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Combinatorial and Algebraic Structure in Orlik–Solomon Algebras

M ICHAEL FALK

The Orlik–Solomon algebraA(G) of amatroidG is the free exterior algebra on the points, modulo
the ideal generated by the circuit boundaries. On one hand, this algebra is a homotopy invariant of the
complement of any complex hyperplane arrangement realizingG. On the other hand, some features
of the matroidG are reflected in the algebraic structure ofA(G).

In this mostly expository article, we describe recent developments in the construction of algebraic
invariants ofA(G). We develop a categorical framework for the statement and proof of recently dis-
covered isomorphism theorems which suggests a possible setting for classification theorems. Several
specific open problems are formulated.

c© 2001 Academic Press

1. INTRODUCTION: THE ORLIK –SOLOMON ALGEBRA OF A MATROID

Let G be a simple matroid with ground set[n] := {1, . . . ,n}. The Orlik–Solomon (OS)
algebra ofG is defined as follows. LetE = 3(e1, . . . ,en) be the graded exterior algebra on
elementsei of degree one corresponding to the points ofG. For simplicity we will assume
the ground field isC. Except where noted, all of the results will hold for coefficients in an
arbitrary commutative ring.

Define the linear mapping∂ : E p
−→ E p−1 by

∂(ei1 ∧ · · · ∧ ei p) =

p∑
k=1

(−1)k−1ei1 ∧ · · · ∧ êik ∧ · · · ∧ ei p,

wherê indicates an omitted factor.
If S= (i1, . . . , i p) is an orderedp-tuple we denote the productei1 ∧ · · · ∧ ei p by eS. Let I

denote the ideal ofE generated by{∂eS | S is dependent}.

DEFINITION 1.1. TheOrlik–Solomon algebraA = A(G) of G is the quotientE/I.

SinceI is generated by homogeneous elements, bothI andA inherit gradings fromE . We
will denote the image ofeS in A by aS.

The OS algebra has both combinatorial and topological significance, as demonstrated by
these two results from [21]. Recall that a projective realization ofG gives rise to a linear
hyperplane arrangement. Throughout the paperA will denote a hyperplane arrangement aris-
ing from a complex projective realization ofG, and M will denote thecomplementof A,
M = C` −

⋃
H∈A H .

THEOREM 1.2. The OS algebraA(G) is isomorphicto the cohomology algebra H∗(M).

The Whitney numbers of the second kind are defined in terms of the Möbius function
µ : L(G) −→ Z of the lattice of flatsL(G). Specifically,

wp(G) =
∑

X∈L ,rk(X)=p

(−1)pµ(0L , X).

THEOREM 1.3. The dimension ofAp(G) is equalto the pth Whitney numberwp(G) of G.
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Theorem1.2 motivates what is for us the main problem concerningOSalgebras:to clas-
sify A(G) up to isomorphism of graded algebras. This type of problem is more familiar in
topology than combinatorics, but the classification in this instance will be purely matroidal.
Theorem1.3 provides one line along which a classification could proceed, that is to extract
combinatorial featuresof the matroidG from algebraic invariants ofA(G). In this regard we
note that there are many sets of matroids with identical Whitney numbers while, on the other
hand, the betti numbers dim(Ap(G)) in a sense take no account of the ring structure ofA(G).

These observations set the tone for the exposition to follow. We will construct multiplicative
invariants ofA(G) and attempt to extract combinatorial structure from them. The most del-
icate of these are the resonance varieties, discussed in Section2. In Section3 we show how
‘stabilized’ parallelconnection and direct sum of matroids yield isomorphicOS algebras.
We also show that truncations of matroids with isomorphicOSalgebras will have the same
property. We make sense of these results using the categories of pointed matroids and affine
OSalgebras, indicating a framework for the eventual classification. In Section4 we describe
recent work relating thek-adic closure ofA(G) to the ‘k-closure’ of the matroidG.

We close this introduction by recalling the oldest multiplicative invariant ofA(G), termed
‘the global invariant’φ3 in [11]. Consider the multiplication map

d : E1
⊗ I2

−→ E3.

This linear map can be shown to be an invariant ofA(G). The nullity of d is denoted by
φ3(A). This quantity has a topological interpretation in terms of the fundamental group of the
complementM . Indeed, the definition ofφ3 comes directly out of the study of the rational
homotopy type of hyperplane complements [14]. And of courseφ3(A) can bethought of as
an invariant of the matroidG. But the following problem remains open, even for graphic
matroids.

