brought to you by T CORE

Topology and its Applications 13 (1982) 155-165 North-Holland Publishing Company

155

LOCAL COMPACTNESS AND HEWITT REALCOMPACTIFICATIONS OF PRODUCTS II

Haruto OHTA

Faculty of Education, Shizuoku University, Ohya, Shizuoka, 422 Japan

Received 27 January 1981

We generalize and refine some results from the author's paper [18]. For a completely regular Hausdorff space X, υX denotes the Hewitt realcompactification of X. It is proved that if $\upsilon(X \times Y) = \upsilon X \times \upsilon Y$ for any metacompact subparacompact (or m-paracompact) space Y, then X is locally compact. A P(n)-space is a space in which every intersection of less than n open sets is open. A characterization of those spaces X such that $\upsilon(X \times Y) = \upsilon X \times \upsilon Y$ for any (metacompact) P(n)-space Y is also obtained.

AMS Subj. Class.: Primary 54D60, 54B10; Secondary 54D45, 54G10Hewitt realcompactification
locally compact
m-paracompactrealcompact
metacompact
P(n)-spaceproduct space
subparacompact
C-embedding
non-measurable cardinal

1. Introduction and main theorems

All spaces considered are assumed to be completely regular Hausdorff and all maps are continuous. The Hewitt realcompactification νX of a space X is the unique realcompactification of X to which each real-valued continuous function on X admits a continuous extension. For details of Hewitt realcompactifications, the reader is referred to [9]. The purpose of this paper is to prove a refinement and a generalization of the following theorem due to Comfort [6], Hušek [12, 13], McArthur [17] and the author [18].

1.1. Theorem. The following conditions on a space X are equivalent:

(a) X is locally compact, realcompact and $|X| < m_1$.

(b) $v(X \times Y) = vX \times vY$ for any space Y.

Here, |X| denotes the cardinality of X and m_1 stands for the first measurable cardinal. Thus the inequality $|X| < m_1$ means that the cardinality of X is non-measurable. Following [17], let \mathcal{R} denote the class of all spaces X satisfying 1.1(b).

In this paper, for a property \mathcal{P} of spaces we denote the class of all spaces \mathcal{X} such that $v(X \land Y) = vX \times vY$ for any \mathcal{P} -space Y by $\mathcal{R}(\mathcal{P})$. Let \mathfrak{k} , \mathfrak{m} , and \mathfrak{n} denote infinite cardinals; \mathfrak{k}^+ is the smallest cardinal greater than \mathfrak{k} . Recall that a space is *metacompact* (resp. subparacompact) if each open cover has a point finite open (resp. σ -locally finite closed) refinement, and that a space is *m-paracompact* if each open cover of cardinality at most \mathfrak{m} has a locally finite open refinement (cf. [1]). For a space X, $\chi(X)$ and w(X) denote the character and the weight of X, respectively. Our first result shows that $\mathcal{R} = \mathcal{R}$ (metacompact and subparacompact) = $\mathcal{R}(\mathfrak{m}$ -paracompact).

1.2. Theorem. Each of the following conditions on a space X is equivalent to 1.1(a):
(c) v(X × Y) = vX × vY for any metacompact subparacompact space Y with w(Y) ≤ X(vX) ⋅ ℵ₁.

(d) $v(X \times Y) = vX \times vY$ for any m-paracompact space Y with $w(Y) \leq \chi(vX) \cdot m^+$.

A 0-dimensional space is a space which has a base consisting of open-and-closed sets. As the reader will observe in the proof, we can add 0-dimensionality to the conditions on Y in (c) and (d).

A P(n)-space is a space in which every intersection of less than n open sets is open. Any space is a $P(\aleph_0)$ -space and a $P(\aleph_1)$ -space usually is called a *P*-space. Recall from [10] (or [7]) that a space is weakly-n-compact if each open cover has a subfamily of cardinality less than n with dense union. A space is called *locally* weakly-n-compact if each point has a weakly-n-compact neighborhood. As far as I know, this notion first appears in [14]. In [14] Hušek proved that if X is a locally weakly-n-compact, realcompact space with $|X| < m_1$ and Y is a P(n)-space, then $v(X \times Y) = vX \times vY$. Let n^{*} denote the smallest regular cardinal not less than n. The next theorem generalizes his theorem as well as Theorem 1.1, and gives a characterization of $\Re(P(n))$ and $\Re(metacompact P(n))$.

1.3. Theorem. For any infinite cardinal n, the following conditions on a space X are equivalent:

(a') Each point of vX has a neighborhood G in vX such that $G \cap X$ is weakly-n*-compact and $|X| < m_1$.

(b') $v(X \times Y) = vX \times vY$ for any P(n)-space Y.

