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We generalize and refine some results from the author’s paper [18]. For a completely regular
Hausdorff space X, vX denotes the Hewitt realcompactification of X. It is proved that if
V(X x Y)=vX xvY for any metacompact subparacompact (or m-paracompact, space Y, then
X is locally compact. A P(n)-space is a space in which every intersection of less than n open
sets is open. A characterization of those spaces X such that v(X X Y)=uvX xvY for any
(metacompact) P(n)-space Y is also obtained.
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locally compact metacompact subparacompact
m-paracompact P(n)-space C-embedding
weakly-n-compact non-measurable cardinal

1. Introduction and main theorems

All spaces considered are assumed to be completely regular Hausdor{l and all
maps are continuous. The Hewitt realcompactification vX of a space X is the
unique realcompactification of X to which each real-valued continuous function on
X admits a continuous extension. For details of Hewitt realcompactifications, the
reader is referred to [9]. The purpose of this paper is to prove a refinemer.t and a
generalization of the following theorem due to Comfort [6], Husek [12,13],
McArthur [17] and the author [18].

1.1, Theorem. The following conditions on a space X are equivalent:

(&) X is locally compact, realcompact and |X|<wm,.
(b) v(XxY)=vX x0vY for any space Y.

Here, |X| denotes the cardinality of X and m, stands for the first messurable

cardinal. Thus the inequality |X|<m, means that the cardirality of X is non-
measurable. Following [17], let & denote the class of all spaces X satisfying 1.1(b).
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In this paper, for a property ? of spaces we denote the class of all spaces}\’ ‘such
that v(X .2 Y)=vX xvY for any P-space Y by RP). Let 1, m, and n denote
infinite ca dinals; " is the smallest cardinal greater than . Recall that a vpace is
metacompact {resp. subparacompact) if each open cover has a pomt ﬁmte '\pen
(resn. o-locally finite closed) reﬁnement andjgh ! a" act is M<pe 1ct i '
open cover of cardinality at most m has a locally fin nt {cf. [
For a space X, x(X) and w(X) denote the character and the wexght esf X, respec-
tively. Our first result shows that & = %(metacompact and subparacompact; =
R (m-paracompact). : Ls g

1.2, Theorem. Each of the following conditions on a space X is equivalent to 1.1(a):
(©) (X xXY)=vX xvY for any metacompaci subparacompact space Y with
w(Y)=x(X) Ry
(d) v( XxY)= vX X vY forany m-paracompact space Ywuh w(Y)<)(€uX) m'.

A O-dimensional space is a space which has a base consisting of open-and-closed
sets. As the reader will observe in the proof, we can add 0-dimensionality to the
cond tions on Y in (c) and (d). ;

A P(n)-space is a space in which every intersection of less than n open sets is
open. Any space is a P(No)-space and a P(N;)-space usually is called a P-space.
Recall from [16] (or [7]) that a space is weakly-n-compact if each open cover has
a subfamily of cardinality less than n with dense union. A space is called locally
weakly-n-compact if each point has a weakly-n-compact neighborhood. As far as
I know, this notion first appears in [14]. In [14] Husek proved that if X is a locally
weakly-n-compact, realcompact space with |X|<m, and Y is a P(n)-space, then
v(X xY)=vXxvY. Let n* denote the smallest regular cardinal not less than n.
The next theorem generalizes his theorem as well as Theorem 1.1, and gives a
characterization of #(P(n)) and ® (metacorapact P(n)).

1.3, Theorem. For any infinite cardinal w, the following conditions on a space X
are equivalent:

(a’) Each point of vX has a neighborhood G in vX such that G A X is weakly-n*-
conipact and | X |<m,.

(b) v(X xY)=0vX xvY for any P(n)-space Y.

() vIXXY)=vX x0Y for any metacompact P(n)-space Y with w(Y)<
exp w(vX).

It will be remarked in the tinal section that it n <m, and if each #- and P(n)-space
i normal countably paracempact, then ®(9* and P(n)) # R (P(n)). Therefore, in
vase ¥y = n<m,, metacomg xctness of Y in (¢') cannot be replaced by subparacom-
sactness since a subparacomapact P(X,j-space is paracompact [2]. Further, since
rormal metacompact spaces and normal subparacompact spaces are known [8] to
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1 .f  t*cbun‘tablyqpazacompact; we cazunot add normality to the conditions on Y in (c),

 Hereafter C(X) denotes the set of all real-valued continuous functions on a
space X. For an ordinal o, W{a) denotes the space of all ordinals less than a,
topologized with the usual interval topology, and w, denotes the first infinite ordinal.
- For general terminology, see [1, 9].

