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Pathogens have evolved strategies to promote their survival by dramatically modifying the tran-
scriptional profile and protein content of the host cells they infect. Modifications of the host tran-
scriptome and proteome are mediated by pathogen-encoded effector molecules that modulate host
cells through a variety of different mechanisms. Recent studies highlight the importance of the host
chromatin and other epigenetic regulators as targets of pathogens. Host gene regulatory mechanisms
may be targeted through cytoplasmic signaling, directly by pathogen effector proteins, and possibly by
pathogen RNA. Although many of these changes are short-lived and persist only during the course of
infection, several studies indicate that pathogens are able to induce long-term, heritable changes that

are essential to pathogenesis of infectious diseases and persistence of pathogens within their hosts. In
this review, we discuss how pathogens modulate the epigenome of host cells, a new and flourishing
avenue of host-pathogen interaction studies. (Am J Pathol 2014, 184: 897—911; http://dx.doi.org/

10.1016/j.ajpath.2013.12.022)

Due to the emergence of drug-resistant strains and newly
discovered pathogens, infectious diseases remain a major
concern for public health. Host organisms respond to infec-
tion by initiating inflammatory and immune responses in an
attempt to clear organisms from their systems. Pathogens
have adapted to alter host cell functionality to their own
advantage, to promote survival, and, in the case of intracel-
lular pathogens, to generate a suitable environment for
replication within the host cell. Pathogens use a wide variety
of strategies to manipulate host cells to their benefit. In case of
Mycobacterium leprae, the causal agent of leprosy, myco-
bacterial dissemination to different tissues is mediated
through the induction of cell differentiation programs in the
Schwann cells it infects.' Shigella flexneri, a Gram-negative
bacterium responsible for bacterial dysentery, induces its
own uptake by epithelial cells by modifying the host actin
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cytoskeleton,” whereas other Gram-negative bacteria, such as
Chlamydia spp., hide inside neutrophils and induce non-
apoptotic programmed cell death, before being absorbed by
macrophages.’ Obligate intracellular parasites of the phylum
Apicomplexa, many of which are important clinical and
veterinary pathogens, extensively remodel host cells by
incorporating parasite proteins into the cell membrane,
restructuring the host cytoskeleton, forming transvesicular
networks, and even constructing new organelles.” On the
other hand, viruses hijack host transcriptional and trans-
lational machinery to promote virus replication, and can
induce uncontrolled proliferation and cancer.
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Historically, the focus of most host-pathogen studies has been
the interactions of pathogenic proteins with proteins on the host
cell surface or cytoplasm. The NF-kB, mitogen-activated protein
kinase (MAPK), and Janus-activating kinase/signal transducers
and activators of transcription family protein (STAT) signaling
pathways are all often activated during infection by pathogens”
and are linked to changes in gene expression and post-
translational modification on both cytoplasmic and nuclear pro-
teins. Although the effects of viruses on host transcription are well
known, it is becoming increasingly clear that the nucleus and,
specifically, chromatin are important targets of numerous classes
of pathogens. Many studies have reported major transcriptional
changes in host cells infected by a variety of pathogens.” These
transcriptional changes modulate a wide range of pathways that
pathogens exploit to enhance their own survival.

Gene expression is regulated by epigenetic mechanisms
that are not directed by DNA sequence (Figure 1). Several
types of mechanism are known to occur. First, DNA can be
modified by the addition of a methyl group to cytosine
or adenosine nucleotides, catalyzed by DNA methyltrans-
ferases. Second, DNA methylation predominantly occurs on
cytosine residues that are in a CpG dinucleotide context; this
modification is associated with transcriptional silencing.
Recent studies also show that methylcytosine can be
converted to hydroxymethylcytosine by the Ten-eleven
translocation proteins, and has been linked to regulation of
self-renewal and differentiation in embryonic stem cells.’

DNA itself is wrapped around a core complex of four
histone proteins, which bind DNA and form a nucleosome.
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Post-translational modification (PTM) of histones is another
major level of epigenetic control, by which combinations of
modifications (eg, phosphorylation, acetylation, or methyl-
ation) contribute to a histone code, which regulates the
accessibility of DNA to transcriptional machinery. Histone
modifications are highly dynamic and play an essential role
in regulating gene expression during cell cycle, changes in
intracellular conditions, or in response to different stimuli.
They are added or removed by chromatin-modifying en-
zymes, which, in turn, are subject to transcriptional and
post-translational regulation. PTMs attract chromatin regu-
lators or remodeling complexes, which control changes in
chromatin state by altering histone-DNA interactions.

More recently, noncoding RNAs (ncRNAs) and miRNAs
were added to the repertoire of epigenetic regulators. ncRNAs
appear to play a role in DNA silencing, post-transcriptional
regulation, and genome maintenance.® Furthermore, RNA
molecules direct several processes, including DNA methyl-
ation, post-translational modification of histones, and binding
of chromatin remodeling complexes. Their role is not as
well understood as other epigenetic processes previously
mentioned.

Epigenomics refers to the study of genome-wide epige-
netic modifications. Herein, we discuss the importance and
prevalence of epigenomic mechanisms exploited by a vari-
ety of different pathogens, speculate on how effector pro-
teins are released into host cells, and look at long-lasting
epigenetic changes induced by pathogens. The effects of
viruses on the epigenetic and transcriptional machinery of

Figure 1  Summary of epigenetics. A: Mechanisms
of epigenomic gene regulation. Gene regulation is
TET controlled by multiple epigenetic mechanisms,
including DNA methylation, histone post-translational
modifications, chromatin remodeling, and ncRNAs. B:
Epigenetic modifications reqgulate chromatin state.
Heterochromatin is tightly packed DNA, in which DNA
is often methylated and promoters (red lines) are
inaccessible to DNA-binding proteins and transcrip-
tional complexes, rendering such genes inactive or
silenced. In euchromatin, DNA is unwound by chro-
matin regulators and accessible to transcriptional
machinery, including RNA polymerase II (RNA pol II)
and transcription factors (TFs), thus allowing tran-
’ scription to occur. DNMT, DNA methyltransferase;
H2A, H2B, H3, and H4, histone proteins; TET, Ten-

eleven translocation proteins.
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the cells they infect have been studied extensively. Recent
studies show that bacterial and eukaryotic microbes also
secrete effectors that modify the epigenome of their hosts,
having broad impact on host-pathogen interactions.