PROBLEM 1.4. Give a combinatorial interpretation ofφ3(G).

Wewill return to this problem in Section4.
The readeris referred to [22] for background material on complex hyperplane arrangements

and Orlik–Solomonalgebras, and to [25] for matroid theory. Section2 is largely based on [8],
and muchof Section3 is a reformulation of part of [7]. Section4 is a brief report on work in
progress; detailsand proofs will appear in [6, 9].

2. RESONANCEVARIETIES

To answer questions concerning generalized hypergeometric functions, we began studying
the OS algebra as a differential complex in [16], and then realized that our work could be
usedto define algebraic invariants [8].

Fix anelementaλ =
∑n

i=1 λi ai inA1. Then left multiplication byaλ defines a mapAp
−→

Ap+1, which squares to zero. Thus we have a cochain complex

0−→ A0 aλ
−→ A1 aλ

−→ · · ·
aλ
−→ A`−1 aλ

−→ A` −→ 0.

The cohomology of this complex determines a stratification of the parameter spaceC
n. The

pth resonance varietyof A is defined by

Rp(A) = {λ ∈ Cn
| H p(A,aλ) 6= 0}.

It is shown in [8] thatRp(A), upto ambient linear isomorphism, is an invariant ofA.
Basic properties of resonance varieties follow from the main results of [27]. Let1 denote

the diagonalhyperplane
∑n

i=1 λi = 0. Then
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• 0 ∈ Rp(A) for 0≤ p ≤ `.
• R0(A) = {0}.
• Rp(A) ⊆ 1 for all p.
• R`(A) ⊆ R`−1(A).
• if G is connected, thenR`(A) = R`−1(A) = 1.
• Rp(A) is a proper subvariety of1 for 0≤ p ≤ `− 2.

Under some genericity conditions onλ, the cohomologyH∗(A,aλ) is isomorphic to the
cohomology ofM with coefficients in a rank-one complex local system Łλ with monodromy
determined byλ. This local system cohomology plays a role in the definition of generalized
(multivariate) hypergeometric integrals. In a sense made precise in recent work of D. Cohen
and P. Orlik [4], the complex(A,aλ) is thederivative at the identity of a cochain complex
(A,1λ) that computes the local system cohomology. The resonance varietyRp(A) is then the
tangent cone at the identity to the ‘jumping locus’ for the local system cohomology, the set of
local systems for which the cohomologyH p(M,Łλ) is non-vanishing. Forp = 1 the jumping
locus for local system cohomology coincides with the character variety in(C∗)n associated
with the Alexander invariant of the fundamental group. For anyp, a theorem of D. Arapura
asserts that these jumping loci are subtori of(C∗)n, possibly translated by elements of finite
order. This gives an indication of the proof of the following result, originally conjectured for
p = 1 in [8], proved in that special case in [5, 19], and finally established for arbitraryp
in [4, 18]. See those papers for complete references.

THEOREM 2.1. The resonance variety Rp(A) is aunion of linear subspaces ofCn.

By Theorem2.1, Rp(A) can bethought of as a subspace arrangement, and as such, realizes
a polymatroidpolyp(A), which in essence records the dimension of the span of each subcol-
lection of irreducible components ofRp(A). BecauseRp(A) is invariant up to linear change
of coordinates, the polymatroidpolyp(A) is indeed an invariant ofA, powerful enough (at
least for p = 1) to distinguishOSalgebras of matroids which are almost identical in other
respects [8].

The firstcohomologyH1(A,aλ) can be computed directly, yielding a description ofR1(A).
The following lemma reduces the calculation to an analysis of elements ofI2.

LEMMA 2.2. λ ∈ R1(A) if and only if eλ is one factor of a non-zero elementary tensor in
I2.

Proof of this lemma and the results to follow can be found in [8].
Irreducible componentsof R1(A) are contained in intersections of1 with hyperplanesHX

defined by
∑

i∈X λi = 0, whereX runs over certain flats ofG. The flats which occur in these
intersections are determined by so-called ‘neighborly partitions’ ofG.

DEFINITION 2.3. A neighborly partitionof G is a partition5 of [n] such that|π ∩ X| 6=
|X| − 1 for all blocksπ ∈ 5 and flatsX of rank two inL.

