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SUMMARY

The hypothalamus has been implicated in skeletal
metabolism. Whether hunger-promoting neurons of
the arcuate nucleus impact the bone is not known.
We generated multiple lines of mice to affect AQRP
neuronal circuit integrity. We found that mice with
UcpZ2 gene deletion, in which AgRP neuronal function
was impaired, were osteopenic. This phenotype
was rescued by cell-selective reactivation of Ucp2
in AgRP neurons. When the AgRP circuitry was
impaired by early postnatal deletion of AQRP neurons
or by cell autonomous deletion of Sirt1 (AgRP-
Sirt1~/~), mice also developed reduced bone mass.
No impact of leptin receptor deletion in AgGRP neu-
rons was found on bone homeostasis. Suppression
of sympathetic tone in AgRP-Sirt1 '~ mice reversed
osteopenia in transgenic animals. Taken together,
these observations establish a significant regulatory
role for AQRP neurons in skeletal bone metabolism
independent of leptin action.

INTRODUCTION

The skeleton provides physical support and protection of soft
organ, houses the hematopoietic system, and allows for locomo-
tion in support of survival. In vertebrates, bone is the principal
reservoir of calcium, which is essential for cellular metabolism
in all tissues. Thus, it is not surprising that evidence has emerged
linking skeletal metabolism and whole body metabolic needs.
The central nervous system, and more specifically, the hypo-
thalamus has a major regulatory role in peripheral tissue func-
tions in health and disease (Dietrich et al., 2012; Matarese
et al.,, 2013; Ruan et al., 2014; Warne et al., 2013). A growing
body of evidence indicates that the hypothalamus also affects
bone homeostasis mediated, at least in part, by the autonomic
nervous system and endocrine organs (Ohlsson et al., 2012;
Sato et al., 2007; Yadav et al., 2009). Hypothalamic neurons ex-
pressing agouti-related peptide (AgRP) drive hunger and have
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also been implicated in controlling peripheral tissues (Joly-
Amado et al., 2012; Matarese et al., 2013), but to date have
not been directly tied to the regulation of bone homeostasis.
Using different lines of transgenic mice with altered AgRP
neuronal function, the present study was undertaken to deter-
mine whether the AgRP circuit influences skeletal metabolism.

RESULTS

Ucp2 Impacts Bone Mass

Uncoupling protein 2 (Ucp2) is expressed in AGRP neurons (Cop-
pola et al., 2007; Horvath et al., 1999), and AgRP neuronal activ-
ity is impaired in mice with global deletion of the Ucp2 (Andrews
et al., 2008). Structural analysis by microcomputed tomography
(micro-CT) showed that 3-month-old male Ucp2~'~ mice ex-
hibited significantly reduced trabecular bone volume (BV/TV;
Figure 1B) and trabecular thickness (Figure 1C). To clarify the
cellular basis for these changes, histomorphometric analysis of
trabecular bone from Ucp2~'~ mice was performed and demon-
strated a reduction in osteoblast number with no change in oste-
oclast number (Figure 1D), suggesting that Ucp2-regulated
AgRP neuronal activity might affect bone remodeling processes
by regulation of osteoblast formation and/or function. Since
Ucp2 is widely expressed (Diano and Horvath, 2012), and hence
the bone phenotype of UCP2 ™~ mice might be the consequence
of multiple mechanisms, we next generated mice (in collabora-
tion with the Yale Genome Editing Center) in which Ucp2 is
selectively overexpressed in AgRP neurons (Agrp-Ucp2'™®
mice) using cre-lox technology (Figure S1A). We confirmed suc-
cessful cre-mediated recombination in AGRP neurons by detect-
ing EGFP positive cells in the hypothalamic arcuate nucleus
(ARC) (Figure S1B). Bone mineral density (BMD) was significantly
increased in 3-month-old male Agrp-Ucp2™ mice when
analyzed by DXA (Figure 1E). To further test whether the osteo-
penia seen in global Ucp2-deficient mice could be due to altered
AgRP neuronal activity, we crossed Ucp™'~ mice with Agrp-
Ucp2™ mice to generate mice with specific reactivation of
Ucp2 in AgRP neurons (Ucp2~'~:Agrp-Ucp2™ mice). Micro-CT
analysis revealed that the reduction in trabecular bone
volume (Figure 1G) and thickness (Figure 1H) seen in global
Ucp2-deficient mice was absent in 3-month-old male mice
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Figure 1. Altering AgRP Neuronal Activity by Deletion or Overexpression of Ucp2 Affects Bone Mass