Dysregulation of Gene Regulation Induced by
Pathogens

Transcriptional Dysregulation

Many infections result in the activation of genes central to host
cell response, particularly those involved in stress responses or
inflammation and immunity. Infection can lead to changes in
expression of specific genes, such as those encoding transcrip-
tion factors and chromatin modifiers. Changes in host gene
expression are often organism specific, suggesting that these
effects are orchestrated by the organism. Infection of monocyte-
derived dendritic cells and macrophages with several phylo-
genetically distinct organisms results in organism-specific
changes in gene expression and differences in transcriptional
dysregulation in monocyte-derived dendritic cells and macro-
phages,” indicating that transcriptional dysregulation is specific
to the cell type infected and the infecting organism. Changes in
gene expression can also occur depending on the life cycle
stage of an organism. For example, the latent, slow-growing
bradyzoite forms of Toxoplasma gondii parasites induce dys-
regulation of fewer host genes compared with their acute, fast-
growing counterparts, the tachyzoites.'

Ordered Transcriptional Dysregulation

When an organism enters a host cell, the host cell responses are
rapidly activated in an attempt to eradicate the organism. Hence,
immediate targeting of the genes regulating those initial re-
sponses by the pathogen would be beneficial to intracellular
survival. Plasmodium spp. parasites, responsible for malaria,
invade and replicate inside liver cells and induce changes in
transcription of >1000 hepatocyte genes''; some of these
changes in mRNA can be detected as soon as 30 minutes after
infection. To investigate how the host transcriptome changes
over time, Albuquerque et al'' performed time-lapse studies on
malaria-infected hepatoma cells. Intriguingly, although several
gene sets are dysregulated at all times during infection, 24 genes
were constitutively differentially expressed during infection,
including transcripts encoding signaling enzymes and endo-
plasmic reticulum-stress response proteins, as well as important
transcriptional regulators. In the early stages of infection, stress
response genes and genes encoding receptor-binding proteins
were up-regulated, and it was only later in infection that genes
encoding products involved in host metabolism were altered.
This study suggested that transcriptional dysregulation is an
ordered, sequential process, with different gene sets being
altered throughout the infection process. Similar findings have
been reported in infections with the apicomplexan parasite,
T. gondii,'2 infection of Schwann cells with the bacterium, M.
lepme,l and infections with viruses, such as cytomegalovirus.13
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Alterations to the Host DNA Methylome

DNA methylation patterns correlate tightly with transcrip-
tional data and can change dramatically when cells encounter
a pathogen. DNA methylation was previously thought to be a
stable modification, but is now known to be dynamic,
changing even within a single cell cycle.'* Jihner and
Jaenisch were the first to show that integration of viral DNA
into host DNA induces local changes in DNA methylation,
resulting in transcriptional silencing which is thought to
contribute to viral latency by the maintenance of proviral
DNA in silenced regions.'” Hepatitis B viral infection in-
duces changes in DNA methylation'® that correlate with up-
regulation of DNA methyltransferase expression.'” DNA
methyltransferases are recruited to DNA in response to
hepatitis B infection, resulting in the hypermethylation of
the urokinase-type plasminogen activator promoter.'’
Urokinase-type plasminogen activator is essential for acti-
vation of hepatocyte growth factor, which activates regen-
eration of liver tissue damaged during severe hepatitis
infection. Thus, these studies directly link epigenetic mod-
ulation to pathogenesis of hepatitis B infection in the liver.
Activation of DNA methyltransferases also may play a role
in Epstein-Barr virus (EBV) pathogenesis,'® including
development of gastric carcinoma associated with EBV."”

Dysregulation of Nonhost Cells

Although host cells infected by pathogens undergo major
remodeling, cells that are not invaded also may undergo
transcriptional dysregulation and contribute to disease
pathogenesis. During cell invasion, 7. gondii secretes
several proteins into host cells, several of which have been
implicated in host cell remodeling.”” Occasionally, parasites
undergo abortive invasion and bind to the surface of cells,
but they do not invade. During abortive invasion, 7. gondii
still secretes proteins into the host cells, and this results in
phosphorylation of components of the Janus-activating
kinase/STAT pathway and their nuclear translocation,”’ as
occurs in successful invasions.””

The function of regulation of uninfected cells is unclear—
parasites could be simply probing for a suitable cell to infect;
alternatively, this phenomenon could be relevant to pathogen-
esis. The observation that uninfected-injected cells are in abun-
dance in the brains of 7. gondii—infected mice’' supports the
latter, and is an appealing explanation for the changes in
behavior observed in mice that are chronically infected with 7.
gondii.”* Moreover, it presents a potential mechanism by which
T. gondii infection could be involved in pathogenesis of some
human psychiatric conditions,”* although a direct association
between T. gondii and such disorders has not been demonstrated.

Turning to bacterial infections, the facultative intracel-
lular bacteria, Salmonella typhi, S. flexneri, and Listeria
monocytogenes, all induce activation of proinflammatory
responses in uninfected bystander cells.”> Exposure to
noninvasive S. flexneri does not result in activation of
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NF-kB; this suggests that the response is not due to abortive
invasion, as in 7. gondii, but does not exclude the possibility
that wild-type S. flexneri alters host signaling by directly
injecting effector proteins into cells without invading them.
The mechanisms governing these phenomena are unknown,
but recent work on exosomes (discussed later) may provide
some potential clues.

Molecular Mechanisms of Epigenetic
Modification

Pathogens manipulate the host epigenome through a diverse
set of mechanisms (Table 1 and Figure 2). Recent studies
have focused on the concept of hijacking host cell function
by direct interaction of pathogen-derived proteins with

nuclear components. Such effector proteins have been
referred to as nucleomodulins,”’ relating to their role in
modulating nuclear processes. Bacteria have even been
shown to enter the host nucleus themselves (eg, in the case
of endobacterium Holospora, which infects Paramecium
parasite nuclei and alters gene expression).”” Herein, we
focus on proteins that gain access to the nucleus and inter-
fere with nuclear processes, and the implications for studies
on host-pathogen interactions.