We say a flatX is ‘multi-colored’ if X meets more than one block of5. Given a neighborly
partition5 of a submatroidS⊆ [n] of G, set

L5 = 1 ∩
⋂
i 6∈S

Hi ∩
⋂

X∈mc(5)

HX,

where the last intersection runs over the set mc(5)multi-colored rank-two flats of5. Note
that Hi = {λ ∈ C

n
|λi = 0}. Thesupportsupp(λ)of λ is {i ∈ [n]|λi 6= 0}, considered as a
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submatroid ofG. Let∼ denotethe equivalence relation associated with5. Finally, forτ ∈ E2

write τ =
∑

i< j τi j ei ∧ ej . Here then is a description ofR1(A), from [8], to which the reader
is referredfor the proof, examples and consequences.

THEOREM 2.4. λ ∈ R1(A) if and only if supp(λ)affords a neighborly partition5 such
that (i) λ ∈ L5, and (ii) there existsµ ∈ L5 not proportional toλ such that(λ ∧ µ)i j = 0
for every i< j with i ∼ j under5.

The second condition will be replaced with a simpler criterion below.
If X is a flat of rank two with|X| ≥ 3, then5 = {{i } | i ∈ X} is a neighborly partition of

X, andL5 = 1 ∩
⋂

i 6∈X Hi has dimension|X| − 1≥ 2. Thus condition (ii) is satisfied, and
indeedL5 is a component ofR1(A) [8]. The components which arise in this way are called
the local componentsof R1(A). Here is a sample result from [8] showing how combinatorial
structure maybe extracted fromR1(A).

COROLLARY 2.5. Suppose every non-local component of R1(A) has dimensiontwo. Then
R1(A) determines the number of rank-two flats of G of each cardinality. In particular, if G
has rank three, R1(A) determines the Tutte polynomial of G.

D. Cohen informs us that he and J. Oxley have found examples for which the hypothesis fails.
We will see in the next section thatA(G) does not generally determine the Tutte polynomial
of G for matroids of high rank.

In [19] A. Libgober and S. Yuzvinsky base a study of the resonance varietyR1(A) on the
Vinberg classification of Cartan matrices for affine Kac-Moody Lie algebras. Their approach
yields substantial additional detail aboutR1(A) and the associated neighborly partitions. We
state some of their more general conclusions in the following theorem.

THEOREM 2.6 ([19]).

(i) The irreducible components of R1(A) areprecisely the L5 of dimension at least two.
(ii) If L 5 and L5′ are two irreducible components of R1(A), then L5 ∩ L5′ = {0}.

(iii) For any component L5 of R1(A), each multi-colored flat of G meets every block of5.

Theorem2.6(i) effectively replaces condition (ii) of Theorem2.4 with the much simpler re-
quirement dim(L5) ≥ 2. Theorem2.1for p = 1 is an immediate corollary.

Matroidsof rank greater than two which support neighborly partitions5 for which L5 has
dimension at least two are quite rare. Some examples appear in [8]. The classification theory
used in[19] imposes some restrictions, and also yields a method of constructing examples as
a kindof inverse problem. The first part of the following problem is solved in some special
cases in [19].

PROBLEM 2.7.

(i) Characterize those matroids which support neighborly partitions5 satisfying dim(L5)
≥ 2.

(ii) Describe the polymatroidpoly1(G) associated withthe arrangement of subspaces
{L5|5 is neighborly and dim(Lπ ) ≥ 2}.

Libgober and Yuzvinsky [19] also uncover a connection between non-local components of
R1(A), for arrangements of rank three, and pencils of curvesCP2

−→ CP1 which include
the arrangement in their singular locus. The existence of such pencils imposes further restric-
tions on the structure of matroids supporting non-trivial (dim(Lπ ) ≥ 2) neighborly partitions.
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In addition, these pencils of curves bear a relationship to theK (π,1) problem for complex
hyperplane arrangements, and were studied in that vein in [12]. So a solution to Problem2.7(i)
might have some implications for theK (π,1) problem [15].

In anotherdirection, D. Matei and A. Suciu [20] discovered deep connections between the
resonance varieties ofA(G) ⊗ Zp and the structure of the second nilpotent quotient of the
fundamental groupπ1(M). This work leads to some other interesting open questions. We
briefly summarize.

Write R1(A,Zp) for the first resonance variety ofA(G)⊗ Zp, and let

R1,d(A,Zp) = {λ ∈ R1(A,Zp) | dim H1(A⊗ Zp,aλ) ≥ d}.