'We list certain basic facts and definitions that will be used in the sequal. Let X
and Y be spaces.

2.1. If Yis a C-embedded subspace of X, then vY =cl,x Y [9, Theorem 8.10].

2.2. If Yis a cozero-set of vX, then v(Y nX)=Y [3, Theorem 5.1].

Recall from [13] that a space is pseudo-m,-compact if every locally finite family
of non-empty cpen sets is of non-measurable cardinal. A map f: X » Y is called
z-closed if the irnage of each zero-set of X is closed in Y.

2.3. If the projection my : X XY > Y is z-closed, then v(X X Y)=vX xvY if and
only if either |X|<m, or Y is pseudo-m,-compact [14, Theorem 2].

2.4. If X is weakly-n*-compact and Y is a P(n)-space, then the projection wy : X X
Y > Yis z-closed [11; 10, Theorem 3.1].

The following result 2.5 is essentially proved by McArthur, and 2.5 follows from
[13, Theorem 3] and [15, Theorem 2].

28, If v( XX Y)=vXXxvY for any 0-dimensional paracompact space Y with
w(Y) < x(vX), then X is realcompact [17, Theorem 5.2}.

2.6. Ifu(X x Y)=vX xvY forany discrete space Y with | Y| < x(vX), then | X' <m,.

2.7. Let m=n. Let S be a set of cardinality m, and let ¥ be the family of ali
subsets o of § with |o| <n. Define Z(m, n) to be the space ¥ {0} topologized
as follows: Each point of & is isolated and {f (o)|loe¥), where J(o)=
{oo}uic’ e Lo’ 2 g}, is a neighborhood base of o, For a space Z, let 2(Z, m, n)
denote the space obtained from the product space Z x 2(m, n) by letting each point
of Z X & be isolated. The following simple facts are listzd without proofs.

(@) w(Z(Z, mn)<w(Z)-expm and w(Z(Z, m, Xo))sw(Z) m.



158 H. Ohta { Local »cmnpaemes’s,nnam.rcmpacm‘f éssof e

mg,r_,ggmpg, me»_s; su hnamcomnac ness, !-namcomnactness normahtv O-dtmens:on-
ality. ‘
(c) If Z is a P(n)-space and n is regul«zr, then X (Z m, n) isa P(n)-space

3. Proofs of Theorems 1.2 and 1.3

In proving Theorems 1.2 and 1.3, the central issue is how to find a space Y such
that v(X X Y)# vX XvY when X is not locally weakly-n-compact. The following
lemma reduces this issue to the problem of finding a space Z which has a certain
locally finite family of subsets. We call a space weakly-(m, n)-compact if each open
cover of cardinality m has a subfamily of cardinality less than n with dense union,
and denote the character at a point x in X by x(x, X).

3.1. Lemma. Let X be a space having a point xo, with x{xo, X)<1, that has no
weakly-(m1, n)-compact neightorhood. Let Z be a space having a locally finite family
F of subsets in Z such that |F|=1 and ﬁ{cl..zF[Fe F}#0. Then X x Y is not
C-embedded in X xvY, where Y = 2 (Z, m, n).

Proof. Recall that Y is the space obtained from Z x X (m, n) by letting each point
of Z x¥ be isolated, and {J(c)|o e ¥} is a neighborhood base of o in Z(m, n)
(=% u{o}). Let {G,|A € A} be a neighborhood base of x, in X with |4]|=1. For
each A € A, since clx G, is not weakly-(m, n)-comipact, there is an open cover U,
of X with |%,| = m such that no subfamily of cardinality less than n has dense union
in G,. By the definition of ¥, we may denote the collection of all subfamilies of
U, whose cardinality is less than n by {#,, |0 € ¥}, and we may assume that o < o’
if and only if U,, < U ,,. Foreacho € &, let H ,, = G, —clx (J{U|U € %,,}). Thien
H,, #9, so pick x,, € H,,. On the other hand, since |#| =1, we may write ¥ =
{F\|A € A}. For each A € A and each o € &, set

-’.l.(r = {xka} X(C‘ZF‘:\ X{()‘})C,Y X Y:
Kio =H,; X(clzFy x{ohc X x Y.

