153.3) encodes protein

isoform 3, which does not contain the transmembrane or

cytoplasmic domains and is predicted to be secreted.23

Two other transcript variants have recently been identified:

v4 (GenBank accession number JX424838.1), potentially

encoding membrane-bound protein isoform 4, which,

compared to isoform 1, lacks 36 aa residues in its cyto-

plasmic domain, and v5 (GenBank JX424839.1), poten-

tially encoding secreted protein isoform 5, which,

compared to isoform 3, has an alternative C-terminal

sequence.24 Because detecting cDNA for alternative splice

variants v2–v5 is difficult in that it requires asmanyas60cy-

cles of nested PCR24 and because similar conserved variants

in other species have not yet been described, it is currently

unclear whether they represent transcriptional noise

caused by inappropriate splicing events and whether the

encoded protein isoforms are produced at sufficient endog-

enous levels needed to impact biological function. Howev-

er, the full-length ANTXR1 isoform 1 has been shown to

promote interactionbetween cells andvarious components

of the extracellular matrix,25,26 link extracellular ligands to

the actin cytoskeleton,25,27 and regulate cell spreading.28–30

In three of the four GAPO cases, the identifiedmutations

introduce premature stop codons in ANTXR1 mRNA, and

in the fourth case (III-1 in SRI1), the mutation most likely

results in a loss-of-function allele. From cases II-1 (CZE1)

and VI-4 (EGY2), we studied skin fibroblast cell lines

harboring the ANTXR1 mutations encoding p.Arg169*

and p.Arg88*. To characterize the molecular consequences

of the identified mutations on ANTXR1mRNA expression,

splicing, and stability, we isolated total RNA from two cases

and control skin fibroblasts and performed RT-PCR and

quantitative-PCR analyses. In fibroblasts from affected in-

dividuals, we found a single PCR product comparable in

size to a control specimen (Figure 2B). Sanger sequencing

demonstrated that the obtained PCR products corre-

sponded to cDNA of the major transcript variant v1 of

ANTXR1 and independently confirmed the presence of

the premature-stop-codon-encoding mutations previously

identified in corresponding genomic DNA in affected
erican Journal of Human Genetics 92, 792–799, May 2, 2013 795



A

B C

D

1,000 bp

R
E

LA
TI

V
E

E
X

P
R

E
S

S
IO

N

ANTXR1

Figure 2. Effects of the Identified ANTXR1 Mutations
(A) A schematic representation of ANTXR1 shows the protein
structure, cellular topology, and location of the p.Arg88* and
p.Arg169* substitutions. Two potential N-glycosylation sites are
depicted. The numbers denote amino acid residues defining the
boundaries of predicted ANTXR1 domains. Only ANTXR1 iso-
forms 1, 2, and 3 are depicted. Abbreviations are as follows: SP,
signal peptide; VWA, Von Willebrand factor type A domain; TM,
transmembrane domain; CYT, cytoplasmic domain; and PM,
plasma membrane.
(B) ANTXR1 cDNA analysis. Total RNA was isolated from pellets
from a cultured skin fibroblast cell line with the use of TRIZOL
solution (Invitrogen). RNA concentrations were determined spec-
trophotometrically at A260 nm by NanoDrop (NanoDrop Tech-
nologies), and RNA quality was verified with an Agilent 2100
bioanalyser, RNA Lab-on-a-Chip (Agilent Technologies). The
first-strand cDNA synthesis was carried out with an oligo-dT
primer and SuperScript III Reverse Transcriptase (Life Technolo-
gies). ANTXR1 cDNA was PCR amplified from the synthesized
first-strand cDNA with oligonucleotide primers designed to span
and amplify all three ANTXR1 variants in parallel (Table S2). Lanes
1 and 2 show reduced amounts of RT-PCR products from cases
with p.Arg169* and p.Arg88* substitutions, and lane 3 shows the
cDNA amount obtained under identical conditions from a control
cell line, C. Lane 4 is a negative control. Lane 5 is a 100 bp DNA
ladder.
(C) Relative expression levels of ANTXR1mRNA amounts normal-
ized to glyceraldehydes-3-phosphate dehydrogenase (GAPDH)
mRNA amounts in skin fibroblasts. Quantitative PCR was carried
out on a StepOne Plus Real Time System (Applied Biosystems).
The reactions were carried out in a 96-well plate in a 20 ml reaction
volume containing 10 ml 2 3 Maxima SYBR Green qPCR Master
Mix (Thermo Scientific), 0.2 mM forward and reverse primer, and
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samples (data not shown). The amounts of ANTXR1 cDNA