These are subvarieties of(Zp)
n, easily seen to be homogeneous. LetR̂1,d(A,Zp) denote

the projective image ofR1,d(A,Zp). Finally, let π = π1
⊇ π2

⊇ π3
⊇ · · · denote the

descending central series ofπ = π1(M), and0 = π/π3 the second nilpotent quotient. Let
νp,d denote the number of normal subgroupsK of 0 of index p, such that the abelianization
of 0/K hasp-torsion of rankd.

THEOREM 2.8 ([20]).

νp,d = ](R̂1,d(A,Zp)− R̂1,d+1(A,Zp))

The quantityon the right-hand side is also an invariant ofA(G).
The proof uses a relationship between the resonance varieties and the Alexander invariant

of the fundamental group, similar to the observations used to prove Theorem2.1in [5]. In this
case, the(linearized) Alexander matrix (modp) is used to count normal subgroups of index
p in the second nilpotent quotient ofπ1(M), on one hand, and to define the resonance variety
of A(G)⊗ Zp on the other.

Theorem2.8 leads to the study of resonance varieties ofOS algebrasover finite fields.
Because the varietyR1(A) is defined overZ, we can reduce modp. But there are matroids
G which have ‘exceptional primes’p, for which the reductionR1(A) ⊗ Zp does not coin-
cide with R1(A,Zp). The basic results of this section, from [8], will hold over an arbitrary
ground field,but the techniques of [5, 19], for instance, and thus Theorems2.1and2.6, require
complexcoefficients. In [20] the authors give examples of matroids for which

(i) R1(A,Zp) has non-localcomponents whileR1(A) has none.
(ii) R1(A,Zp) has anon-local components of dimension greater than two, while all non-

local components ofR1(A) are 2-dimensional.
(iii) R1,d(A,Zp) has componentswhich are not(d+1)-dimensional. By contrast, the com-

ponents of the analogous varietyR1,d(A) overC always have dimensiond + 1 [19].

This suggestsa variation of Problem2.7, suggested by A. Suciu.

PROBLEM 2.9. Given a matroidG, determinethe exceptional primes forG, that is, the
primesp for whichR1(A,Zp) 6∼= R1(A)⊗ Zp.

3. ISOMORPHISMS: AFFINE OSALGEBRAS AND POINTED MATROIDS

In [7] we showed how one could construct, from an arbitrary pair of (realizable) matroids
G0 and G1, a pair of non-isomorphic matroidsG and G′ for which A(G) ∼= A(G′). The
matroidsG andG′ are, respectively, the direct sumG0 ⊕ G1, and any parallel connection
P(G0,G1), stabilized by adding an isthmus (soG andG′ have the same number of points).
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In this section we cast this result in a simpler conceptual framework, motivated by the fact
that parallelconnection is the categorical direct sum of base-pointed matroids [3, 25].

Wewill also prove that, for two matroidsG andG′, if A(G) ∼= A(G′), thenA(G) ∼= A(G′),
where thebar denotes truncation. Together with the equivalences involving direct sum, this
result explains all known instances of isomorphisms ofOSalgebras, and so we are led to a
possible formulation for a classification result.

We start with some fundamental observations. The elementary proofs are left to the reader.

PROPOSITION3.1.

(i) If i ∈ S then ei ∂eS = ±eS.
(ii) If S is dependent then eS ∈ I.

(iii) The idealI is generated by{∂eC|C is a circuit}.

Our setup involves generalizing the definition ofOSalgebra. This is carried out in [22] by
giving an algebra presentation associated with an arrangement of affine hyperplanes. We adopt
a different approach, so that we can stay in the realm of matroid theory. The combinatorial
model for an affine arrangement is apointed matroid, that is, a matroid with a specified base
point. Given an arrangementA of affine hyperplanes, the underlying pointed matroid will be
the matroid of the conecAof A [22], with the hyperplane at infinity as base point. Conversely,
given a central arrangementA realizing the matroidG, the effect of choosing a base point in
G will yield the pointed matroid associated with the deconed Aof A relative to the hyperplane
corresponding to the chosen base point. In keeping with the notation of [22], we will write
dG to denote a pointed matroid, with underlying unpointed matroidG. Our convention will
be thatG has ground set{0, . . . ,n}, and thatdG has 0 as base point. More generally, the
pointed matroid onG with base pointi will be denoteddi G.