(A) Representative micro-CT images of femoral trabecular bone from 3-month-old male Ucp*’* and Ucp™~ mice. Scale bar, 500 um.

(B and C) 3-month-old male Ucp2~~ mice exhibited reduced (B) trabecular bone volume (BV/TV) and (C) trabecular thickness (B: n = 10 for Ucp2**, n = 12 for
Ucp2~/'~, p < 0.001; C: n = 10 for Ucp2*/*, n = 12 for Ucp2~'~, p < 0.001).

(D) Histomorphometric analysis of trabecular bone from 3-month-old male Ucp2
and osteoblast number (n = 5 for Ucp2*/*, n = 6 for Ucp2~/").

(E) DXA analysis demonstrated an increase in femoral BMD in 3-month-old male Agrp—UcpZTgJ mice (n = 6 for CT, n =9 for Agrp—UcpZTg, p < 0.05).

(F) Representative micro-CT images of femoral trabecular bone from 3-month-old male Ucp2 '~ and Ucp2~'~:AgRP-Ucp2 Tg mice. Scale bar, 500 um.

(G and H) Micro-CT analysis revealed that the reduction in trabecular BV/TV and trabecular thickness seen in 3-month-old male Ucp2~/~ mice is reversed by
reactivating Ucp2 in AgRP-expressing neurons (Ucp2~/~:Agrp-Ucp2'9) (G: n = 3 for CT, n = 3 for Ucp2~/~, n=4for Ucp2~’ ~:Agrp-Ucp2'9; p < 0.05 for CT versus
Ucp2~'~, p < 0.05 for Ucp2~'~ versus Ucp2 ' ~:Agrp-Ucp2'®; H: n = 3 for CT, n = 3 for Ucp2~/~, n = 4 for Ucp2 ' ~:Agrp-Ucp2™®; p < 0.05 for CT versus Ucp2 /",
p =0.0523 for Ucp2’/’ versus Ucp2’/’:Agrp-Ucp2Tg). *p < 0.05 and ***p < 0.001. Data are presented as means + SEM. p values for unpaired comparisons were

~/~ mice revealed a reduced bone mass with a reduction in trabecular thickness

analyzed by Student’s t test.

with AgRP-specific expression of Ucp2. These observations
indicate that AgQRP neurons are involved in bone metabolism
and that the effect of Ucp2 on bone metabolism is mediated,
at least in part by these hypothalamic neurons.

Neonatal Ablation of AgRP Neurons Results in Reduced
Bone Mass

Next, we determined the skeletal phenotype of animals in which
AgRP neurons are ablated perinatally using mice with AgRP
neuron-specific diphtheria toxin receptors (AgRP°™?). AgRP
neurons can be experimentally ablated in these animals by diph-
theria toxin injection (Luquet et al., 2005). While ablation of AgRP
neurons in the adult results in rapid death due to aphagya,
neonatal ablation of these cells is not lethal and does not result
in altered feeding behavior (Luquet et al., 2005). We treated
transgenic and control mice with diphtheria toxin at postnatal
day 5 and analyzed the skeletal phenotype of adult animals.
Micro-CT analysis showed that 3-month-old male AgRP°™®
mice had significantly lower bone mass in both the trabecular

and cortical compartments of the femora when compared with
control mice (Figures 2A-2E). These data indicate that AgRP
neurons are important for CNS-mediated modulation of bone
metabolism during growth and development.

