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Abstract—Several families of biorthogonal wavelet bases are constructed with various properties.
In particular, for a given filter, F»(£), of finite length 2n 4 1, a parametric family of dual filters,
F¥:(€), of length 2N + 1 is constructed. The parametric nature of the dual filters makes it possible
to design the optimum dual filter F?(£) corresponding to a fixed filter 7 (£).

1. INTRODUCTION

Recently, the growing interest in orthogonal wavelets is due, in great part, to their ability to
represent wide classes of functions and operators without redundancy, and to the fast wavelet
transform which makes possible the computer implementation of new, very efficient algorithms.

In pure mathematics, wavelets are used to characterize some functional spaces, such as LP(R")
for 0 < p < oo, Holder and Hardy spaces, etc., [1]. A proof by means of wavelets of the famous
T(1) theorem of David and Journé [2] on the L2-continuity of a class of linear singular integral
operators is found in [3, pp. 267-278].

In numerical analysis, wavelets are used as an efficient tool for the rapid numerical application
of certain types of linear operators to arbitrary vector-valued functions [4]. They are also used
in the numerical solution of partial differential equations by mean of finite element methods
[1, pp. 57-60]. They are widely and efficiently applied in engineering, for example, in sound
analysis [5], image processing [6-8] to cite but a few.

An orthonormal wavelet basis for L2(R) is a family of functions

Yik(z) =272 (2772 k), ze€R, j kegZ, (1.1)

obtained by dilations and translations of a single (mother) wavelet ¥ € L?(R). Thus, any
function f in L2(R) can be expressed in terms of the wavelets ¥, x:

F@) =3 (f i) ie (), (12)

JEZ kEZ

where the equality holds in the strong L?-topology and the wavelet coefficients are given by the
scalar products

(Fose) = [ " {@) @) de. (1.3)
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The (nonsmooth) Haar basis [9] constitutes the first known wavelets. J. O. Strémberg [10]
constructed the first orthonormal basis of the form (1.1) with a function ¥ of class C™ for an
arbitray integer m. In 1985, Y. Meyer [11] constructed an orthonormal wavelet basis which
is an unconditional basis for various functional spaces. In [12], P. G. Lemarié constructed a
wavelet basis for LZ(R™) with bounded regularity, but with exponential decay. In 1988, Ingrid
Daubechies {13] constructed orthonormal wavelet bases with compact support and arbitrarily
high regularity.

We remark that the construction of the majority of useful wavelet bases is a consequence of the
design of some 2w-periodic functions called wavelet filters by the signal processing community
(see [14] in an early stage, and [15,16]. Moreover, any wavelet filter with finite or infinite length
is a finite impulse response (FIR) or infinite impulse response (IIR) filter, respectively.

In many applications [17, p. 113; 18], it is necessary to use linear phase FIR filters. Unfor-
tunately, such filters are impossible to design. On the other hand, biorthogonal wavelet bases
provide us with compactly supported symmetric wavelets [19]. Biorthogonal wavelets are formed
by a pair of families of dual (see Definition 2 below) wavelets, ¥;x(x) and ij(z), derived from
two mother wavelets, y(z) and 9(z), respectively, and such that any function f in L2(R) can be
written in either forms:

@) = 33 (i) = 303 (£, 95k ) var(a). (1.4)

JEZ kEZ JEZ kEZ

Hence, f is decomposed by one family and reconstructed by the other. Ph. Tchamitchian [20]
constructed the first family of biorthogonal wavelets. In {20], it is shown that it is possible to
construct symmetric biorthogonal wavelet bases with arbitrary high preassigned regularity.

In this work, biorthogonal wavelet bases are constructed by an approach which differs from the
one used in [19]. By this new approach, it is possible to construct a new class of biorthogonal
wavelet bases with the following remarkable properties:

e syminetry,

e compact support,

o regularity,

the dual filter, corresponding to a fixed wavelet filter Fy(£), is given in parametric form.

This paper is divided as follows. In Section 2, some necessary or sufficient conditions are stated
for the construction of regular wavelets. In Section 3, we provide the numerical techniques for
the construction of the wavelets and estimating their regularities and to extend a fixed family of
biorthogonal wavelet filters to an infinite family. Numerical results are quoted in Section 4.