Since cl F, x{o} is open and closed in Y, there is fi, € C(X X ¥) such that
frolae) ={0} and fo,(XXY)-K,,)={1}., Let us show that X =
{Kio |A € A, 0 € F} is locally finite in X X Y. Let p=(x, y)e X X Y; then y =(z, 7)
for some z € Z and some r € Z(m, n). Since F is locally finite, 2 has a neighborhood
G(z) in Z which meets only finitely many members, say i7,,,..., &, of & In
case T € £, X x(G{z)x{r}) is a neighborhcod of p whichmeetsonly K, ..., K -
sosuppose 7 =00. koreachi =1, ..., n,choose U; € U,, withx € Uj; then{U} = ¥, ,,
for some e & If we set G(x)= Uy~ U, then G(x)"H,,, =0 for each i.
Letag=e1u- - Uoy, and set G(p) = Gix ) X (G(2) X J(00)). Then G(p) is a neigh-
borhood of p which meets no member of ¥. For, if G(p)N K., #0, then G(x)
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‘ H ,=*", aDogand A = A; for some i. Smce %,\,.,:%mi, H,;=H,,<H,,, and
ence G(x)nH,,, #8. This'is a contradiction, that proves local finiteness of ¥,
Thert tore if we define a function f on X x Y by

f(‘l)*"mf{fm@)"\ eAoed), q eXx Y,

then f is continuous. To 'see that f admits no continuous extension over X X vY,
“choose. zoeﬂ{cl..zF,. ]A € A}. Then zye vZ ~ Z. Since Z x {0} is C-embedded in
Y, it follows from 2.1 that v.Z = v(Z x{oo}) < vY, and so we may consider z, as an
elementof vY — Y. Let V X W be a given neighborhood of (xo, zo) in X X Y. Then
there is A € A with G, € V. Since W ~ (F, x{0}) %0, we can find zeF, and o ¢ &
such that (z, ©0) e W and (z, o) © V. Then both p; = (xo, (z, )) and p; = (x o, (z, 7))
belong to V x W and f(p,; = 1, while f(p,) =0. This shows :hat f does not extend
continuously to (xo, zo). Hence the proof is complete.

3.2. Fact. For every two infinite cardinals ¥ and w, there exists a O-dimensional
metacompact P(n)-space Z = Z (1, n), with w(Z) =t (n*)", that has a discrete family
F of closed sets in Z such that |#\ =1 and (" {cl,z F|F € %} 0. Moreover the space
Z =Z (1, Ny) is subparacompact.

Proof. Let a, (resp. @) be the initial ordinal of (n*)" (resp. n*). Define T, i =1, 2,
to be th2 subspace of W(a; + 1) obtained by deleting all non-isolated points except
a;. Let us set T =(T, x T,) —{fo}, where to= (a1, a;). Then T is a 0-dimensional
metacompact P(n)-space with w(T) =(n*)". Since T is C-embedded in T X T>, it
follows irom 2.1 that

vT>T xT,. (1)

Let us set E = {a,} X (T; —{a5}) and F = ('T; —{a;}) X {a3}; then E and F are disjoint
closed subsets of T such that

to€clyr £ ncl,rF. (2)

Let A be the discrete space of cardinzlity %, and let Z' be the quotient space
obtained from T x A by collapsing the set {e}x A to a point for each e€ E. Let
¢': TxA->2Z' be the quotient map. W denote a base for the topology on T by
B. Let Z be the set Z', retopologized by letting |_J {B(B)| B € #} be a base, where

{¢'(Bx A)}, if BNE #§,

Q(B)={¢'(B><{A})l:\ cA}, if BAE =0.

Then the space & is casily seen to be a 0-dimensionai metacompact P(n)-space
with w(Z)=1-(v*)", and the natural map ¢:T xA->Z is coutinuous. In case
n =Ny, Z is subparacompact in addition, since it is the countable union of paracom-
pact closer subspaces. Setting ¥\ = @ (7 x{A}) for each A € A. we have a discrete
family {F) |A € A} of closed sets in Z. it remains to show that { ) {cl,z F, | A e A} # .
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There is a continuous extension @ : v(T x A) > vZ of ¢. By (1), v(T xA) o uT x A >
(T x T3) X A. For each A € A, let z(A) = @1, A)); then ziA)eclzFy. If z(Ay) #
z(A,) for some A}, Az € A, then they have disjoint neighborhoods U; and Us in vZ,
respectively. For i =1, 2, since @ W) is a neighborhood of (f, A;), there is a
neighborhood G, of tpin vT such that G; X {A;} < @~ (U). Then, since D(E x{A ) =
D(E x{A3}) and Uyn Uy =0, Gi Gy E =0, that contradicts. (2). Thus z(Ay) =
z(A;) for each A4, A2 € A, and consequently { \{cl.zF\|A € A} » ﬂ Hence Zis proved
to be the desired space Z (i, n).