Impairment of AGRP Neuronal Excitability by Cell
Autonomous Deletion of Sirt1 Results in Osteopenia
AgRP neurons in which the histone deacetylase, sirtuin 1 (Sirt1)
was selectively deleted in vivo (Agro>™' ~'~ mice) were neurobio-
logically active, but exhibited impaired excitation in response
to metabolic cues, such as elevated ghrelin levels (Dietrich
et al, 2010). We investigated the skeletal phenotype of
AgroS™' '~ mice. DXA scans demonstrated that 3-month-old
male Agrp®™'~/~ mice had reduced femoral BMD (Figure 3A).
Micro-CT analysis revealed that there was a 30% decrease in
trabecular bone volume in the femur (Figure 3C) accompanied
by a reduction in trabecular thickness (Figure 3D), trabecular
number, and connectivity density (data not shown) in 3-month-
old male AgrpS™ '~ mice. Additionally, these mice displayed
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Figure 2. Early Postnatal Ablation of ARP Neurons Results in Reduced Bone Mass

(A) Representative micro-CT images of femoral trabecular bone from 3-month-old male control (CT) and AgRPP™ mice. Scale bar, 500 pm.

(B-E) Micro-CT analysis demonstrated a reduction in trabecular BV/TV, trabecular thickness, cortical BV/TV, and cortical thickness in 3-month-old male AgRP°™?
mice (B: n =10 for CT, n = 20 for AgRPP™®, p < 0.05; C: n = 10 for CT, n = 20 for AGRP°™?, p < 0.001; D: n = 10 for CT, n = 20 for AgRPP™?, p < 0.05; E: n = 10 for CT,
n =20 for AgRP®™®, p < 0.001). *p < 0.05, **p < 0.001, and ***p < 0.001. Data are presented as means + SEM. p values for unpaired comparisons were analyzed by

Student’s t test.

a significantly reduced cortical bone volume (Figure 3E) and
thickness (Figure 3F). Consistent with the micro-CT findings,
histomorphometric analysis of trabecular bone from 3-month-
old male Agro®™'~~ mice demonstrated a tendency toward
reduced bone volume (Figure 3G) and trabecular thickness (Fig-
ure 3G). Histomorphometric analysis also indicated a trend to-
ward reduced osteoblast numbers (Figure 3G) and an increase
in osteoclast number (Figure 3G) albeit without statistical signif-
icance. However, entirely consistent with the trend toward an in-
crease in osteoclast number, serum levels of carboxy-terminal
collagen crosslinks (CTX), a marker of bone resorption, were
significantly elevated in 3-month-old male Agro®™'~/~ mice (Fig-
ure 3H). These results suggest that a reduction in bone formation
and an increase in bone resorption may contribute to the skeletal
phenotype in AgRP circuit-impaired animals.

AgRP-Regulated Bone Metabolism Involves the
Sympathetic Nervous System

The sympathetic nervous system (SNS) is an important mediator
of CNS outputs to peripheral tissues. Multiple lines of evidence
support a relationship between brain-regulated bone meta-
bolism and centrally regulated peripheral sympathetic activity
(Elefteriou et al., 2005; Yadav et al., 2009). Therefore, we
analyzed whether sympathetic activity may be a mediator of
AgRP neurons’ effect on bone metabolism. Since Ucp1 medi-
ates B-adrenergic receptor-regulated thermogenesis in brown
adipose tissue (BAT), we first tested Ucp7 mRNA levels in BAT
isolated from 3-month-old male Ucp2~/~ mice, Agrp-Ucp2'™®
mice, and AgroS™ '~ mice. We observed that Ucp? mRNA
levels were significantly elevated in BAT isolated from osteo-
penic Ucp2~'~ mice (Figure S2A) and Agro>™'~'~ mice (Fig-
ure 4A), whereas Agrp-Ucp2™ mice demonstrated a reduction in
BAT Ucp1 mRNA levels (Figure S2B). In addition, we found that
the norepinephrine content in bone was higher in AgrpS™'—/~
mice compared with controls (Figure 4B). To test whether
elevated sympathetic outflow contributes to the osteopenia
induced by impaired excitability of ARP neurons, we evaluated
bone mass in 3-month-old male control and AgrpS™ '~