DEFINITION 3.2. TheOSalgebraof the pointed matroiddG is the subalgebraAd(dG) of
the OSalgebraA(G) generated by{a1− a0, . . . ,an − a0}.

The reader will find that this definition agrees with the definition of [22] of theOSalgebra
of an affine arrangementd A with underlying pointed matroiddG. In particular we have [22,
Corollary 3.58] ∑

p

dim(Ap(G))t p
= (1+ t)

∑
p

dim(Ad(dG))t p.

We recover the ordinaryOSalgebra as follows. Given an unpointed matroidG on ground
set[n], let cG denote the matroid{0} ⊕G of rank rk(G) + 1, with the point 0 marked. Here
{0} is understood to be the rank-one matroid with one point, an isthmus. The reader is invited
to verify the following result.

LEMMA 3.3. Ad(cG) ∼= A(G).

There are two operations on pointed matroids which have a predictable effect onOS
algebras. The first of these will be obvious to those familiar with the topology of hyper-
plane arrangements. Indeed, the complementM supports an action ofC∗, and the induced
map H∗(M/C∗) −→ H∗(M) is a split injection with imageAd(di G), for any
i [22, Proposition 5.1].

THEOREM 3.4. For any i, j ∈ {0, . . . ,n},

Ad(di G) = Ad(d j G).
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PROOF. This is immediate from the identitiesak − a j = (ak − ai )− (a j − ai ) for k 6= i, j
andai − a j = −(a j − ai ). 2

The parallel connection of pointed matroidsdG0 and dG1 is the unique (up to isomor-
phism) pointed matroidPd(dG0,dG1) of largest rank which is a union of pointed subma-
troids isomorphic todG0 anddG1, whose ground sets intersect only at the base point [25].
The underlyingmatroid of Pd(dG0,dG1) is called a parallel connection ofG0 andG1, de-
noted P(G0,G1). The following result from [3] motivated the present formulation of the
equivalence discovered in [7].

LEMMA 3.5. Parallel connection is a sum in the category of pointed matroids and pointed
strongmaps. That is,

{0} −−−−→ G0y y
G1 −−−−→ P(G0,G1)

is a pushout diagram of pointed strong maps.

LEMMA 3.6. The assignment dG7→ Ad(dG) yieldsa functor from the category of pointed
matroids and pointed strong maps to the category of connected (i.e.,A0 ∼= C) graded algebras
overC.

PROOF. Let dG anddG′ be pointed matroids on{0, . . . ,n} and{0, . . . ,m} respectively. A
pointed strong mapdG −→ dG′ arises from a set functionη : {0, . . . ,n} −→ {0, . . . ,m}
mapping 0 to 0. This function yields a homomorphism of exterior algebrasη̂ : E −→ E ′
determined bŷη(ei ) = eη(i ). According to [25, Lemmas 8.1.4 and 8.1.6], the image of each
circuit of G is dependent inG′. Using Lemma3.1 this implies thatη̂ sendsI into I ′, induc-
ing a homomorphismA(G) −→ A(G′). Sinceη̂(a0) = a′0, η̂ restricts to a homomorphism
Ad(dG) −→ Ad(dG′). 2

As a consequence of these observations, the effect of parallel connection onOSalgebras
becomes natural.

THEOREM 3.7. The OS algebra of Pd(dG0,dG1) is isomorphic toAd(dG0)⊗Ad(dG1).

PROOF. Let us writedG for Pd(dG0,dG1). Using the fact that tensor product is a sum in
the category of connected graded algebras, together with Lemma3.6, we obtain a surjective
homomorphismAd(dG0) ⊗ Ad(dG1) −→ Ad(G). Using Theorem1.3 and [26, Proposi-
tion 7.2.9],one can show that the domain and target have the same dimension in each degree.
Thus the two algebras are isomorphic. 2

As a consequence of Theorems3.7 and3.4, we easily obtain the combinatorial/algebraic
versionof the main topological result of [7].

THEOREM 3.8. Let G0 and G1 be arbitrary matroids. Then G= G0 ⊕ G1 and G′ =
{0} ⊕ P(G0,G1) have isomorphic OS algebras.