3.3. Fact. For every two infinite cardina’ t and m, there exxsts a O-dtmenswnal

m-paracompact space Z = Z,,(1), with w(.Z)=1-m", that has a dtscretP famtly F
of clnsed sets in Z such that |¥| =1 and (Nicl,zF|Fe F}#0.

Proof. We utilize a space similartothespa.e Y co‘nstruct'ed by‘C‘omfort‘ in[S, p. 99].
Let a be the initial ordinal of m*, and let §; be the quotient space obtained from
the product space

S1=W(wg)X W(a+1)x W(a+1)

by identifying, for eachk n <w, and each y < a, two points (n, a, ¥)and (n + 1, y, a).
Let f:5,- S, be the quotient map. If we set S = 8o—{so}, wherz 5o =f((0, a, a)),
then vS = S, as he showed in [S]. Let T = W(wo + 1) x S. Then, by {16, Theorem 17]
T is a 0-dimensional m-paracompact space with w(T)=m", and it follows from
[4, Theorem 5.3] that

oT = W(wo+ 1) X vS. 3)

Setting H, = f({ili=n}x W{a +1)x W(x+1))nS for each n <w,, we have a
decreasing sequence {H,} of closed sei= in § with empty intersection such that
so€( Y{clus Ha |n <wo}. Let us set E ={wo} xS, F=\J{{n}x H,|n <wo} and to=
(wo, S0); then E and F are disjoint closed subsets of T such that

toccl,rEncl,r F. | “4)

Let A be the discrete space of cardinality I. Let 2 be the space obtained from
T x A by the same way just as in the proof of Fact 3.2, and let ¢ : TxA>Z be
the natural map. Then the space Z is easily seen to be m-paracompact since it is
no other than the product of S and a metric space with only one non-isolated point.
(Use [16, Theorem 5] and the followiny fact: if Y is a countably paracompact space
and X is a metric space, then any closed subset of X x Y disjoint from {x}x Y,
where x € X, has a neighborhood whose closure missas {x} X Y.) Moreover, Z is
0-dimensional and w(Z)=1-m". Let F, = ¢(F x{A}) for each A € A. Then {F, |A €
A} is a discrete family of closed sets in Z, and a similar argument to the proof of
Fact 3.2 shows that () {cl,z F, |A € A} # . Hence Z is the desired space Z,.(f).

3.4. Remark. Let ¥ be the space described in [9, 51, o. 79]. The space ¥ is known
to be a Moore space which is pseudocomp.ict but not countably compact. Thus ¥
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- has a decreasing sequence {H,} of closed subsets with empty intersection such that

[Aekiw H, #0. If one use ¥ instcad of S ir. the proof of Fact 3.3, then the resulting
‘space Z is a 0-dimensional Moore space with w(Z) =1t - exp No. This space will be
used in [19] to. charactenze tte class R (Moore) o

Before provmg Theorem' 1 2 and 1 3 we estabhsh the follcwmg theorem which
isa generahzat:en of {5, T’aeorem 2 1] and [18, Theorem 1].

3.5 'ﬂtenrem Let n be an mﬁmte cardinal. Then the following condttzans on a
space X, with 1x |<m,, are equivalent:

{(a) Xis Iocally weakly- ~-compact

(b) Xx Y:s C-embed- ed in X xvY for any P(n)-space Y.

(c) XxYis C-embedded in X xuY for any metacompact P(n)-space YV with
w(Y)sexp w(X) ‘

In case n="WN,, the followmg conditions (c') and (d) are also equivalent to (a):

(') X x Yis C-embedded in X X vY for any 0-dimensional metacompact subpara -
compact space Y with w(Y)<w(X) - N,.

(d) X X Yis C-embedded in X x vY for any 0-dimensional m-paracompact space
Y with w(Y)<w(X) -m".