10 Cell Reports 13, 8-14, October 6, 2015 ©2015 The Authors

mice treated with propranolol, a sympatholytic beta-blocker.
Blockade of B-adrenergic receptors rendered BMD (Figure 4C)
and trabecular bone mass (Figure 4D) indistinguishable in control
and Agro®™'~/~ mice. These data indicate that attenuating the
excitability of AGRP neurons results in increased sympathetic
outflow, which in turn contributes to bone loss.

Leptin Receptors in AGRP Do Not Mediate Leptin’s
Action on Skeleton

The metabolic hormone, leptin, was shown to regulate bone
metabolism by a central nervous system circuit (Ducy et al.,
2000; Takeda et al., 2002). However, the exact cellular targets
for leptin in the brain that mediate leptin’s actions on the skeleton
remain controversial. AgRP neurons are direct targets of leptin
(Cowley et al., 2001; Heisler et al., 2006; Pinto et al., 2004). To
test the role of leptin receptors in AgRP neurons in control of
bone metabolism, we generated mice in which leptin receptors
were cell-selectively ablated in AgRP neurons (Agrp-®—/~
mice). 2-month-old male Agrp-*""~'~ mice displayed increased
body weight and fat mass and lower lean mass (Figures S3A-
S3C). However, BMD (Figure S3D) as well as trabecular and
cortical BV/TV (Figures S3E and S3F) were not altered in these
animals. These data indicate that leptin signaling in AgRP neu-
rons is relevant to whole body energy metabolism, but appears
to have less of an impact on bone homeostasis in healthy young
mice. Whether leptin-regulated AgRP function plays a role in dis-
ease states, such as anorexia nervosa and lipodystrophy where
hypoleptinemia is associated with impaired skeletal health
(Misra and Klibanski, 2014; Moran et al., 2004), needs further
investigation.

DISCUSSION

In this study we explored the involvement of AGRP neurons in the
control of skeletal homeostasis. By using a variety of models, we
observed that impaired AgRP circuit function leads to an osteo-
penic phenotype. The effect of AGRP neurons on bone meta-
bolism in the adult is likely mediated, at least in part, by the
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Figure 3. Impairing AgRP Neuronal Excitability by Deletion of Sirt71 in ARP Neurons Results in Reduced Bone Mass In Vivo

(A) DXA analysis demonstrated a reduced femoral bone density in 3-month-old male Agrp
(B) Representative micro-CT images of femoral trabecular bone in 3-month-old male Agrp

ST/~ mice (n = 9 for AgrpS™*, n = 9 for AgrpS"™' ', p < 0.05).

Sirt +/+ and Agro>™'~/~ mice. Scale bar, 500 pm.

(C-F) Micro-CT analysis shows reduced trabecular BV/TV, trabecular thickness, cortical BV/TV and cortical thickness in 3-month-old male AgroS™'~/~ mice
(C:n=14for AgrpS™ */+, n = 12 for Agro®™"'~/~, p < 0.05; D: n = 14 for Agrp>" */*, n = 12 for Agro>™"'~/~, p < 0.05; E: n = 14 for Agro>" */*, n = 12 for Agrp®™'~/~,

p < 0.01; F: n = 14 for AgrpS™ */*, n = 12 for AgrpS™'~/~, p < 0.01).

(G) Histomorphometric analysis of trabecular bone from 3-month-old male Agrp
numbers of osteoblasts and higher numbers of osteoclasts (n = 5 for AgrpS™ A

Sit1=/= mice showed a trend toward a reduction in bone volume with lower

n = 5 for AgrpS™' /7).