Modulation of Host Signaling Pathways

Hijacking of Nuclear Signaling Pathways

Signaling pathways in the nucleus orchestrate gene expres-
sion and are hijacked by pathogens to control host genes.
Like a multitude of pathogens, S. flexneri infection strongly

Table 1  Strategies Exploited by Pathogens to Modulate the Host Epigenome
Mechanism Organism Effector protein Target molecule References
Direct interaction with  Anaplasma phagocytophilum  AnkA DNA 26
DNA Theileria annulata Secreted AT hook proteins DNA 27
(eg, SuAT1)
Hepatitis C virus NS5A DNA 28
Hijacking nuclear Shigella flexneri OspF MAPKs 29
signaling pathways Salmonella spp. SpvC MAPKs 30
Direct proteolytic Chlamydia trachomatis CT441 p65/Rel 31
degradation
Sequestration or Toxoplasma gondii Unknown STAT1 22
deactivation of Adenovirus 5 EB1-55K DAXX 32
transcription factors  Chlamydia spp. Unknown ZNF23 33
Post-translational Chlamydia trachomatis NUE methyltransferase Host chromatin, histones 34
modification by Streptococcus pyogenes Ser/Thr phosphatase SP-STP Host chromatin 35
secreted enzymes Mycobacterium tuberculosis Mycobacterial Ser/Thr phosphatase Histones 36
Legionella pneumophila RomA methyltransferase Histone H3 K4 37
Paramecium bursaria chorella Chorella virus methyltransferase Histone H3K27 38
virus
Toxoplasma gondii Protein phosphatase 2C Host nuclei 39
Association with Toxoplasma gondii GRA16 HAUSP deubiquitinase and 20
nuclear proteins PP2A phosphatase
EBV EBNA3C Polycomb, mSin3A, NCoR, 40
histone deacetylases
Shigella flexneri OspB, OspF Rb tumor suppressor proteins 41
Anaplasma phagocytophilum ~ AnkA SHP-1 26
Listeria monocytogenes LntA BAHD1 42
Displacement of HIV Vpr p300/HAT
chromatin-associated
proteins
Alteration of chromatin  Mycobacterium tuberculosis 19-kDa lipoprotein LpgH SWI/SNF and C/EBPB 44
structure Toxoplasma gondii Unknown NFKB, cJun, CREB 45
Varicella zoster virus Immediate-early 63 protein ASF1 46
Molecular mimicry EBV EBNA1 Viral/host cell promoters 47
Poxvirus A49 NFKB p65 48
Influenza A virus NS1 PAF complex 49
Neisseria meningitidis DMP12 NHTF 50

A wide variety of mechanisms are exploited by pathogens to modulate nuclear processes in host cells, from effector proteins, which target host DNA to mediate
or repress transcription, to post-translational modification of histones by secreted effector proteins. Some examples mentioned herein are summarized.

ASF1, anti-silencing function protein 1; CREB, cAMP response element binding protein; NCoR, nuclear corepressor; NHTF, nitrogen-response transcription
factor; RomA, regulator of methylation; SHP-1, SH2 domain containing protein tyrosine phosphatase 1; SpvC, salmonella plasmid virulence C protein.
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Figure 2  Host epigenetic mechanisms affected by pathogens. Pathogens use a wide variety of mechanisms to modulate host chromatin, as discussed
further in Molecular Mechanisms of Epigenetic Modification and summarized in Table 1. To prevent chromatin remodeling and, therefore, maintain a silenced
state, M. tuberculosis secretes LpgH lipoprotein, which binds to SWI/SWF remodeling complexes and blocks their function. L. monocytogenes regulates
chromatin state via the effector protein LntA, which recruits heterochromatin regulator BAHD1 to recruit heterochromatin proteins and induce formation of
heterochromatin. HIV, on the other hand, uses vpr protein to target p300/HAT complexes, causing them to dissociate from chromatin. Alternatively, some
pathogens express proteins that directly bind DNA to induce transcription or prevent it. Hepatitis C virus expresses NS5A, which binds promoter regions of host
genes. S. flexneri prevents transcription by sequestering host transcription factors, such as the Rb tumor-suppressor proteins. Chromatin state is also regulated
by histone post-translational modifications, which can be modulated through manipulation of host enzymes or directly through secreted effector enzymes. For
example, S. flexneri modulates the phosphorylation of histone H3S10 through the activity of OspF, a secreted phosphothreonine lyase. OspF removes
phosphate groups from Erk2 and p38, two members of the MAPK pathway, which prevents MAPK-dependent H3S10 phosphorylation. Gray line, DNA; red line,

silenced promoter; red circles, histone PTMs. Me, cytosine methylation.

activates the NF-kB signaling pathway; however, in this
case, NF-kB is prevented from binding selected promoters by
S. flexneri—induced dephosphorylation of histone H3 at
serine 10.%° Tn uninfected cells, H3S10p increases the
accessibility of chromatin to transcription factors, such as
NF-kB. Blocking H3S10 phosphorylation prevents the acti-
vation of NF-kB—regulated genes, some of which encode
cytokines. This is achieved through the secretion of a phos-
phothreonine lyase, outer surface protein F (OspF) which
hijacks nuclear MAPK enzymes to catalyze H3S10 dephos-
phorylation.”” More important, recombinant OspF is unable
to directly dephosphorylate H3S10 in vitro, but it does target
several MAPKs in the nucleus, causing their irreversible
dephosphorylation.’” The ultimate effect of OspF secretion is
prevention of leukocyte recruitment to sites of infection,””
which presumably aids survival of S. flexneri because the
bacteria are not cleared by the immune system. Furthermore,
the studies suggest that OspF is also responsible for an
increased transmigration of leukocytes across the epithelial
barrier, resulting in increased access to tissue for bacteria to
invade. Other histone modifications induced by S. flexneri
have not been studied, although it is likely that others play a
role in this complex process.

Deactivation of Host Cytoplasmic Signaling by Protein
Degradation

Pathogen-induced proteolysis is a major mechanism for
deactivation or aberrant activation of host cell effector

The American Journal of Pathology m ajp.amjpathol.org

proteins. Unlike many other pathogens, Chlamydia tracho-
matis, an intracellular bacterium that causes ocular and
sexually transmitted infections, does not induce NF-kB
signaling on cell invasion. Rather, it prevents activation of
NF-kB by direct proteolytic cleavage of p65/Rel protein,”’
a constituent of the NF-kB signaling cascade. A secreted
C-tail protease called CT441 specifically cleaves p65/Rel
into two fragments, p40 and p22. The p40 fragment is
inhibitory to NF-kB activation. Whether p65/Rel is the only
substrate for CT441 is unknown. Although the in vivo role
of this proteolytic activity is unclear, it could contribute to
the ability of C. trachomatis to persist in humans through
failure to mount long-lasting, protective immunity.