2. BIORTHOGONAL WAVELET BASES

In this section, we describe the fundamental steps of the construction of wavelet bases. The
first step consists in designing a wavelet filter and constructing a scaling function. In the second
step, the wavelets are constructed.

2.1. Preliminaries

An orthonormal wavelet basis {1, k; j,k € Z} is directly related to a multiresolution analysis
(MRA) [21,22]. Let V € L%(R) be the subspace spanned by the orthonormal functions ¢(z — k),
k € Z. Define the space V; obtained by dilating Vj by 27,

feEV; & F(2) eV (2.1)
An orthonormal basis of V; is given by {¢;x; k € Z}, with ¢; x(z) = 279/2¢ (2=9z — k). Then,

CVoCcViCcVyCV_ 4 CVoeC---, (2.2)
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and [o o) o0
Avi={} Uv=L"®).

Since V) C V), there exists a sequence, (an)nez, of complex numbers [23) such that the function
¢ (271z) € W, by (2.1), satisfies the two-scale difference equation

4(3) =T anda-n), an=: / T (5) #le+mds, (2:3)
ne€zl

-~00

where oy, = O(|n|™™) for any integer m > 1. The Fourier transform of the first expression in
(2.3) is

$(2¢) = [Z a e"‘f} $(¢). (2.4)
neL
The wavelet 1) is defined by
P(z) =2 (-1)"ar_ad(2z - n). (2.5)
n€z

Let W; be the orthogonal complement of V; in V4. It is shown in [1, pp. 71-73], that ¥on(z) =
Y(z— n), n € Z, is an orthonormal basis of Wo It then follows that, for fixed j € Z, the sequence
(;k)rez defined as in (1.1) is an orthonormal basis of W;. Moreover, | J; W; is dense in L2(R).

DEFINITION 1. Scaling functions, orthornormal wavelets and wavelet filters are defined as follows:

(a) the functions (@;i); kez are called the scaling functions generated from the (father) scaling
function ¢(z),
(b) the functions (Y;x);kez are the orthonormal wavelets generated from the mother wavelet

¥(z), v
(c) Fo(€) = V2 (T ez 0n €™) is a wavelet filter where the ay, are given by (2.3).

We shall use the following definition (24, p. 151].

DEFINITION 2. Two scaling functions ¢ and 5, generating possibly different multiresolution
analyses of L*(R), are said to be dual scaling functions if their scalar product satisfy the following
condition:

(=03 -0) = [ ple-ida-Rdo=bs ke (26)
In the biorthogonal case, we shall need two dual scaling functions ¢(z), a(:c) satisfying
$@)=2) onp(2z~n),  $(r) =2 Enf(2z —n). (2.7)
nez neZ

By using condition (2.7) and the techniques employed for proving Theorem 1 in [1, pp. 72-73],
the reader can easily verify that the pair of functions

P(z) =2 (-1)"T1np(2z—n), %) =2 (-1)"@ 52z — n), (2.8)

nez neZ

are (in general, nonorthonormal) dual wavelets associated with the scaling functions ¢(z), é(z).
We remark that if the scaling functions, ¢;x and ¢;i, and their corresponding wavelets, ;i
and %;k, are defined as in (1.1), then any f € L*(R), can be written in the forms

£(2) =Y (£ 4i6)85k(@) + D 3 (fs k)i (z)

kez zi%kez
- - (2.9)
=> (f, ¢jk) Sk +Y_ D (f, ¢nk) Yk ().
kez nez kez

n<j



28 A. KAROUI AND R. VAILLANCOURT

By taking the Fourier transform of ¢(z/2) and ¢(z/2), we see by (2.7) that there exist a pair of
27-periodic functions,

mo(€) = D ane™,  Mo(€) = Y Ene'™, (2.10)
nez nel
such that R R ~ -~
$(26) =mo(£)8(€),  ¢(26) = mo(£)d(£)- (2.11)

Then the following important question arises: under what conditions on mg and g can one have
a pair of dual scaling functions and consequently a biorthogonal wavelet basis. An answer, given
in [19}, is briefly summarized in the following subsection.

2.2. Necessary and Sufficient Conditions for the Existence of Biorthogonal Wavelet
Bases

From now on, we assume that the coefficients, a, and &y, of mg and g, respectively, as
defined in (2.7), are real, satisfy the symmetry relations a_,, = a, and &_, = Gy, and are finite
in number. The last assumption is equivalent to the compact support property of the constructed
wavelets.