Proof. The implication (a)-» (b) is a simple consequence of 2.3 and 2.4, and (b) - (c)
is obvious. To prove (c)->(a), suppose on the contrary that X is not locally
weakly-n*-compact at xo€ X. Let Z be the space Z(t, n*) constructed in Fact 3.2,
where t = x(xo, X), and let Y = 3(Z, w(X), n*). Then by 2.7 Y is a metacompact
P(n)-space, and w(Y)<t: (n*)" - exp w(X) = exp w(X). Since xo has no weakly-
(w(X), n*)-compact neighborhood and Z has a locally finite family & of subsets
such that |#]=1 and (N {cl,z F|F € #} 9, it follows from Lemma 3.1 that X x Y
is not C-embedded in X xvY. This contradiction establishes the implication. In
case n =N, the implications (a)- (') and (a)~ (d) follow from [6, Theorem 2.1],
and the proof that (c')->(a) ((d)->(a)) is the same as above if one use Z(F, Ro)
(Z (D)) instead of Z(t, n*). Hence the proof is complete.

3.6. Proof of Theorem 1.2. Since the implications 1.1(a)-(c) and 1.1(a)-(d)
follow from [6, Corollary 2.2], we prove that (c) ((d)) implies 1.1(a). By 2.5 and
2.6, (c) ((d)) implies that X is realcompact and |X|<m,;. To complete the proof
suppose that X is not locally compact at xo€ X. Then each neighborhood of x is
not pseudocompact, because a rew.compact pseudocompact space is compact, and
50 ¥o has no weakly-(NRo, No)-compact neighborhood. Let Z = Z(f, Ro) (Z = Z (1)),
where = x(xo, X}, and let Y = 2(Z, Ry, No). Then Y sztisfies the condition stated
in (¢) ((d)), and it follows from Lemma 3.1 that v(X X Y) # vX XvY. Hence the
proof is complete.

3.7. Proof of Theorem 1.3. (2") = (b'). Let Y be a P(n)-space. Since vX is locally
weakly-n*-compact, v(vX X Y)=vX xvY by Theorem 3.5, and so it remains to
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prove that X x Y is C-nembedded in er Y Letfe C(Xx Y),and | X
It suffices to find a neighborhood G of x such that f admits a cannnuous exter
over (X x Y)u (G x ¥). Choose a cozero-set neighborhood G of x m
that X ncl,xG is weakly-n*-compact. If we set X, =X rncl.xG, then it follc
from 2.3 and 2.4 that X, x Y is C-embedded in vX, X Y. There is a coze : 3t
of vX, such that G~ X1=GnX. Then f can be contmuously extended‘ ver
(X x Y)U (G, x Y). Since Gy =v(Gy A X1) =v(G A X) =G by 2.2, f « imits a con-
tinuous extension over (X X Y)U (G X Y), as reqmred

(b") = (¢'). Obvious.

(c)-(@). By 2.6, |X|<m,, and it follows from Theorem 35 that Xis locally
weakly-n*-compact. To complete the proof, suppose that (a ) is false at Xo€ uX -X.
Let {G,|A €A} be a nenghborhood base of xg in 0X with |/ = x(uX). For each
A €A, X nclyx G, is not weakly-n*-compact, and thus there is an open cover AU,
of X such that no subfamily of cardmahty less than w* has dense union in X N G).
With the notation in 2.7, let Z(m, n*) =& u{ou} wha,re m= w(X ). Smce 1t can be
assumed without loss of generality that |4,| =m, we den:te the collection of all
subfamilies of 4, whose cardinality is less than n* by {% \.,'0‘ € ff}, and we may
then assume that o <o’ if and only if ¥,, < ¥,,. For each v, let H Ao =
(X N G,)) = clx({J{U | U € Uy, }), and pick x r, € H 1.~ Topoingize A with the discrete
topology. Let Y be the quotient space obtained from X(m, *)XA by collapsmg
the set {0} X A to a point yo€ Y, and let ¢ : (m, n*) X A » Y be the quotient map.
Then Y is a 0-dimensional paracompact P(n)-space with 1w (Y)=<exp w(vX). For
each A € A and each ¢ € &, let y,, = ({0, A)), and set

Pm =‘\xAm y}w)ex\"( },:
Kic =Hpo X{Ym}cxx Y.