Direct Targeting of Host Nuclear Proteins by Pathogen
Mediator Proteins

Direct Interaction of Pathogen-Derived Proteins with DNA

Some effector proteins interact directly with DNA and may
act as eukaryotic transcription factors. The rickettsial bac-
terium, Anaplasma phagocytophilum, induces transcrip-
tional changes during infection, and down-regulates host
defense genes.”® A key molecule is the secreted protein,
ankyrin-repeat protein A (AnkA), which translocates to host
nuclei and directly binds host DNA and nuclear proteins.”®
Transfection of cells with DNA encoding AnkA induces
some of the transcriptional changes associated with Ana-
plasma infection, such as silencing of the cytochrome b-245
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gene promoter,” but not all, suggesting that other bacterial
factors come into play.

The apicomplexan parasite, Theileria spp., also secretes
several proteins into the host cell, notably including those
with high similarity to eukaryotic AT hook domains, which
are transported to the host cell nucleus.”” When macro-
phages are transfected with one of these AT hook proteins,
SuAT1, significant changes in cell morphological charac-
teristics and in transcription of cytoskeletal proteins are
observed. Whether these proteins play a role in the ability of
Theileria spp. to induce continuous cell proliferation
(described later) is unclear.

Virally encoded transcription factors have also been
described. Hepatitis C non-structural protein SA (NS5A) was
previously shown to be important for viral replication, but
recent evidence suggests that it is a multifunctional protein
able to regulate host gene expression.”® The C-terminus of
NS5A is cleaved in a caspase-dependent manner in the
cytoplasm, after which it translocates to the nucleus and
binds the promoters of host genes. This study lays the
groundwork for future searches for unique, pathogen-
encoded transcription factors.

Association of Pathogen Factors with Nuclear Proteins
Pathogens also influence the epigenome through interaction
with host nuclear proteins, including enzymes. Toxoplasma
gondii secretes several virulence factors, including GRA16,
which is released from dense granule organelles into the
host cell several hours after invasion.”” GRA16 is essen-
tial for virulence in mice and is able to modify the host
transcriptome, altering the expression of host metabolism
and cell cycle genes. Immunoprecipitation of GRA16 re-
veals that it interacts with several host nuclear proteins,
including herpes virus-associated ubiquitin-specific pro-
tease (HAUSP) and protein phosphatase 2A (PP2A), with
which it forms a high-molecular-weight complex. GRA16
appears to induce the translocation of PP2A into host
nuclei, where it assembles into the complex with HAUSP.
Both PP2A and HAUSP have links to cell proliferation
and cell cycle functions. HAUSP is known to stabilize
TP53 during EBV infections, leading to immortalization
of cells,” and HAUSP could play a similar prosurvival
role in 7. gondii infections.

Negative regulation of transcription is achieved, in part,
through inhibitory transcription factors called repressors,
which can be hijacked by pathogens. One of the Epstein-Barr
virus nuclear antigens (EBNA), EBNA3C, acts as a repressor
of host transcriptional activity, targeting several different
genes, such as the gene-encoding proapoptotic protein,
Bim.” Transcriptional repression seems to be achieved
through the association of EBNA3C with polycomb-
repressive complexes, histone deacetylases, and corepressor
proteins (mSin3A and NCoR).

Host repressor proteins are also exploited by several
bacteria. Shigella flexneri secretes two effector proteins,
OspB and OspF, which bind members of the retinoblastoma
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(Rb) group of tumor-suppressor proteins”' and presumably
prevent their binding to DNA. Dysregulation of Rb proteins
is observed in many cancers, and they are essential for
normal cell growth, with roles in cell cycle regulation,
recruitment of chromatin remodeling complexes, and chro-
matin architecture. By binding Rb proteins, S. flexneri may be
able to down-regulate the host immune response, dampening
the production of IL-8. *'

Listeria monocytogenes, a foodborne pathogen, modulates
host gene expression by reversing the formation of hetero-
chromatic regions.*” This is achieved by interfering with the
function of bromo adjacent homology domain-containing
protein 1 (BAHD1), a repressor protein that promotes the
formation of heterochromatin by recruiting proteins involved
in heterochromatin assembly.’® Listeria monocytogenes se-
cretes the effector protein, listeria nuclear targeted protein A
(LntA), which binds BAHDI1 and colocalizes with it at het-
erochromatic regions, ultimately resulting in impaired bind-
ing of BAHDI to promoters and stimulation of type III
interferon (IFN).*> How LntA achieves the exclusion of
BAHDI from promoters is unclear, but its effect mirrors a
study showing that depletion of BAHD1 from cells leads to
increased expression of prosurvival and proliferation genes.”

Sequestration or Deactivation of Transcription Factors
Some pathogens interfere with transcription by preventing
trafficking or deactivation of host transcription factors.
Toxoplasma gondii infection induces phosphorylation of
STAT1,”* which normally activates STAT1 and results in its
translocation to the nucleus. But, during 7. gondii infection,
transcription of IFN-y genes regulated by STATI is
impaired.”” Since STAT] is phosphorylated and able to bind
an STATI-dependent, IFN-y—responsive DNA sequence,
how transcriptional inhibition occurs has not been deter-
mined.”” As trafficking of STATI to the nucleus and DNA-
binding activity are unaffected, one hypothesis is that a
T. gondii effector protein interferes with recruitment of pro-
teins by STAT1 for transcriptional activation. In an alternative
mechanism, 7. gondii sequesters IkBo, an inhibitor constit-
uent of the NF-kB complex, at the parasitophorous vacuole
membrane by phosphorylating it in a host-independent
manner.”’ In this way, 7. gondii reconfigures the host cell
signaling pathways to induce transcriptional changes.
Similarly, Chlamydia spp. sequester host nuclear proteins
by recruiting them to the site of Chlamydia replication, a
type of parasitophorous vacuole termed an inclusion.”"
One of the proteins recruited to the inclusion is zinc finger
nuclear protein 23 (ZNF23),” a proapoptotic transcription
factor and repressor of cell division. Intriguingly, ZNF23
disappears from the host nucleus and cytoplasm and is
apparently incorporated into the lumen of the inclusion,
along with its binding partner, acetyl-CoA binding protein
ACBD6, which usually localizes to the periphery of nuclei.
Recruitment of ZNF23 to the inclusion may sequester the
protein and prevent activation of apoptotic pathways,”” but
further study is needed to determine whether ZNF23 is
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important for other aspects of inclusion maintenance or if
inclusion proteins modulate host apoptosis.