To construct a pair of dual scaling functions leading to a biorthogonal family of wavelets, we use
an efficient method (see [19]), which results from the biorthogonal version of the multiresolution
analysis. This method is essentially based on (2.4} which implies that

[o o]

o= me @), 4= H (27%€). (2.12)
j=1

To obtain scaling functions that lead to regular biorthogonal wavelets, the functions mp(¢) and
mo(€) have to satisfy certain conditions.

In [19], a set of conditions is provided on the dual 27-periodic functions mo(€) and g (¢) and
consequently on the corresponding filters which are given, respectively, by

Fol€) = VZmo(€),  Fo(€) = V2o(E).

These conditions insure that our biorthogonal wavelet bases have preassigned regularities.
For completeness, we briefly summarize these conditions. It follows from the biorthogonality
conditon (2.6) on ¢ and ¢, that mgy and My satisfy the identity:

mo(€)o(€) + mo(¢ +m)mo(€+7m) =1, V&€ (0. (2.13)
Hence, the coefficients o, and a,, satisfy the relation
D anbn=1. (2.14)
Moreover, (2.12) implies that ¢ and ¢ are in LZ(R) only if
mg(0) = Mme(0) = 1. (2.15)
On the other hand, if the scaling functions are to be continuous, it is necessary that mg(§) and

ho(£) vanish at £ = m:
mo(7) = mo(w) = 0. (2.16)

Note that conditions (2.13) and (2.14) imply neither the biorthogonality of the scaling functions
nor that these are in L(R). However, a positive answer is provided by the following proposition.
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PROPOSITION. Assume that both mg(§) and mo(€) can be factored in the form:

mi®) = (225) s, o= (M) e e

where L, L > 1, and suppose, that for some k, k > 0,
Bu=su|(©)1(26) - (* 9" <2+, (218)
By = sup (6 f(2¢) -7 (2*%¢) [ <o (2.19)

Then, ¢, ¢ € L*(R) and

o0 —_—

/ $(2)8( — ) dz = o,

PROOF. See [19]. |

It has been shown (see [19]) that if (2.18) and (2.19) are satisfied, then there exist two positive
numbers, €, € > 0, and a positive constant ¢ such that

|$(§)' <c(l+,{,)—L-Hog(Bk)/log@)—e’ (2.20)

|37(£>] < o(1+ [g]) L HoRBR) s (2.21)

Now, by Theorem 3.8 in [19], if mo(§) and mo(§) satisfy (2.13) and if (2.20) and (2.21) are

satisfied, then the dual wavelets constructed from the scaling functions ¢(z) and ¢(z) generate
two biorthogonal wavelet bases, in the sense that any f € L?(R) can be written in both forms:

f@) = 3 bw)Pin(@) = 33 (£,9m) Yir(a): (2:22)

JEZ keZ JEZ kEZ

Thus, the problem of constructing a biorthogonal wavelet basis has been reduced to the much
easier problem of constructing 27-periodic functions that satisfy conditions (2.13), (2.15), (2.18),
and (2.19).

REMARK 1. If there exists a constant ¢ > 0 such that (2.20) and (2.21) are satisfied, then ¢ and $
belong to the Hélder spaces C¢(R) and C¢(R), respectively, for all € < I — 1 —log(By)/log 2 and
¢<L-1-log(Bg)/log2.

In the previous sections, we have seen the basic theoretical steps for the construction of
biorthogonal wavelet bases; however, our actual construction relies on the special approxima-
tion techniques described in the next section.

3. NUMERICAL TECHNIQUES FOR THE CONSTRUCTION
OF BIORTHOGONAL WAVELETS

The aim of this section is to provide and justify the numerical techniques used in the construc-
tion of biorthogonal wavelet bases. In particular, we shall prove that it is possible to construct
a pair of dual filters, such that the coefficients of one of them are given in parametric form. The
idea of our numerical method for the construction of dual trigonometric polynomials is based on
two major steps. The first step consists in the construction of a function, mg(¢), which satis-
fies the conditions of Section 2. In the second step, a dual function, My(€), is determined in a
straightforward way. Both steps are analyzed in detail in the following subsections.
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3.1. The Construction of mq(§)
By using a result from [13], one can easily see that if a 2r-periodic function, mo(£), satisfies
the first parts of (2.17), (2.15), and (2.16), respectively, that is