(c') $v(X \times Y) = vX \times vY$ for any metacompact P(n)-space Y with $w(Y) \le \exp w(vX)$.

It will be remarked in the final section that if $n < m_1$ and if each \mathcal{P} - and P(n)-space is normal countably paracompact, then $\mathcal{R}(\mathcal{G})$ and $P(n) \neq \mathcal{R}(P(n))$. Therefore, in case $\aleph_1 \le n < m_1$, metacompactness of Y in (c') cannot be replaced by subparacompactness since a subparacompact $P(\aleph_1)$ -space is paracompact [2]. Further, since pormal metacompact spaces and normal subparacompact spaces are known [8] to

be countably paracompact, we cannot add normality to the conditions on Y in (c), (d) and (c').

Hereafter C(X) denotes the set of all real-valued continuous functions on a space X. For an ordinal α , $W(\alpha)$ denotes the space of all ordinals less than α , topologized with the usual interval topology, and ω_0 denotes the first infinite ordinal. For general terminology, see [1, 9].

2. Preliminaries

We list certain basic facts and definitions that will be used in the sequal. Let X and Y be spaces.

2.1. If Y is a C-embedded subspace of X, then $vY = cl_{vX} Y$ [9, Theorem 8.10].

2.2. If Y is a cozero-set of vX, then $v(Y \cap X) = Y$ [3, Theorem 5.1].

Recall from [13] that a space is *pseudo*- m_1 -*compact* if every locally finite family of non-empty open sets is of non-measurable cardinal. A map $f: X \to Y$ is called *z*-*closed* if the image of each zero-set of X is closed in Y.

2.3. If the projection $\pi_Y: X \times Y \rightarrow Y$ is z-closed, then $\upsilon(X \times Y) = \upsilon X \times \upsilon Y$ if and only if either $|X| < m_1$ or Y is pseudo- m_1 -compact [14, Theorem 2].

2.4. If X is weakly- n^* -compact and Y is a P(n)-space, then the projection $\pi_Y: X \times Y \rightarrow Y$ is z-closed [11; 10, Theorem 3.1].

The following result 2.5 is essentially proved by McArthur, and 2.5 follows from [13, Theorem 3] and [15, Theorem 2].

2.5. If $v(X \times Y) = vX \times vY$ for any 0-dimensional paracompact space Y with $w(Y) \le \chi(vX)$, then X is realcompact [17, Theorem 5.2].

2.6. If $v(X \times Y) = vX \times vY$ for any discrete space Y with $|Y| \leq \chi(vX)$, then $|X| < m_1$.

2.7. Let $m \ge n$. Let S be a set of cardinality m, and let \mathscr{S} be the family of all subsets σ of S with $|\sigma| < n$. Define $\Sigma(m, n)$ to be the space $\mathscr{G} \cup \{\infty\}$ topologized as follows: Each point of \mathscr{G} is isolated and $\{J(\sigma) | \sigma \in \mathscr{G}\}$, where $J(\sigma) = \{\infty\} \cup \{\sigma' \in \mathscr{G} | \sigma' \supset \sigma\}$, is a neighborhood base of ∞ . For a space Z, let $\Sigma(Z, m, n)$ denote the space obtained from the product space $\mathbb{Z} \times \Sigma(m, n)$ by letting each point of $Z \times \mathscr{G}$ be isolated. The following simple facts are listed without proofs.

(a) $w(\Sigma(Z, m, n)) \leq w(Z) \cdot \exp m$ and $w(\Sigma(Z, m, \aleph_0)) \leq w(Z) \cdot m$.

(b) If Z has one of the following properties, then $\Sigma(Z, m, n)$ has the same property: metacompactness, subparacompactness, t-paracompactness, normality, 0-dimensionality.

(c) If Z is a P(n)-space and n is regular, then $\Sigma(Z, m, n)$ is a P(n)-space.

3. Proofs of Theorems 1.2 and 1.3

In proving Theorems 1.2 and 1.3, the central issue is how to find a space Y such that $v(X \times Y) \neq vX \times vY$ when X is not locally weakly-n-compact. The following lemma reduces this issue to the problem of finding a space Z which has a certain locally finite family of subsets. We call a space weakly-(m, n)-compact if each open cover of cardinality m has a subfamily of cardinality less than n with dense union, and denote the character at a point x in X by $\chi(x, X)$.

3.1. Lemma. Let X be a space having a point x_0 , with $\chi(x_0, X) \leq t$, that has no weakly-(m, n)-compact neighborhood. Let Z be a space having a locally finite family \mathcal{F} of subsets in Z such that $|\mathcal{F}| = t$ and $\bigcap \{cl_{uZ}F | F \in \mathcal{F}\} \neq \emptyset$. Then $X \times Y$ is not C-embedded in $X \times vY$, where $Y = \Sigma(Z, m, n)$.