PROOF. Consider the pointed parallel connectiondĜ = Pd(cG0, cG1). The underlying
matroid Ĝ is {0} ⊕ G0 ⊕ G1 = {0} ⊕ G, which is preciselycG. Then, by Lemma3.3,
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FIGURE 1. The proof of Theorem3.8.

theAd(dG) ∼= A(G). On the other hand, by Theorem3.7,Ad(dG) is also isomorphic to
Ad(cG0)⊗Ad(cG1), which again by Lemma3.3, is isomorphic toA(G0)⊗A(G1).

Now, according to Theorem3.4, we may change the base points ofcG0 andcG1 without
affecting the affineOSalgebras. The pointed parallel connectiondĜ′ of these new pointed
matroids will have underlying matroid̂G′ isomorphic to the the sum of two isthmuses (neither
marked) with an ordinary parallel connectionP(G0,G1) of G0 andG1 along the new marked
points of each. Again, we haveAd(dĜ′) ∼= Ad(cG0)⊗Ad(cG1) ∼= A(G0)⊗A(G1). Now
we change the base point ofdĜ′ to one of the isthmuses, and recognize the resulting pointed
matroid ascG′. We apply Lemma3.3once more to obtain the result. 2

We regard the method of proof above as ‘diagrammatic’, and indeed the argument is easier
to follow in pictures than in words. See Figure1. It should now be clear that these isomor-
phisms arisefrom the trivial operations of changing base points and forming sums.

In [7] we proved a stronger result for realizations ofG0 andG1, by constructing a natural
realization ofP(G0,G1) and proving that the complements of the arrangements realizingG
andG′ are in fact diffeomorphic. Theorem3.8follows in this case by Theorem1.2.

We state two interesting consequences of Theorem3.8 from [7]. The first should be com-
pared withTheorems1.3and2.5.

COROLLARY 3.9. Given an arbitrary matroid G0, there exist extensions G and G′ of G0
with isomorphic OS algebras but different Tutte polynomials.
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The second corollary results from the indeterminacy in the change of base point in the proof
of Theorem3.8.

COROLLARY 3.10. For any positive integer n, there exist n non-isomorphic matroids with
isomorphic OS algebras.

The original examples of non-isomorphic matroids with isomorphicOS algebras, which
appeared in [10, 11, 22], are truncations ofG andG′, wherethe factorsG0 andG1 both have
rank two. In an NSF-sponsoredREU undergraduate research project directed by the author,
C. Pendergrass showed that truncation of matroids always preserves isomorphisms of the
associatedOSalgebra [24].

THEOREM 3.11. SupposeA(G) ∼= A(G′), and let G and G′ denote the (corank-one)
truncationsof G and G′ respectively. ThenA(G) ∼= A(G′).

PROOF. Supposeη is anisomorphism ofA(G) toA(G′). To begin with, we can then as-
sume without loss thatG andG′ have the same ground set. The isomorphismη : A1(G) −→
A1(G′) determines an isomorphism̂η : E(G) −→ E(G′), andη̂(I(G)) = I(G′). We need
only show that̂η(I(G)) = I(G′).

Let n = rk(G) = rk(G′). Then,for p < n− 1,

η̂(I p(G)) = η̂(I p(G)) = I p(G ′) = I p(G ′).

Since thetruncations have rankn−1, we also have, forp ≥ n−1,I p(G) = ∂E p+1
= I p(G′).

Sinceη̂ is analgebra homomorphism, it commutes with∂, and thusη̂(I p(G)) = I p(G′) for
p ≥ n− 1. Thiscompletes the proof. 2

All known examples of isomorphisms ofOS algebras arising from non-isomorphic ma-
troids are consequences of Theorems3.8 and3.11. So we are led to the following problem.
Recall thata matroid which is not a truncation is calledinerectible.

PROBLEM 3.12. For inerectible parallel-irreducible matroidsG andG′,A(G) ∼= A(G′) if
and onlyif G ∼= G′.

We prefer an alternate formulation based on the categorical framework developed earlier.

PROBLEM 3.13. SupposedG and dG′ are inerectible pointed matroids which are irre-
ducible in the category of pointed matroids. ThenAd(dG) ∼= Ad(dG′) if and only if dG ∼=
dG′ up to change of base point.

4. THE k-ADIC CLOSURE OFA(G)

We have recently become interested in quadraticOS algebras, and more generally the
quadratic closure ofA = A(G). This is the first in a series ofk-adic closureswhose di-
mensions are algebraic invariants ofA, and about which little is known. In this section we
briefly present these ideas and describe some recent results and work in progress, to appear
in [6, 9].