—ie\ L
m© = (1E5) 1@ m@ =1 ma(r) =0, @)

and (2.18) for some k > 0, then mq(€) is a candidate for generating a biorthogonal wavelet basis.
Hence, let ng > 1 be a positive integer and consider the function

mo(€) = Zo ane™, (3.2)

n=-—-ng

We note that the symmetry of mo(£), that is mg(—€) = mg(€), implies the symmetry of the
associated wavelet. To have symmetric wavelets, we require that the coefficients o, satisfy the
following relations:

Q, = Q_y, 1< n<ng. (3.3)

From condition (3.1) at £ = 0 and =, we derive the pair linear equations:

o ng
a+2Y on=1, o+2Y (-1)"on =0, (3.4)
n=1 n=1
in the ng + 1 unknowns a;, j = 0,1,... ,no. By fixing ng — 1 of these, one obtains a unique

solution to the system.

It remains to verify condition (2.18). This verification, in general, is not easy and cannot be
done explicitly. Hence, one resorts to numerical methods to find a good approximation to the
upper bound of By.

We remark that the problem simplifies considerably if, instead of estimating By, we estimate
the maximum of the absolute value of a piecewise polynomial which approximates the function
|£(€)F(2€) - - f (2¥~1€)|. This method, which turns out to be very efficient in our case, is given
by the following theorem.

THEOREM 1. Consider a 2r-periodic function,

N
mo(€)= ) ;€%  o;eR, —n<j<N. (3.5)

j=—n

Suppose that my(0) = 1 and my(£) can be factored in the form

i\ L
mo(©) = (255) 1@, 121, (5.6)
If we write
Fi(€) = f(&)F(26)--- f (257 1¢), (3.7)

then, for all € > 0 and k > 0, there exist a positive integer r and a finite partition of [0,2r], say
(I:)ier, such that

sup | Fu(€)]"/* — sup | P, ()2 < ¢,
£

where, for each i, the function Pp, (£) is equal to a polynomial of degree r if ¢ € I;, and O
otherwise.



Families of Biorthogonal Wavelets 31

PROOF. The proof consists in three parts.
(a) In the first part, if

Qn(cost) = ag + a1 cos€ + -+ - + ay cosné, ay €R, 0<v<n,

we obtain an estimate of the upper bound of sup, |{Qn(cosé)|. For v = 1,2,...,n, we
expand cosv€ in a Taylor series around a point £, to be fixed later. Thus, we have

cosvf = Z( 1) V(E 5")] cosV(£,) + Rp41(8),

3=0

where )
r41 ‘E - gu‘r-f-
(r+1)!

Since Q,(cos&) is 2m-periodic, it suffices to find the supremum over the interval [0, 2r]:

|Rrs1 (O S v

sup_ iQn(COS £)l-

e( A
Because ({2wnj+1)/2
2,813
2m~2 2m
(01 27!'] = "gl Im.7 Im = { n ,—1—7'—] 3

where [r] denotes the integer part of the real number r, it follows that

sup |@n(cosé)] = max{gsup th<coso|}

gelo,2n}

Now, for a fixed m, 1 < m < ([2nn] + 1)/2, let &, = (2m — 1)/n. Then, for € € In,, a
Taylor expansion of order r of Qn(cos§) around &, gives

Qn(cos§) = ao + Z ay (Z E&-}—T‘éﬂﬂi cos(€m) + Rr+1(§))

r=1 j=1

= F.(§) + R(). (38)

(b) In the second part, if Py, (£) is a function whose restriction on each I, is equal to the
polynomial P {£) and 0 outside, then it is clear that

—~ _la]
n ~- P -~ )
iy e~ P OIS 2 Gy

wnL
Since, mp(§) = (-1—"'—;-6-) f(£), then necessarily

N-L
FOFQ =Y /+2 Y BiBjcos((i— 1))
-n -ngi‘lg'é?N-L

Since f(£)f(€) is real and symmetric in e*, then, with M = N — L + n, we have

M
FOFO = Y 19  cy=~cr5=7 1<j<M.
J=~M
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By the first part of the proof, there exists a function Py(z), associated with a finite
partition, (I,)n, of [0, 2], such that
M

suplf(f)( - P;(8)| S

1/2
|'7J
(Z (r+1)') )