Although sequestration of transcription factors prevents
their binding of target genes, other pathogens induce the
degradation of host proteins for the same gain. Death
domain—associated proteins (DAXXs) are associated with
X-linked a-thalassemia retardation syndrome chromatin
remodeling complexes, which regulate the deposition of
histones onto heterochromatin and act as transcriptional
repressors through methylation of viral DNA and epigenetic
repression.SL) In adenovirus 5 infection, the virus has
evolved to restore transcription by targeting DAXX for
degradation. The mechanism for this is controversial and
may occur by ubiquitin/proteasome-dependent degradation
via the viral protein, EB1-55K,°” or through assembly of
viral proteins into a ubiquitin ligase complex, which then
leads to proteasome-dependent degradation.®!

Post-Translational Modification of Host Nuclear
Proteins by Enzymes Secreted by Pathogens

Some bacteria secrete methyltransferases that directly cata-
lyze methylation of host histones. These include nuclear
effector E (NUE), a secreted histone methyltransferase, one
of many proteins secreted by C. trachomatis into the host
cell. NUE localizes to host nuclei during infection and binds
to host chromatin.”* In vitro methyltransferase activity as-
says indicate that NUE is able to methylate mammalian
histones. The sites of mammalian histone methylation by
NUE have yet to be identified, but will provide valuable
information about the influence of this enzyme on the host
histone code. Another secreted bacterial methyltransferase,
Legionella pneumophila RomA, is a member of a group of
genes encoding proteins with high similarity to eukaryotic
proteins (Legionella eukaryotic-like genes). Like NUE,
RomA targets histones for methylation, inducing trimethy-
lation of histone H3K14,”” a mark that had not previously
been identified in mammals. Such effectors are not restricted
to bacteria: a SET domain-containing protein with methyl-
transferase activity was identified in Paramecium bursaria
chlorella virus, a virus that infects certain types of algae.’®
The chorella virus methyltransferase specifically targets
histone H3K27 for dimethylation, a histone mark that cor-
relates with gene silencing.

Aside from methyltransferases, a few other candidate
secreted epigenetic modifiers are known. Mycobacterium
tuberculosis secretes a protein phosphatase that can de-
phosphorylate histones in vitro,”® although there is no
evidence that it performs this function in vivo. The Gram-
positive bacterium Streptococcus pyogenes expresses a
serine/threonine phosphatase, which is secreted into host
cells and targets to host nuclei.®” There, it acts as a proap-
optotic factor that induces apoptosis of pharyngeal cells, a
hallmark of streptococcal infections, by influencing tran-
scription of apoptotic genes and preventing the transcription
of other genes, such as cytochrome p450. Although the
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enzyme is functional and has a role in bacterial adhesion, its
targets in host nuclei remain elusive.

T. gondii also targets a protein phosphatase 2C protein to
host nuclei,” but its effect on the epigenome has not been
investigated. The transcriptional and epigenetic machinery
of protozoan parasites shares many similarities with that of
other eukaryotes,’’ and many apicomplexans secrete kinases
and phosphatases into the host cell. It is possible that some of
these secreted effectors alter chromatin-modifying activity or
directly target histones.

Displacement of Chromatin-Associated Proteins from
Chromatin

Chromatin-associated proteins can be displaced from chro-
matin by pathogenic proteins. One of the HIV accessory
proteins, viral protein R (vpr), interferes with sister chro-
matid segregation during mitosis, through its interaction
with p300/HAT, a histone acetyltransferase-regulating
transcription factor.”” p300/HAT is actively recruited to
chromatin, where it appears to displace heterochromatin
protein 1, an important factor in centromere cohesion. Cells
expressing vpr exhibit aberrant mitosis. Similar findings
have been observed in human cytomegalovirus-infected
cells,** suggesting that pathogen-induced changes in chro-
matin structure may be more common than is appreciated.

Alteration of Chromatin Accessibility, Chromatin
Remodeling

The structure of chromatin governs accessibility of DNA to
transcription factors; extensive remodeling around promoter
regions is required for transcription initiation to occur.
Because of this, chromatin structure plays an important role
in host transcriptional responses in many infections. During
M. tuberculosis infection, inhibition of expression of some
IFN-y—responsive genes is observed”’; the same effect is
noted when cells are exposed to LpgH, a 19-kDa lipoprotein
of M. tuberculosis.® Mechanistically, LpqH prevents
binding of the SWItch/Sucrose NonFermentable (SWI/SNF)
chromatin remodeling complex to chromatin at the class II
transactivator locus, leading to inactivation of this gene.***’
Furthermore, LpgH induces binding of transcription factor
CCAAT/enhancer-binding protein beta (C/EBPB) to the
promoter of the gene-encoding class II transactivator’* and,
thus, contributes to its silencing.

After infection with 7. gondii, several host transcription
factors are prevented from binding their TNF-o. promoter
binding sites.”” These findings suggest that either chromatin
remodeling is inhibited at that locus or these proteins are
actively excluded from DNA by another mechanism. In sup-
port of the former hypothesis, infection with 7. gondii prevents
phosphorylation of histone H3S10 and acetylation of H3K9
and H3K14 at the TNF-a. locus on stimulation of cells with
lipopolysaccharide (LPS)."” The same effect is observed at the
locus encoding the cytokine IL-10, where H3S10 and K3K9/
K14 marks also were abolished,”® suggesting that this mech-
anism of silencing is not solely specific to the TNF-a. gene.
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Studies in yeast have shown that nucleosomes are exten-
sively repositioned in response to physiological stress.””
Consistently, nucleosome repositioning occurs in response
to stimulation with LPSs. A single nucleosome spans the
promoter of /L-12, and during LPS stimulation, this nucleo-
some is displaced, and cytokine IL-12 mRNA can be tran-
scribed.”’ This phenomenon has also been observed in
response to viral infections, where it is mediated by SWI/SNF
complexes’'; changes in nucleosome position in CpG island
pl6 are observed in gastric carcinomas induced by Heli-
cobacter pylori,”” although a lack of genome-wide studies
makes it difficult to interpret the relevance of this observation.