were significantly reduced in GAPO compared to control

samples, most likely through partial degradation of

mutated transcripts via nonsense-mediated mRNA decay

(NMD) (Figure 2C). Next, we examined whether any

mRNAs might have escaped NMD and translated into

any form of ANTXR1. We immunoprecipitated ANTXR1

from skin fibroblast lysates and culture media by using a

rabbit monoclonal ANTXR1 antibody recognizing an

epitope between amino acid residues 28 and 81 of ANTXR1

(A.C. and B.S.C., unpublished data) and then performed

immunoblotting for ANTXR1. For immunodetection of

ANTXR1, we used either SB5 mouse monoclonal anti-

bodies recognizing the extracellular region of ANTXR1

(amino acid residues 82–145)25,27,31 or the rabbit mono-

clonal antibody. This analysis revealed the presence of

the full-length ANTXR isoform 1 in control fibroblasts

but a complete loss of ANTXR1 in both affected fibroblasts

(Figure 2D and data not shown). Specific chemiluminis-

cence signals indicating the presence of the secreted

ANTXR1 isoform 3 were not detected in immunoprecipi-

tates obtained from culture media of the control or

GAPO cases (not shown). In parallel, we studied and

were unable to detect any ANTXR1 in paraformaldehyde-

fixed cultured control and GAPO fibroblasts by immuno-

fluorescence analysis. This is in accordance with the results

of our immunoblot analysis and the available RNaseq data,

which both suggest that ANTXR1 levels and corresponding

mRNA amounts are very low in these cells. Next, we used

phalloidin staining to evaluate the actin cytoskeleton
5 ng cDNA. Data were analyzed by StepOne Software v.2.0. The
comparative Ct (DD Ct) method was used for normalizing target-
gene mRNA to GAPDH mRNA. The relative amounts of the
ANTXR1cDNA were significantly reduced in cases compared to
control samples. Themeans5 SD of three experiments performed
in triplicate are shown.
(D) Immunoblot (IB) analysis of immunoprecipitated (IP) total-
protein extracts showing absence of ANTXR1 in cultured skin fi-
broblasts from cases with p.Arg88* and p.Arg169* substitutions.
Cultured cells were lysed in TNT lysis buffer (50 mM Tris
[pH 7.5], 75 mM NaCl, and 1% Triton X-100 plus complete prote-
ase inhibitor cocktail [Roche]) and clarified by centrifugation.
Protein extracts were quantified with a BCA assay (Pierce), normal-
ized, and immunoprecipitated with a rabbit monoclonal ANTXR1
antibody (clone 37). This rabbit monoclonal antibody was pro-
duced as part of a collaboration between Epitomics and the
National Cancer Institute and will be described inmore detail else-
where. After immunoprecipitation using protein A agarose, pro-
tein extracts were separated by SDS-PAGE, transferred to a PDVF
membrane (Millipore), and detected by immunoblotting with
SB5mousemonoclonal ANTXR1 antibodies followed by HRP-con-
jugated anti-mouse or anti-rabbit F(ab’)2 secondary antibodies
(Jackson). Chemiluminescence was visualized with the ECL plus
system (Amersham) according to the supplier’s instructions. Ly-
sates of 293 cells stably transfected with an empty vector (293),
293 cells stably expressing human ANTXR1 (293/ANTXR1), and
293 cells stably expressing ANTXR2 (293/ANTXR2) were used as
negative, positive, and specificity controls, respectively. Equal pro-
tein amounts in the original lysates were immunoprecipitated in
parallel with either control rabbit nonspecific IgG antibodies or
rabbit ANTXR1 antibodies.
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Figure 3. Immunofluorescence Analysis
of Cultured Skin Fibroblasts
The cells were grown on 70 mm2 glass
chamber slides (Lab-Tek, Nalge Nunc In-
ternational) for 48 hr. Then the cells were
fixed with 4% paraformaldehyde in PBS,
permeabilized in 0.1% TRITON, washed,
blocked with 5% BSA in PBS, and incu-
bated in a humidified chamber at 4�C
overnight with mouse monoclonal
b-tubulin antibody (Sigma) or Vimentin
(V9) antibody (BioGenex). For fluores-
cence detection, species-specific secondary
antibodies Alexa Fluor 488 or 555 (Molec-
ular Probes, Invitrogen) were used. For
actin staining, Alexa Fluor 488 Phalloidin
(Molecular Probes, Invitrogen) was used.
Slides were mounted in fluorescence
mounting medium Immu-Mount (Shan-
don Lipshaw) and analyzed by confocal