(c) In the third and last part, we prove the general case. Take any positive integer k, k > 1,
and define the function Fj(€) by the product:

Fie(€) = (&) £(26) -+~ F(2*7%¢).
The reader can easily check that if K = (14 2F-1) 2¥=2 then

Since f(0) =1, then supg f(€) > 1. Thus,

sup |(6)] - sup | P ( @M <

FL(OF(¢) = Z Bie'4t,  d_j=-—d;, B_j=p;, 1<j<KM.
j=—-KM
By choosing the partition
([2K Mx]+1)/2
-

o2r= U I

20-2 2 }
i=1

KM’ KM|’

and using the techniques of the first part of the proof, we construct a function Pr, , whose
restriction on each of the intervals I; is a polynomial of degree r, and which is equal to
zero outside [0,27]. Moreover, Pr, (£) satisfies:

M

K
- _ 1851
2 [Fon©-re)< 3 o

Again, since f(0) = 1, then sup¢ [Fi(€){ > 1, which implies the following inequalities:

- g
2 J
sup | Pr, (§)] < sup Fi(©) +]_=§M Yy
1 6
2 R Lt L B
< Slép | Fie(€)! l:l + supe IF(E)° j=§:{M (r +1)! (3.9)

and

1/2k 1/k
[s%p | P, (é)l] - I:S‘ép le(§)|]

HE 1 = 16l .
L 1 -
< |:Slgp |Fk(€)|} [1 + supe |Fe(6)2 j=§M (r+ 1)!:| 1

KM 1/2k
1 1851
< const 1y —m—m—m—m— —_— —-13. 3.10
[ S F@F, 22, T (3.10)

Finally, since mo(0) = 1 implies that sup |Fx(£)| > 1, then the right-hand side of (3.10)
can be made arbitrarily small by choosing r arbitrarily big. [ ]
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REMARK 2. AN APPROXIMATION TECHNIQUE. In practice, it is convenient to discretize the
function Pp, (§) as follows. For a given finite partition, (I;);, of [0, 2n], the restriction of Pg, (£)
on I; is approximated by the constant value Fi(&;)Fx(&;), where £; is the midpoint of the in-
terval I;. Note that, from the proof of the previous theorem, it follows that the error made in
approximating sup; |Fj (€)|* is bounded by

1 KM 1/2k
const |1+ ———— G h] -1, 3.11
sup; le(E)I"’j:;M( d (310

where h is the size of the partition.

We shall use this technique whenever an approximation to the upper bound of a real function is
required. In particular, we shall use it to decide whether or not the trigonometric function mg(€)
is a candidate for generating a biorthogonal wavelet basis.

3.2. The Construction of mg(£)

Once mp(€) is constructed, its dual, mo(£), is constructed in a straightforward way from the
identity (2.13):
mo(§)Mo(§) + mo(§ + m)Mo(§ +m) =1,  VE€[0,m]. (3.12)

Since m(0) = 1 and mo(7) = 0, then necessarily
mo(0) = 1. (3.13)

If we require some regularity (at least continuity) on the wavelet 1;(1:), then by an argument
given in [13], mo(§) also has to satisfy the condition:

fo(m) = 0. (3.14)

It is trivial to see that if the two functions

no
mo(§) = Y ane'™, (3.15)
n=-no
and
Np )
Mo() = Y Bne™,  No=no+(2k+1), (3.16)
n=-—No

satisfy (3.12), then the number Ny + np has to be an odd integer.

If mo(€) is of the form (3.15), then by choosing a dual symmetric function mo(¢) of the
form (3.16) for some integer k, and applying conditions (3.12)—(3.14), one obtains the following
linear system of equations in §;:

ng+No—1 No .
> aipi=1, Yo o@B=0, 1<n< =22 f+2) (~1) 8 =0,
i+j=0 i+j=2n j=1
(3.17)
the solution of which are the coefficients of mg(£). The numerical method given in Remark 2
is then used to decide whether or not the dual trigonometric polynomial mo(€) generates a
biorthogonal wavelet basis.
Unlike other known methods for finding g (), this one has the interesting feature of providing
an infinite family of dual filters all of the same length. In fact, it is possible to extend the solution
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of (3.17) in such a way as to generate an infinite set of dual filters all of the same length. This
is given by the following theorem.