(H) Serum levels of CTX were elevated in 3-month-old male AgrpS™'~/~ mice (n = 6 for AgroS™ */+, n = 7 for Agro®™' ~/~, p < 0.05). *p < 0.05 and **p < 0.01. Data are
presented as means + SEM. p values for unpaired comparisons were analyzed by Student’s t test.

sympathetic nervous system, because suppression of beta
adrenergic system abolished phenotype differences between
AgRPS™ =/~ and control mice. We found that global Ucp2-
deficient mice displayed a significant reduction of bone mass
accompanied by a reduction in bone formation without a change
in bone resorprion. Selective re-expression of UCP2 in AgRP
neurons in Ucp2 ™/~ animals reversed the osteopenic phenotype,
suggesting that AQRP neurons may be an important site where
UCP2 exerts its effect on bone. However, Ucp2 is widely ex-
pressed, and it is not unlikely that the skeletal phenotype of
Ucp2~~ mice is due to multiple mechanisms. In line with this
notion, histomorphometric analyses in AgrpSim’/’ mice re-
vealed a trend toward reduced osteoblast number and an in-
crease in osteoclast number, changes that were not observed
in Ucp2~'~ mice. This difference in the cellular changes in
bone observed in Ucp™~ mice and AgrpS™' '~ mice could
reflect a cell autonomous effect of global Ucp2 deletion in
bone cells.

Although more than one pathway likely mediates AgRP
neuron-controlled bone mass, we did find evidence for an

effector role of the sympathetic nervous system in the skeletal
phenotype of the AGRPS™ ~/~ animals. We also found that a sur-
rogate marker of sympathetic activation (brown fat UCP1 mRNA
levels) was elevated in mice with AgRP circuit impairment and
downregulated in mice with AgRP circuit enhancement. There
are many other mechanisms by which the AgRP system can
affect bone mass, including actions on the thyroid, adrenal,
and gonadal axes. Further studies are needed to assess humoral
control of bone metabolism modulated by AgRP neurons. None-
theless, because at least in adult mice interference with the sym-
pathetic tone reversed the bone phenotype of AGRPS™~/~ mice,
it is reasonable to conclude that AgRP neuronal function in adult
mice controls bone mass. Finally, since the models we employed
alter AgRP function during development, it may be that changing
AgRP signaling during skeletogenesis and modeling also
contributed to the adult bone phenotype of the engineered lines
that we studied.

Bone metabolism is tightly connected to nutrient availability.
However, the genetic models we employed did not display sig-
nificant differences in metabolic phenotypes or body length at
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Figure 4. Osteopenia Seen in AgrpS™'~/

(A and B) 3-month-old male Agrp™' '~

Mice Is Rescued by B-Adrenergic Blockade
mice had increased Ucp1 transcript expression in brown adipose tissue and norepinephrine content in bone (A: n = 6 for

AgrpS™t +* n = 8 for Agro®™' ', p < 0.01; B: n = 5 for AgrpS™ ** n = 4 for AgrpS™' /=, p < 0.05).

(C) DXA analysis demonstrated that the reduced femoral BMD seen in 3-month-old male Agrp
+ propranolol, n = 4 for Agrp

Sirt +/+ Sirt1—/ Sirt +/+

Agrp
ANOVA).