Proof. Recall that Y is the space obtained from $Z \times \Sigma(m, n)$ by letting each point of $Z \times \mathscr{G}$ be isolated, and $\{J(\sigma) | \sigma \in \mathscr{G}\}$ is a neighborhood base of ∞ in $\Sigma(m, n)$ $(=\mathscr{G} \cup \{\infty\})$. Let $\{G_{\lambda} | \lambda \in A\}$ be a neighborhood base of x_0 in X with $|A| = \mathfrak{l}$. For each $\lambda \in A$, since $\operatorname{cl}_X G_{\lambda}$ is not weakly-(m, n)-compact, there is an open cover \mathfrak{U}_{λ} of X with $|\mathfrak{U}_{\lambda}| = m$ such that no subfamily of cardinality less than n has dense union in G_{λ} . By the definition of \mathscr{G} , we may denote the collection of all subfamilies of \mathfrak{U}_{λ} whose cardinality is less than n by $\{\mathfrak{U}_{\lambda\sigma} | \sigma \in \mathscr{G}\}$, and we may assume that $\sigma \subset \sigma'$ if and only if $\mathfrak{U}_{\lambda\sigma} \subset \mathfrak{U}_{\lambda\sigma'}$. For each $\sigma \in \mathscr{G}$, let $H_{\lambda\sigma} = G_{\lambda} - \operatorname{cl}_X(\bigcup \{U | U \in \mathfrak{U}_{\lambda\sigma}\})$. Then $H_{\lambda\sigma} \neq \emptyset$, so pick $x_{\lambda\sigma} \in H_{\lambda\sigma}$. On the other hand, since $|\mathscr{F}| = \mathfrak{l}$, we may write $\mathscr{F} =$ $\{F_{\lambda} | \lambda \in A\}$. For each $\lambda \in \Lambda$ and each $\sigma \in \mathscr{G}$, set

$$J_{\lambda\sigma} = \{x_{\lambda\sigma}\} \times (\operatorname{cl}_{Z} F_{\lambda} \times \{\sigma\}) \subset X \times Y,$$

$$K_{\lambda\sigma} = H_{\lambda\sigma} \times (\operatorname{cl}_{Z} F_{\lambda} \times \{\sigma\}) \subset X \times Y.$$

Since $cl_{Z} F_{\lambda} \times \{\sigma\}$ is open and closed in Y, there is $f_{\lambda\sigma} \in C(X \times Y)$ such that $f_{\lambda\sigma}(J_{\lambda\sigma}) = \{0\}$ and $f_{\lambda\sigma}((X \times Y) - K_{\lambda\sigma}) = \{1\}$. Let us show that $\mathcal{H} = \{K_{\lambda\sigma} | \lambda \in A, \sigma \in \mathcal{S}\}$ is locally finite in $X \times Y$. Let $p = (x, y) \in X \times Y$; then $y = (z, \tau)$ for some $z \in Z$ and some $\tau \in \Sigma(m, n)$. Since \mathcal{F} is locally finite, z has a neighborhood G(z) in Z which meets only finitely many members, say $F_{\lambda_1}, \ldots, F_{\lambda_n}$, of \mathcal{F} . In case $\tau \in \mathcal{S}, X \times (G(z) \times \{\tau\})$ is a neighborhood of p which meets only $K_{\lambda_1\tau}, \ldots, K_{\lambda_n\tau}$, so suppose $\tau = \infty$. For each $i = 1, \ldots, n$, choose $U_i \in \mathcal{U}_{\lambda_i}$ with $x \in U_i$; then $\{U_i\} = \mathcal{U}_{\lambda_i\sigma_i}$ for some $\sigma_i \in \mathcal{S}$. If we set $G(x) = U_1 \cap \cdots \cap U_n$, then $G(x) \cap H_{\lambda_i\sigma_i} = \emptyset$ for each i. Let $\sigma_0 = \sigma_1 \cup \cdots \cup \sigma_n$, and set $G(p) = G(x) \times (G(z) \times J(\sigma_0))$. Then G(p) is a neighborhood of p which meets no member of \mathcal{H} . For, if $G(p) \cap K_{\lambda\sigma} \neq \emptyset$, then $G(x) \cap$