THEOREM 2. Consider a 2n-periodic function,
no B
Mo (§) = Z a; et a; €R, oj=a_y, 1 <5< ne. (3.18)
j=-no

Assume that, for some Ny > ng, there exists a real dual trigonometric function

No
TN, (€) = > B,  BieR, Bi=p, 1<j< N, (3.19)
j=—No

such that my,(€) and My, (&) satisfy condition (3.12) and mp,(§) factors in the form

€\ 2 _
ino(® = (S5 . (3.20)

where f(£) is a trigonometric function satisfying

1/k
‘ < 9%/2-¢ (3.21)

sup fe) F(28)--- F (27%¢)
for some positive integer k > 1 and € > 0. Then, for all N = Ny + 2I, | a positive integer, there
exists a set S of trigonometric functions of length 2N + 1, dual to my,(€) and having parametric
coefficients.
PRrROOF. To prove, for a fixed positive intger [, that there exists an infinite set of dual trigono-
metric functions of length Ny + 2[, it is enough to prove the result for N = Ny + 2. Hence, if we
let

mnE) = D e,
j=—No—2
where
Ty, if Ng+1<|j]<No+2,
then,
M (€) = M, (€) + Ty, (€),
where
No+2 3
M, €)= Y 8€,
j=—Np~2

and §; = 6_;. Since my (&) has to satisfy the identity
Mo (§) TN (§) + Ming(§ + m) Mn(§ + ) =1, (3.22)

then the coefficients of My, (€) have to satisfy the following homogeneous system of (no+ No+3)/2
linear equations in §;:

No+2 )
fo+2 D (-1)76; =0,
=1 Net 1 (3.23)
Z a6 =0, Ognsﬂ—%ﬂ_—,

i+j=2n
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in the Ny + 3 unknowns §;, j = 0,1,...,Ng + 2. Since Ny > ng, this system has a parametric
solution of the form:

8i(ONo+2) = TjOnow2,  0SF<No+1.
Hence,

No+2
AN(E) =N (€) + Y 7ibNor2 el
j=—No—-2

satisfies equation (3.12).

To prove that, under some conditions on the 7;, we obtain dual filters that lead to the construc-
tion of an infinite family of biorthogonal wavelet bases, we consider the matrix, A, associated
with the linear system (3.17) in the unknowns §;. Since the elements of A are bounded, then
for all §, 0 < j < Ny + 2, we have |r;| < C for some constant C. Moreover, because ﬁz}vo (&) is
symmetric and 7}, (7) = 0, this function can be factored in the form

o = (2525 7o)

This implies that

in(€) = imol©) + k(O = (- ;e"‘)z 70 + @)

Since, |1j| < C, then there exist two real numbers, [ny+2 < Lng+2, such that for all én42 €
[INg+25 LNg+2), We have
S‘ép 'fl(§)| < 23/2 (2—6/2 _ 2—5) .

If we write F(€) := f(£) + f1(€), then it is clear that

[ g

sup |[Fe)Fe)--- F(2%¢)

Consequently, for all én,+2 € [INy+2, LN,+2], there exists a dual trigonometric function of length
Ny + 2.

By repeating the above technique as many times as required, one easily proves that there exist

two real numbers, [y < Ly, such that for all 5 € [In,Ln]|, there exists a dual trigonometric

function sy (€) of length 2N + 1, the coefficients of which depend linearly on the parameter 6.
Furthermore, my, (£) and s, (§) generate a biorthogonal wavelet basis. 1

4. NUMERICAL RESULTS

The techniques of the previous section have been used to construct filters of length five, seven
and nine, respectively. The coefficients of the dual of each filter are given in parametric form. Let
mn(€) and mpy(€) denote the dual trigonometric functions that generate a set of biorthogonal
wavelet bases. Here, the integer N stands for the number of vanishing moments [4] of the
corresponding wavelets. Since, generally, the coefficients of m (&) are given in parametric form,
we have used the numerical techniques of the previous section to obtain an approximation to the
range, [In, Ly], of the parameter 4, for which condition (2.19) is satisfied by my(§).