For k ≥ 2, define thek-adic OS idealIk to be the ideal generated by
∑

j≤k I j and the
k-adic closure ofA to be the quotientAk = E/Ik. These algebras form a sort of resolution of
A:

E = A1 −→ A2 −→ A3 −→ · · · −→ A`−1 −→ A` = A.

The following problem is wide open, even fork = 2.
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PROBLEM 4.1. Calculate the dimension ofAp
k in termsof the underlying matroidG.

Of special interest is the conditionA2 = A, in which case we sayA is quadratic. Examples
indicate that this condition is related to the notion of line-closed matroid. Theline-closureof
a setS⊆ [n] is the smallest subset`c(S) of n containingS and containing the entire line in
G spanned by any pair of points of`c(S). The matroidG is line-closed if and only if every
line-closed set is closed. A proof of the following result will appear in [9].

THEOREM 4.2. If A is quadratic then G is line-closed.

Thisresult was originally announced in [13], at which time we conjectured that the converse
is alsotrue, that is, that line-closed matroids have quadraticOSalgebras. S. Yuzvinsky subse-
quently found a counterexample to this conjecture, the matroid on eight points with non-trivial
lines

123, 3456, 167, 258, and 478.

Yuzvinsky proposed a different condition for quadraticity ofA, which fails for the example
above. This condition is also necessary for quadraticity, and is demonstrably stronger than
line-closure. G. Denham subsequently found an example (a 93 configuration) showing this
stronger condition is still not sufficient for quadraticity. The work of Denham and Yuzvinsky
is based on a detailed study of the annihilator of the quadraticOSideal I2 inside the full tensor
algebra, and is reported on in [6]. At this point there seems to be no easily stated matroidal
criterion equivalent to quadraticity.

Theorem4.2 is actually a corollary of a more general result concerningA2. We define a
setnbb(G) of increasing subsets of[n] by S = (i1, . . . , i p)< ∈ nbb(G) if and only if i j =

min`c({i j , . . . , i p}) for all j . This is an analogue of the setnbc(G) of nbc (= ‘no-broken-
circuit’) sets ofG [1]. In fact these sets are precisely theNBB (= ‘not-bounded-below’)sets
of A. Blass and B. Sagan [2], which generalizenbcsets, forthe lattice of line-closed sets of
G, with a linear ordering of the atoms. It is the case thatnbb(G) = nbc(G) if and only if G is
line-closed. Then4.2follows easily from the next theorem.

THEOREM 4.3. The set of monomials{aS|S∈ nbb(G)} forms alinearly independent sub-
set ofA2.

This generalizes half of the well-known theorem [1, 17] that{aS|S∈ nbc(G)} yields abasis
for the OSalgebraA. Yuzvinsky’s example shows that the set{aS|S∈ nbb(G)} cannot form
a basis forA2 in general.

An analogue of Theorem4.3holds forAk for eachk ≥ 2, giving a partial solution to Prob-
lem4.1in the form of combinatorial lower bounds. Of course, a formula for the cardinality of
nbb(G) has notbeen found. In fact, this cardinality can change if the linear order of the points
is changed.

PROBLEM 4.4. Calculate the maximal cardinality ofnbb(G) over all linear orderings of
the points ofG.

L. Paris has informed us that{∂eC|C is a circuit}can be shown directly to be a Gröbner
basis for theOS idealI. A complete direct proof is seemingly not extant. The fact thatnbc
monomials form a basis forA is an immediate consequence. In fact the latter assertion implies
the former—see [23, Theorem 4.1]. The following problem seems more delicate.

PROBLEM 4.5. Find a Gr̈obner basisfor the quadraticOS idealI2.
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Our experiments lead us to another interesting question, which seems to be related.

PROBLEM 4.6. Determine conditions onSunder which∂eS will lie in thek-adicOSideal
Ik.

We close by returning to the invariantφ3 defined in the Introduction. It turns out that a
calculation of dim(A32) would yield a combinatorial formula forφ3. Indeed,φ3 is the nullity
of E1

⊗ I2
−→ E3, while the cokernel of the same map is preciselyA3

2. The dimension ofI2

is just dim(E2)− dim(A2), so we obtain the following formula.

THEOREM 4.7. Let n= rk(G) andw2 = dim(A2), thesecond Whitney number of G. Then

φ3 = 2

(
n+ 1

3

)
− nw2+ dim(A3

2).

Thus Problem1.4 is a special case of Problem4.1.
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