In other cases, nucleosomes may be evicted from DNA.
For example, the herpes virus Varicella zoster interacts with
host nuclear protein ASF1,® a host nuclear protein involved
in histone deposition and eviction of nucleosomes from
DNA, a function that may be important for the regulation of
viral and cellular transcription.

Examples of Molecular Mimicry of Nuclear Proteins in
Infectious Diseases

Molecular mimicry is a mechanism used by pathogens for
immune evasion, and recent studies suggest that molecular
mimicry extends to interference with nuclear processes. EBV
protein, EBNAI1, has homology to high-mobility group A
transcription factors and is important for tethering viral DNA to
cellular DNA during mitosis.”* EBNA1 binds to both viral and
host cell promoters, where it promotes chromatin decom-
paction and regulates transcription.’ Poxviruses evade the NF-
kB signaling pathway through protein A49, which contains a
conserved IkBa motif and replaces IkBa in a complex with
NF-kB p65,"* preventing the nuclear translocation of NF-kB
and activation of NF-kB—responsive genes.

Influenza A virus uses mimicry to interfere with host
transcriptional elongation. Influenza A non-structural protein
1 (NS1) contains a peptide that shares high similarity with
histone H3.*” NS1 has multiple functions in dampening host
response to infection, including post-transcriptional blocking
of pre-mRNA maturation by prevention of polyadenylation
and export of processed mRNAs.’* NS1 specifically interacts
with the host cell epigenome by targeting the host RNA
polymerase II associated factor 1 (PAF1) transcriptional
elongation complex through its histone-like domain, causing
PAF1 and RNA polymerase II levels to decrease at specific
target genes to alter transcription of antiviral genes.*’ Histone
mimics have also been identified in many bacterial species,
including Mycobacteria spp.””; however, their role in regu-
lating the host epigenome has not been investigated.

Few DNA mimics have been described. Such mimics act
by occupying sites that would otherwise be bound by DNA-
binding proteins. Neisseria meningitidis expresses a DNA
mimic called DNA mimic protein 12 (DMP12), which is
able to neutralize repressive effects of another transcription
factor, nitrogen-response transcription factor (NHTF),”""°
representing a new mode of gene regulation.
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Delivery of Effector Proteins

Both intracellular and extracellular pathogens can deliver
effector proteins to the host cell. Most bacteria use some
kind of specialized secretion system.’’ Intracellular patho-
gens can use specialized secretion systems, regulated secre-
tory vesicles, and protein export through parasitophorous
vacuoles to direct proteins into the host cell.

An emerging concept is that exosomes, late endosome—
derived microvesicles, can be used by pathogens to transport
effector molecules into the host cell. Exosomes have been
shown to be vectors of miRNA, lipid mediators, and various
types of protein,’® and have roles in cell-cell communication.
In the context of infectious diseases, exosomes can be
secreted by either infected host cells or pathogenic organisms
to modulate host processes. Exosomes secreted from HIV-
infected cells are able to induce apoptosis in bystander
CD4" T-cells.”” Macrophages infected with 7. gondii, Sal-
monella typimurium, M. tuberculosis, or Mycobacterium
bovis all release exosomes.”” EBV-induced exosomes
contain miRNAs that repress EBV target genes,”' a process
that could contribute to viral latency.

Microvesicles purified from Plasmodium-infected eryth-
rocytes activate macrophages in vitro, inducing transcription
of proinflammatory cytokines and neutrophil chemo-
taxis.*>" Interestingly, these particles are more potent than
purified parasitized erythrocytes, suggesting that some
component of microvesicles is key to activating immune
responses to malaria infection. These studies suggest that
malaria-infected erythrocytes exploit exosomes for cell-cell
communication and that microvesicles derived from infected
erythrocytes increase differentiation of parasites into sexual
stages that are essential for transmission of the parasite
through mosquitoes.**™* Plasmodium-derived microvesicles
could contain factors that are released into target cells, which
the authors propose induce transcriptional programs leading
to sexual stage development, thus acting as a form of quorum
sensing in parasites.

Evidence supporting the release of exosomes from
extracellular pathogens, including bacteria and protozoan
parasites, has emerged in recent years. Gram-negative bac-
teria release outer membrane vesicles, which are similar to
exosomes in size. The opportunistic pathogen, Acineto-
bacter baumannii, uses outer membrane vesicles to deliver a
transposase protein able to enter host nuclei and methylate
promoters of genes encoding E-cadherin,® implying that
this mode of delivery of proteins by pathogens may be an
important mode of delivery of epigenetic regulators.

Eukaryotic pathogens also release exosomes. The cargo of
such vesicles varies widely. In a proteomic study of exosomes
from the fungus Cryptococcus neoformans, histone proteins
H2A and H4 were identified.*” Exosomes derived from His-
toplasma capsulatum, another fungal pathogen, contain his-
tones as well as GTP-binding nuclear protein, nuclear
transport factors, proteins involved in DNA assembly and
DNA binding, and an RNA helicasesome.*® Interestingly,
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Leishmania spp. vesicles contain an elongation initiation
factor 1-o. homologue, which could interfere with protein
translation if absorbed by a cell, and heat shock proteins.”’ In
addition to conserved exosomal proteins and parasite-derived
proteins, vesicles from the sexually transmitted parasite,
Trichomonas vaginalis, contain small RNAs,88 such as
mammalian exosomes. Purified 7. vaginalis exosomes spe-
cifically regulate the production of the proinflammatory cy-
tokines, IL-8 and 1L-6.%°

Long-Term Consequences of Epigenetic
Modulation of Host Cells

Although many epigenetic modifications are dynamic and
highly transient, the original definition of an epigenetic
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Differentiation of host cells

M. leprae

Transformation of host cells

./ o

mark, by Russo and Russo,89 is that it can be inherited
through mitosis, allowing a cell to retain its transcriptional
profile and provide long-term memory. Most of the mod-
ifications described herein follow a transient pattern, but
there are some examples (Figure 3) that strongly support
the idea that pathogens can induce long-term, heritable,
epigenetic modifications essential to the pathogenesis of
chronic diseases.