To obtain the filters associated with my(£) and iy (£), it suffices to multiply their coefficients
by V2.

The decay associated with the Fourier transform of a scaling function ¢(z) is defined as the
largest positive real number € such that, for some constant C, the following inequality holds:

/ Z BN+ e de < C.
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In this case the scaling function ¢(z) and the corresponding wavelet 1(x) are at least of class C¢~ L.
In Table 1, we list the coefficients o, of mn (&) and B, of my(£), for N = 2, 4, 6.
In Table 2, we give the range [Ix, Ly] of the parameter u appearing in my(£) of Table 1,
and list an estimate of the decays ey, €y associated with ¢n and q~5N, respectively, where the
parameter u is set, respectively, to 1.0, 1.25 and 2.5.

Table 1. The coefficients an of my(€) and Bn of my(£).

N n On Bn

2 0 0.550 0.569 1056910 + 0.0609756098
+1 0.250 0.3656504065 — 0.0670731707 u
+2 ~0.025 —0.0833333333
+3 0.000 —0.1205284553 + 0.0701219512
+4 0.000 0.048 7804877 — 0.0304878804 1
+5 0.000 0.004 8780487 — 0.003048 7880 i1

4 +0 0.5937500 0.5200237386 + 0.0113324174 11
+1 0.304 6875 0.2952157909 — 0.0090430402 1
+2 ~0.046 8750 —0.0435768454 — 0.003 4340659
+3 —0.054 6875 —0.066 3172888 4- 0.0140796703
+4 0.0000000 0.044 939 760 7 — 0.005 265 567 7 11
+5 0.000 0000 0.0227013993 — 0.0053800366 u
+6 0.0000000 —0.013241336 3 + 0.0034340659
+7 0.0000000 —0.001 5999015 + 0.0034340659 u
+8 0.0000000 0.001 866 551 8 — 0.0004006410 p

6 +0 0.480468 750 0.6525501428 + 0.0020341714 1

+1 0.301 562 500 0.3116322510 — 0.0012189717 1
+2 0.026 562 500 —0.1470062921 — 0.000888136 7 1
+3 —0.051 562 500 —0.094 8617842 + 0.002 1280625 u

+4 —0.016796875 0.1028781814 — 0.000728 5623 1
+5 0.000 000 000 0.037606 5002 — 0.001 058 7927
+6 0.000 000 000 —0.043 7222610 + 0.000861 5409 11

+7 0.000 000 000 —0.003 0134426 + 0.000101 3459 11
+8 0.000 000 000 0.013307 0652 — 0.000288 5235 11
19 0.000 000 000 —0.001 9276598 4- 0.0000570196 1
+10 0.000 000 000 —0.001 7317653 + 0.000026 595 7 1
+11 0.000 000 000 0.000 564 1356 — 0.000008 663 7 p

Table 2. The range {Inx, Ly}, for N = 2, 4, 6, of the parameter u appearing in my (£)
of Table 1 and the optimum lower bounds, ey and €y, associated, respectively, with

#n(€) and ¢y (£).

fin, Ln] €N N
[ —0.13, 2.21] 1.6092 1.4529
[ —9.50, 8.70] 2.1115 2.9166
[-39.50,41.5 | | 4.0217 | 2.5443

[ R ]

Eight iterations of the constructive cascade algorithm given in {25, pp. 202~205], produce a
good approximation to the graphs of the scaling functions and the corresponding wavelets.

In Figures 1, 2 and 3, we present three sets of graphs of ¢n(z), (ZN(m), Y (z), and 'IZN(:L'),
corresponding to N = 2, 4, and 6, respectively. In these figures, the parameter u was set to 1.0,
1.25, 2.5, respectively.

Lastly, in Figure 4, the decays &(y), associated with the Fourier transforms ¢ n (&), of the para-
metric scaling functions, are graphed against the parameter u, for N =2, 4, and 6, respectively.
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Figure 2. Dual scaling functions, ¢y (z), N (z), and corresponding wavelets, ¥y (x),

Yn(zx), for N =4 and p = 1.25.
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Figure 3. Dual scaling functions, ¢n(2), $N(z), and corresponding wavelets, ¥y (z),
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Figure 4. Graphs of decay function, én{u), of $N (€) for N = 2, 4 and 6, respectively.
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