microscopy. XYZ images were sampled according to Nyquist criterion with the Nikon TE2000E C1si laser-scanning confocal microscope
with a Nikon PlanApo objective (603, numerical aperture 1.40) and 488 and 543 laser lines. Images were restored with a classic
maximum-likelihood restoration algorithm in the Huygens Professional Software (SVI, Hilversum, the Netherlands). Phalloidin staining
demonstrated remarkable alterations in the actin cytoskeletal network in cell lines from GAPO cases with p.Arg169* and p.Arg88*
substitutions. No abnormalities in microtubules or intermediate filaments were detected with b-tubulin or vimentin staining,
respectively.
because ANTXR1 has been previously shown to interact

with actin. These studies revealed a striking reorganization

of the actin cytoskeletal microfilaments specifically in the

GAPO fibroblasts, but b-tubulin and vimentin staining of

microtubules and intermediate filaments, respectively,

were unaltered (Figure 3). This suggests that ANTXR1, a

molecule mediating the coupling of extracellular ligands

to the actin cytoskeleton, is crucial for actin assembly

and that disruption of the actin network might be the ma-

jor pathogenetic event leading to altered cell-adhesion

properties and progressive extracellular-matrix buildup

observed in individuals with GAPO syndrome.

Unfortunately, we did not have the opportunity to study

mRNAprocessing, protein production, or the actin network

in the fourth GAPO case with ANTXR1 mutation c.1435–

12A>G. In this case, the mutation theoretically affects

splicing of ANTXR1mRNA and potentially encodes ANTX-

R1isoforms 1 and 2 with altered C-terminal cytoplasmic

tails; if produced, these isoforms could potentially retain

some biological functions. In addition to this, themutation

should not theoretically affect proteosynthesis of the

secreted ANTXR1 isoform 3. This could help to explain the

evidentlymilder clinical presentation of this case compared

to the other three cases with nonsense mutations.

ANTXR1 is most highly produced in tumor endothelial

cells and other tumor stromal cells, which might include

both pericytes and fibroblasts.25,32,33 Antxr1-mutant mice

with targeted deletion of exon 13—encoding the trans-

membrane domain—are viable and progressively develop

misaligned incisor teeth, and female mice are infertile.34

In another mutant mouse model, complete Antxr1 disrup-

tion due to removal of exon 1—encoding the start codon

and signal peptide—leads to a moderate excess of extracel-

lular matrix in many tissues, including the ovaries, uterus,

skin, hair follicles, cranial sutures of the skull, and the peri-
The Am
odontal ligament of the incisors, resulting in dental

dysplasia.31 These features are consistent with the clinical

presentation of individuals afflicted with GAPO syndrome.

It is also notable that some of the individuals with GAPO

syndrome have infantile hemangiomas,35 which have

been associated with germline heterozygosity for missense

mutations in ANTXR136 and dysfunction of the complex

formed by VEGFR2, b1 integrin, and ANTXR1.37 General-

ized extracellular-matrix-homeostasis defects observed in

GAPO-syndrome-affected individuals with ANTXR1 muta-

tions are similar to those found in individuals with juve-

nile hyaline fibromatosis (MIM 228600) and infantile

systemic hyalinosis (MIM 236490), which are allelic disor-

ders caused by mutations in anthrax toxin receptor 2

(ANTXR2), also known as capillary morphogenesis gene

2 (CMG2), an ANTXR1 homolog.38

We conclude that our data, together with recapitulation

of many of the phenotypic features characteristic of GAPO

syndrome in Antxr1-mutant mice and individuals with

ANTXR2 mutations, strongly suggest involvement of

ANTXR1 mutations in the generalized extracellular-ma-

trix-homeostasis defect characteristic of this disease.

From a clinical perspective, our finding provides essential

information for DNA testing in other families. In addition,

autopsy tissues and cultured skin fibroblasts from these

affected individuals represent an interesting cellular model

and potential resource for detailed studies on the patho-

genesis of individual clinical symptoms present in GAPO

syndrome and studies focused on ANTXR1 functions in

general.
Supplemental Data

Supplemental Data include six figures and three tables and can be

found with this article online at http://www.cell.com/AJHG.
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