Differentiation of Host Cells by M. leprae

A fascinating study on M. leprae found that these bacteria
regulate their own dissemination in the host by inducing
differentiation of the infected host cell by epigenetic
reprogramming.’ M. leprae reproduce inside Schwann cells,
causing neurological injury and damage to sensorimotor
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Long-term epigenetic changes mediated by pathogens. A: Reprogramming of host cells by M. leprae. Mycobacterium leprae induces the Schwann

cells it infects to differentiate into stem cell—Llike progenitor cells, which have the capacity to differentiate into multiple cell types, including smooth muscle
or skeletal muscle cells. By inducing the reprogramming of Schwann cells, M. leprae regulates its own dissemination throughout different tissues. B:
Transformation of host cells by T. parva. Theileria parva is, to date, the only organism known to induce continuous proliferation of the host cells it infects,
which is directly tied to the division of this parasite as it hijacks the cell’s division machinery. Parasites induce transcriptional changes that lead to the
suppression of apoptosis and up-regulation of proliferation genes. AT hook-binding proteins are also used to influence the transcriptome of host genes to
promote survival of T. parva. C: Oncogenesis induced by chronic H. pylori infection. The bacterium H. pylori induces profound changes in transcription in its
target tissue, the gastric epithelium. By secreting enzymes and virulence factors onto the surface of the epithelium and into cells, it induces damage to
epithelial cells and a loss of cell polarity. Chronic exposure to H. pylori leads to altered transcription and DNA methylation, mirrored by changes in histone PTMs
and eventual dysplasia and carcinogenesis.
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functions. To mediate distribution of bacteria to the body,
M. leprae induces the differentiation of Schwann cells into a
stem cell—like progenitor state. In infected cells, transcrip-
tion of genes associated with nuclear functions and, in
particular, embryonic development are altered. Reprog-
rammed cells further develop into mesenchymal, skeletal
muscle, or smooth muscle tissue; mycobacteria also induce
production of granuloma-like structures able to release
macrophages containing bacteria.

Typically, reprogramming of cells into pluripotent stem
cells requires major remodeling of chromatin structure. For
example, during the early stages of reprogramming, dime-
thylation of H3K4 is observed at loci associated with plu-
ripotency,” priming these genes for activation. Although
the methylation status of H3K4 was not examined, phos-
phorylation of H3S28 was observed,' a mark concurrent
with cell cycle stages. Infection with M. leprae is accom-
panied by alteration in DNA methylation status, with the
promoters of several mesodermal and epithelial-mesodermal
transition genes being significantly demethylated, indicating
that they are epigenetically reprogrammed into a transcrip-
tionally active state during infection.

Reprogramming by M. leprae is likely to occur by mul-
tiple mechanisms, including induction of the translocation
and removal of the Sry-box transcription factor (SOX)
SOX10 from the nucleus." SOX10 is a major regulator of
Schwann cell homeostasis, gene expression, and myelina-
tion, acting through the recruitment of chromatin remodel-
ing complexes. Considering the important role of SOX10 in
these cells, removal from nuclei is likely to dramatically
influence transcription. Furthermore, the SOXI0 locus is
strongly methylated in infected Schwann cells, suggesting
that M. leprae blocks SOX10 function at both transcrip-
tional and post-translational levels.

Parallels to this study have been observed in many other
organisms. Infection of circulating immune cells is a com-
mon mechanism for primary infection by pathogens. For
example, 7. gondii hijacks neutrophils and dendritic cells,
altering host cell signaling, morphological features, and
motility,”’ events that are implicated in spreading of para-
sites. Salmonella enterica serovar typhimurium also hijacks
intestinal neutrophils,”” presumably to traverse the intestinal
mucosa and reach the lumen. Effects on the epigenome and
transcriptome of cells used as vehicles of dissemination
have yet to be investigated.

Transformation by Theileria spp. Parasites:
Immortalization

Theileria parva and Theileria annulata are tickborne para-
sites of the phylum Apicomplexa that cause significant
disease and death in cattle, particularly in Africa and Asia.
They have the unique capacity of transforming the host cells
they infect into continuously proliferating cells that are
resistant to apoptosis.”” Infected cells then disseminate to a
wide range of tissues, slowly resulting in the destruction of
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the lymphatic system, and pulmonary edema, resulting from
infected cells migrating to the lungs. After the elimination
of parasites from cultures, unparasitized leukocytes also
continue to proliferate for several days,”* indicating that this
phenotype is inherited by daughter cells and that bystander
cells are also targeted. The mechanism of continued prolif-
eration is unclear and appears to be multifaceted, involving
massive changes in transcription.”” Many transcription fac-
tors are induced to be constitutively active,”® as are signaling
pathways, such as the NF-kB pathway.”’ This results in
continuous activation of genes that suppress apoptosis and
enhance cell cycle progression, and a lack of responsiveness
to LPS stimulation.”” Moreover, Theileria spp. modulates
several signaling pathways, including apoptotic pathways
through the cell cycle regulator TP53, which Theileria spp.
sequesters in the host cytoplasm, leading to inhibition of
apoptosis and promotion of host cell replication.”® Major up-
regulation and activation of transcription factors and proin-
flammatory molecules can, however, be detrimental to cells,
and only a few infected cells survive and go on to proliferate.
The rest undergo apoptosis,”” indicating that there is a deli-
cate balance between survival and death.

Oncogenesis Caused by H. pylori

Transcriptional changes can have various effects at the
subcellular level, but also dramatically affect the tissue
microenvironment. The extracellular bacterium H. pylori is
a major factor in gastric carcinomas, in which it infects the
lower stomach and induces excessive acid production,
which can lead to ulceration, tissue damage, and eventual
transformation into malignant tissue. Chronic infection with
H. pylori induces changes in DNA methylation, particularly
in promoter regions of genes encoding tumor-suppressor
proteins and oncogenes.'”’ Some of these changes persist
even after eradication of H. pylori from the gut with anti-
microbial drugs,'’' suggesting that H. pylori induces long-
lasting changes to the epigenome. Supporting this idea,
clearance of H. pylori does not guarantee that cancer does
not develop. '

Whether epigenetic changes are maintained after H. pylori
eradication is unknown, but modifications of the epigenome
induced by H. pylori are linked to oncogenesis. For example,
the forkhead transcription factor, FOXD3, is normally
responsible for the transcription of proapoptotic factors and
plays a key role in activating tumor apoptosis. After H. pylori
infection, the FOXD3 promoter is hypermethylated in mice
and human gastric cancers,'”” and FOXD3 cannot be acti-
vated. Histone post-translational modifications, such as
dephosphorylation of H3S10, are also altered in H. pylori
infection, and NF-kB—responsive genes are not induced.'”*
The change in phosphorylation status of H3 is thought to be
caused by H. pylori—induced premitotic arrest in cell cycle,'*
which may be responsible for prevention of epithelial cell
renewal in the stomach. A wide range of histone post-
translational modifications is altered in response to H. pylori,
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and more important, many differences occur on genes encod-
ing tumor-suppressor proteins and oncogenes,'*° reflecting the
changes in DNA methylation previously described.