+ vehicle, n =4 for Agrp + vehicle, n =3 for Agrp

Sit1~/~ mice was reversed by treatment with propranolol (n = 3 for

Sit1=/= 4 propranolol; p < 0.05 for Student’s t test and two-way

(D) Micro-CT analysis demonstrated that the reduction in femoral trabecular BV/TV of 3-month-old male AgroS™ ~/~ mice was rescued by treatment with

propranolol (n = 9 for AgroS™ */* + vehicle, n = 9 for AgrpS™'~/~

+ vehicle, n = 7 for Agrp

Sirt +/+ 4 propranolol, n = 7 for AgroS™'~/~ + propranolol, p < 0.001 for

Student’s t test; p < 0.05 for two-way ANOVA). *p < 0.05, **p < 0.01, and ***p < 0.001. Data are presented as means + SEM. p values for unpaired comparisons
were analyzed by Student’s t test. Two-way ANOVA was performed to detect significant interaction between genotype and treatment (propranolol).

the ages they were studied when fed normal murine chow (An-
drews et al., 2010; Dietrich et al., 2010; Luquet et al., 2005).
These observations suggest that alternation of AQRP neuronal
activities affects bone homeostasis independent of metabolic
shifts. In further support of this notion, deletion of leptin recep-
tors from AgRP neurons did alter the metabolic phenotype of
mice without affecting bone mass. However, leptin signaling
(or the lack thereof) in AGRP neurons may be relevant to disease
states associated with impaired bone metabolism, such as
anorexia nervosa or lipodistrophy.

Collectively, our findings demonstrate that hypothalamic
AgRP neuronal circuit integrity is a regulator of bone mass and
that this effect is mediated, at least in part, by the sympathetic
nervous system. These results provide novel insights into the
central regulatory component of bone metabolism and offer
new strategies to consider in addressing skeletal dysregulation
in various disease conditions.

EXPERIMENTAL PROCEDURES

Animals

The following transgenic mice were used in this study: Agrp mice were
generated as described previously (Dietrich et al., 2010). Agro®™® mice were
provided by Dr. R.D. Palmiter (University of Washington) and have been
described previously (Luquet et al., 2005). Ucp2~'~ mice were provided by
Dr. B.B. Lowell (Harvard University) and have been used previously (Andrews
et al., 2008). Agrp-Ucp2Tg mice overexpressing Ucp2 in AgRP neurons were
generated by cre-lox knock in technology as described in Figure S1. In brief,
a transgene (lower panel of Figure S1A) was engineered in which expression
of the murine cDNA for Ucp2 is controlled by a CMV promoter when a tran-
scriptional stop cassette is removed by cre recombination. (The Ucp2 cDNA
was introduced into the construct using the Asc | restriction enzyme.) This
transgene was then used to generate transgenic mice (Ucp2™ mice). To
generate AgRP neuron-specific overexpression of the Ucp2 gene, Ucp2™
mice were crossed with AgRP-Ires-cre mice (Agrp™'CoLowl jax #012899).
We controlled for ectopic expression of Cre in this AgRP line as described

Sirt1—/—
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earlier (Dietrich et al., 2010, 2012), and those with ectopic expression were
excluded from further studies. To generate AgRP neuron-specific Ucp2-
reactivated Ucp2~'~ mice (Ucp2~'~:Agrp-Ucp2™ mice), Ucp2~'~ mice were
mated with Agrp-UC/ozTg mice. To generate a mouse line in which leptin recep-
tor signaling in AgRP neurons is impaired, AgRP-Ires-cre mice were mated
with Lepr'®/1°* mice (McMinn et al., 2005) (generated by Streamson Chua,
Albert Einstein College of Medicine) and breeding cages maintained by mating
Lepr'®¥1°x and [ epr/f°x: AgRP Cre mice. Agrp®™ or wild-type mice from the
same litter received an injection of diphtheria toxin at postnatal day 5 (Luquet
et al., 2005). All animals were kept in temperature- and humidity-controlled
rooms on a 12-hr:12-hr light:dark cycle, with lights on from 7:00 a.m. to 7:00
p.m. Mice were group housed (three to five mice per cage), and food and water
were provided ad libitum. All procedures were approved by the Institutional
Animal Care and Use Committee of Yale University.