Since {y.,} is open in Y, there is fa, € C(X X Y) such that fi,(pi.)=0 and
fro(X xY)=K ,,)={1}. We show that ¥ ={K ,, | € A, o' € ¥} is locally finite in
X xY.Letp=(x,y)e X x Y. In case y # yo, X x{y} is a avighborhoor! of p which
meets only one element of . In case y = y,, choose a weakly-n*-compaci neighbor-
hood G(x) of x; then for cach AeA therc is .= such that G(x)<
Ax(HUUeUr,). Let Gy)=\U{dU (@) x{AD]AeA), where J(a)=
{o}uf{o e ¥|o>0,}. Then Giy) is a neighborhood of y, and G x)* G(y) meets
no meniber of ¥, Thus X is proved to be locally finite in X x Y. Thercfore if we
define a function f on X x Y by |

flg)=inf{fio(q)|lA €A, 0e 9}, qeX XY,

then f is continuous. Let V X W be a neighborhood of (~-, yo) in vX X Y. Choose
AeA with G,V and oe¥ with y,, € W. Then both p;=(x\p, yo} &nd p2=
(X10» Yao) belong to V x W and f(py) = 1, while f(p,)=0. This shows that f does

not extend continuously to (xo, yo), and thus »(X X ¥) # vX x Y. Hence the proof
is complete.
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, . (1) The condition 1.3(a") :mplies that both X and oX are locally
weakly-n“'-compact, but the converse is not true in general. In fact, let X = W(a),

where a is the initial ordinal of n*:¥,; then both X and vX (= W(a + 1)) are

; Alocally compact, but X does not satisfy 1.3(a’). . o

@ The latter half of the proof of Theorem 1.3 tells us that if X is locally
‘weakly-n*- fXXYis C-embedded in vX X Y for any paracompact

P(n pace Y, then eac pbmt of uX X has a nenghbcrhood G in vX such that

compact. It mxght bei mterestmg to know whether this statement

‘can be proved wnthout hssummg local weak-n *-compactness of X or not (cf.
Problem 4.3).

4. Problems and remarks

4.1. It is n..a&onable to ask what property & of spaces satisfies the equality R (2
and P( n)) R (P(n)). In view of 2.5, 2.6 ana Lemma 3.1, if P satisfies the following
conditions (a)~(c), then R(P and P(n)) = R(P(n)).

(a) Every O-dimensional paracompact space has 2.

(b) 2.7(b) holds for .

(c) For every infinite cardinal f, there exists a #- and P(n)-space
Z =Z(1,n) having a locally finite family # of subsets such that |#|=t and
ﬂ{cl.,zFIFe .‘F} # 0.

Conversely, if n <m; and if R(® and P(n)) = R(P(n)), then

(d) there exists a - and P(n)-space Z having a countnble locally finite family
& of open sets such that [ \{cl.z F|F ¢ #}#0. For, if ? does not satisfy (d), then
it follor from |19, Remarks 3.5(1)] that any metric space of non-measurable
cardinal beiongs to R(P and P(n)), while it is easy 10 find a metric space of
non-measurable cardinal which does not belong to #(P(n)) (use 1.3(a")).

Problem. For every two infinite cardmals f and n, do there exist the following
spaces?

(1) a normal P(n)-space Z(i, n),

(2) a m-paracompact P(n)-space Zn(I, n) for n>N,,

(3) a metacompact subparacompact m-paracompact space Z,,(t, No).

Since normal countable paracompactness does not satisfy (d), & (normal count-
ably paracompact P(n)) # 5 P(n)) in case n < m,. Therefore, if there exists (1) for
n<my, then it must be a Dowker space. In case I = and n=¥,, there exists
such a space. In fact, the Dowker space X constructed by Rudin in [20] is a
P(X,)-space and has a dec easing sequence {D,} of closed subsets with empty
intersection such that (cl.:- D, # 0 as she essentially proved. The technigue used
in Facis 3.2 and 3.3 cannot L e applied to make (1), because every pairwise disjoint
closed subsets of a normal space T have disjoint closures in vT.



4.2. For convenience; we call a spac 7 an
neighborhood G in vX such that G nX is weakly-»n»eompa ‘

Probiem. Characterize & (. (n)) for n>No.
for n = Nyo. In fact, an a(No) space is precnsely a loca

and [13, Theorem 4] shows that m(locally compact. realco
pseudo-m;-compact spaces. ‘

4.3. Problem. Characterize R (paracompact P(n)) fc»rn)&b..;

Recently, the author has proved that if X is a realcompact space with | X]<m,,
xhen v(X x Y)=vX xvY for any paracompact space Y. This fact combined with

2.5 and 2.6 implies that S (paracompact) is precisely the class of alt realcompact
spaces X with |X| < m,; however, the charactenzatmn of Q(paracompav* P(n)) is
not yet known in case n>W,.
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