The mechanistic link between the virulence factors of
H. pylori and host chromatin has yet to be established. Other
gram-negative bacteria secrete cytolethal distending toxins
(CDTs), genotoxins that target the nucleus, inducing double-
stranded breaks in DNA that lead to DNA damage,51 which
may contribute to H. pylori—related carcinogenesis. Studies
on a mouse model of Helicobacter hepaticus, a related bac-
terium that causes liver cancer and inflammatory bowel dis-
ease, revealed that CDTs appear to be responsible for
promoting development of dysplasia; H. hepaticus lacking
CDT activity does not induce dysplasia in mice.'’’ In addi-
tion, in comparison to wild-type bacteria, CDT mutants do
not induce the transcription of proinflammatory cytokines,
suggesting that CDT proteins influence these transcriptional
pathways, preceding the development of dysplasia.

Remaining Questions

Modulation of the host epigenome by pathogen-derived
effector molecules is emerging as a key mechanism for
pathogenesis, although several pieces of the puzzle are
missing. First, how do these pathogen effector proteins get
into the nucleus? Many lack classic nuclear localization
signals. They may have unconventional trafficking signals
or perhaps interact with host proteins to hitch a ride into the
nucleus. Either way, it is likely that pathogens exploit host
cell trafficking mechanisms to target proteins to the correct
subcellular location.

Second, which pathogen effector proteins influence the
host epigenome? Studies characterizing the secreted prote-
ome or secretome of infectious agents have provided many
potential targets for studies on nuclear modulation of host
cells. Characterization of the M. tuberculosis secretome has
revealed the presence of a diverse range of proteins in the
culture filtrate,'”® several of which could be epigenetic
modifiers. These include a putative single-stranded binding
protein, which is predicted to bind single-stranded DNA to
prevent degradation by nucleases; other examples are pu-
tative transcriptional repressor and regulator proteins, a
transcription elongation factor protein, and a secreted DNA-
directed RNA polymerase. M. tuberculosis secretes a group
of interrelated proteins termed mammalian cell entry pro-
teins, which are essential for survival of the bacterium inside
macrophages. The function and mechanism of action of
these proteins remain elusive; however, a recent study
indicated that mammalian cell entry protein 1 is important
for activating transcription of a specific group of genes in
macrophages.'””

Finally, are ncRNAs key epigenetic regulators of the host-
pathogen interaction? Although there has been substantial
speculation about the role of ncRNAs in infectious disease
biological features, ncRNAs have not been shown to be a
vehicle of epigenetic dysregulation by any pathogen.
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Replication of many viruses, such as EBV, requires non-
coding and small RNAs for the maintenance and propagation
of viral genomes in the host cell."'” Polyomaviruses use a
single miRNA to evade natural killer cell responses through
the down-regulation of cell surface ligand ULBP3,""" which
is usually recognized by natural killer cells and T-cell
subsets.

Further investigation of the role of ncRNAs in host-
pathogen interactions is likely, given promising results with
hepatitis C virus. In 2005, Jopling et al''* demonstrated that
replication of hepatitis C viral RNA is prevented in the
absence of miRNA miR-122. Since then, studies have
shown that targeting miR-122 with a synthetic antisense
oligonucleotide (SPC3649, miravirsen) effectively prevents
viral replication in chimpanzees.''® This molecule shows
promise in clinical trials,"'* in which treatment induced a
decrease in hepatitis C viral RNA levels. More important,
this study did not identify any escape mutants, suggesting
that this treatment does not select for mutant, drug-resistant
hepatitis C virus. Miravirsen may be the first of many
miRNA-targeted treatments for infectious diseases.

Although host miRNAs are dysregulated during several
different types of infection, research is only beginning to
uncover the relevance of these molecules in infectious dis-
eases. In a unique mechanism, Cryptosporidium parvum, a
waterborne apicomplexan parasite, suppresses host miRNAs
by hijacking histone deacetylases and the NF-kB signaling
pathway, whereas it up-regulates other miRNA.'"> This
includes miR-27b, which was shown to cause translational
repression of splicing factor KH-type splicing-regulatory
protein. KH-type splicing-regulatory protein is a regulator of
mRNA stability; on translational repression induced by C.
parvum, increased stability of inducible nitric oxide syn-
thase, a key molecule in epithelial cell immunity and anti-C.
parvum defense, is observed.

Future Directions

Infectious diseases are a scourge of humankind, and repre-
sent major causes of morbidity and mortality globally.''®
Much infectious disease research focuses on the unique
nature of pathogens, in a quest to identify enzymes or
proteins that represent novel drug targets. Despite many
successes, over time, there has been an increase in antibiotic
resistance, and resurgence of contained diseases. Multidrug-
resistant strains and extensively resistant M. tuberculosis are
prevalent in many regions of the world,"'” and treatment of
these infections is particularly complicated in patients co-
infected with HIV. Despite a reduction in malaria cases
worldwide, resistance to antimalarial drugs is also wide-
spread, with resistance to artemesinin, the frontline treat-
ment for malaria, now appearing.''®

By studying host-pathogen interactions, it may be possible
to combine experimental and computational approaches
to identify host pathways that are commonly targeted by
pathogens.''” Targeting epigenetic changes induced by
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pathogenic organisms could be an approach to therapeutic
development that is less likely to select for drug resistance.
Host cells also act as reservoirs for latent pathogens,
including HIV, and manipulating the chromatin state of the
host has been proposed as a strategy to render latent patho-
gens more accessible to active drugs.'”” Questions remain
about the nature of reported epigenetic changes; many could
be transient, whereas others may be long-term changes that
will be performed on daughter cells. Furthermore, although
several long-term effects of epigenetic modulation by path-
ogens have been identified, there may be other, as yet un-
explained, mechanisms, which have an epigenetic basis.
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