Histomorphometric Analyses

Static histomorphometry was performed as previously reported (Knopp et al.,
2005). Analyses were performed on 5-uM thick sections of distal femur
stained with toluidine blue (pH 3.7) using a Nikon microscope interfaced
with the Osteomeasure system software and hardware (Osteometrics). Mea-
surements were obtained in an area of cancellous bone that measures
approximately 2.5 mm?, containing only secondary spongiosa, and located
0.5-2.5 mm proximal to the epiphyseal growth cartilage. Longitudinal sections
(5-um thick) taken in the frontal plane through the cancellous bone of the
femora are prepared with a Leica RM2165 microtome, mounted on chrom-
alum coated glass slides, and stained with toluidine blue (pH 3.7). All indices
are defined according to the American Society of Bone and Mineral Research
histomorphometry nomenclature. We analyzed trabecular bone volume,
trabecular thickness, the number of osteoblasts, and osteoclasts per trabec-
ular area in 3-month-old male Ucp2~'~ or AgroS™~/~ mice compared with
littermate control mice.

Bone Densitometry and Ultrastructural Analyses

Dual-energy X-ray absorptiometry (PIXImus) was used to determine fat mass,
lean mass, and bone mineral density of 2- or 3-month-old male Ucp2 /-, Agrp-
Ucp2'9, AgroS™' /=, and Agrp“**"~/~ mice. uCT (Scanco microCT35 machine)
was used to separately assess the cortical and trabecular skeletal envelopes
as well as microarchitectural features such as trabecular thickness for 2- or
3-month-old male Ucp2~'~, Agrp-Ucp2™, Ucp2~'~:Agrp-Ucp2'®, AgRPPTR,
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Agrp ,and Agrp mice. All experiments were performed in the Yale
Core Center for Musculoskeletal Disorders.

Propranolol Treatment

Propranolol (Sigma) was administered at a concentration of 0.5 mg/ml in the
drinking water of Agrp®™' =~ and control mice for 4 weeks, from 10 weeks
of age. Propranolol-containing water was refreshed three times per week.
Control mice had normal drinking water. Mice were scanned by PIXImus to
determine bone mineral density and sacrificed at the end of treatment followed
by harvesting femora for micro-CT analysis.

Real-Time PCR

RNA from brown adipose tissue was isolated with the RNeasy Micro Kit
(QIAGEN) and reverse transcribed to cDNA using MultiScribe Reverse Tran-
scriptase (Applied Biosystems). Quantitative PCR was performed with the
Light Cycler 480 Real-Time PCR system (Roche) using TagMan probe (Ucp1
[Mm01244861_m1], Applied Biosystems). The data were normalized with
Glyceraldehyde-3-phosphate dehydrogenase (Gapdh [Mm99999915_g1],
Applied Biosystems).

Measurement of Norepinephrine in Bone

Soft tissue was rapidly removed from the femur and tibia, and both bones
were snap frozen in liquid nitrogen. The bone was then pulverized in 10 ml
of freshly prepared 0.4 N perchloric acid containing 5 nM reduced glutathione
and then centrifuged for 15 min at 1,300 x g to produce a protein-free
supernatant. The entire supernatant was then adjusted to pH 7 and extracted
on alumina columns. Catecholamines were analyzed in the extract by high-
performance liquid chromatography using electrochemical detection (ESA
Laboratories).

Measurement of Serum CTX
Serum CTX was measured using the RatLaps ELISA kit (Nordic Bioscience
Diagnostics A/S).

Statistical Analyses

Statistical analyses were performed by use of Prism 6.0 software (Graph Pad).
Data distribution was assumed to be normal, but this was not formally tested.
No statistical methods were used to predetermine sample sizes, but our
sample sizes are similar to those reported previously (Dietrich et al., 2012).
All analyses were performed in a blinded manner. No randomization was
used to assign experimental groups or to collect data, but mice were assigned
to specific experimental groups without bias. An unpaired t test was performed
to analyze the significance between the two experimental groups. Two-way
ANOVA analysis was performed to detect the interaction between treatment
and genotype. Significance was taken at p < 0.05.
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