 $H_{\lambda\sigma} \neq \emptyset$, $\sigma \supset \sigma_0$ and $\lambda = \lambda_i$ for some *i*. Since $\mathcal{U}_{\lambda_i\sigma} \supset \mathcal{U}_{\lambda_i\sigma_p}$, $H_{\lambda\sigma} = H_{\lambda_i\sigma} \subset H_{\lambda_i\sigma_p}$ and hence $G(x) \cap H_{\lambda_i\sigma_i} \neq \emptyset$. This is a contradiction, that proves local finiteness of \mathcal{X} . Therefore if we define a function f on $X \times Y$ by

$$f(q) = \inf\{f_{\lambda\sigma}(q) | \lambda \in \Lambda, \sigma \in \mathcal{G}\}, \quad q \in X \times Y,$$

then f is continuous. To see that f admits no continuous extension over $X \times vY$, choose $z_0 \in \bigcap \{ c | vZ F_\lambda | \lambda \in \Lambda \}$. Then $z_0 \in vZ - Z$. Since $Z \times \{\infty\}$ is C-embedded in Y, it follows from 2.1 that $vZ = v(Z \times \{\infty\}) \subset vY$, and so we may consider z_0 as an element of vY - Y. Let $V \times W$ be a given neighborhood of (x_0, z_0) in $X \times vY$. Then there is $\lambda \in \Lambda$ with $G_\lambda \in V$. Since $W \cap (F_\lambda \times \{\infty\}) \neq \emptyset$, we can find $z \in F_\lambda$ and $\sigma \in \mathcal{S}$ such that $(z, \infty) \in W$ and $(z, \sigma) \subset W$. Then both $p_1 = (x_0, (z, \infty))$ and $p_2 = (x_{\lambda\sigma}, (z, \sigma))$ belong to $V \times W$ and $f(p_1) = 1$, while $f(p_2) = 0$. This shows that f does not extend continuously to (x_0, z_0) . Hence the proof is complete.

3.2. Fact. For every two infinite cardinals \mathfrak{t} and \mathfrak{n} , there exists a 0-dimensional metacompact $P(\mathfrak{n})$ -space $Z = Z(\mathfrak{t}, \mathfrak{n})$, with $w(Z) = \mathfrak{t} \cdot (\mathfrak{n}^*)^+$, that has a discrete family \mathcal{F} of closed sets in Z such that $|\mathcal{F}| = \mathfrak{t}$ and $\bigcap \{ cl_{\nu Z} F | F \in \mathcal{F} \} \neq \emptyset$. Moreover the space $Z = Z(\mathfrak{t}, \mathfrak{N}_0)$ is subparacompact.

Proof. Let α_1 (resp. α_2) be the initial ordinal of $(n^*)^+$ (resp. n^*). Define T_i , i = 1, 2, to be the subspace of $W(\alpha_i + 1)$ obtained by deleting all non-isolated points except α_i . Let us set $T = (T_1 \times T_2) - \{t_0\}$, where $t_0 = (\alpha_1, \alpha_2)$. Then T is a 0-dimensional metacompact P(n)-space with $w(T) = (n^*)^+$. Since T is C-embedded in $T_1 \times T_2$, it follows from 2.1 that

$$\upsilon T \supset T_1 \times T_2. \tag{1}$$

Let us set $E = \{\alpha_1\} \times (T_2 - \{\alpha_2\})$ and $F = (T_1 - \{\alpha_1\}) \times \{\alpha_2\}$; then E and F are disjoint closed subsets of T such that

$$t_0 \in \mathrm{cl}_{\nu T} E \cap \mathrm{cl}_{\nu T} F. \tag{2}$$

Let Λ be the discrete space of cardinality !, and let Z' be the quotient space obtained from $T \times \Lambda$ by collapsing the set $\{e\} \times \Lambda$ to a point for each $e \in E$. Let $\phi': T \times \Lambda \rightarrow Z'$ be the quotient map. We denote a base for the topology on T by \mathcal{B} . Let Z be the set Z', retopologized by letting $\bigcup \{\mathcal{B}(B) | B \in \mathcal{B}\}$ be a base, where

$$\mathcal{B}(B) = \begin{cases} \phi'(B \times A) \}, & \text{if } B \cap E \neq \emptyset, \\ \{\phi'(B \times \{\lambda\}) \mid \lambda \in A\}, & \text{if } B \cap E = \emptyset. \end{cases}$$

Then the space Z is easily seen to be a 0-dimensional metacompact P(n)-space with $w(Z) = \mathfrak{l} \cdot (n^*)^+$, and the natural map $\phi: T \times A \to Z$ is continuous. In case $n = \aleph_0, Z$ is subparacompact in addition, since it is the countable union of paracompact closed subspaces. Setting $F_{\lambda} = \phi(F \times \{\lambda\})$ for each $\lambda \in A$. we have a discrete family $\{F_{\lambda} \mid \lambda \in A\}$ of closed sets in Z. It remains to show that $\bigcap \{cl_{\nu Z} F_{\lambda} \mid \lambda \in A\} \neq \emptyset$. There is a continuous extension $\Phi: v(T \times A) \rightarrow vZ$ of ϕ . By (1), $v(T \times A) \supset vT \times A \supset (T_1 \times T_2) \times A$. For each $\lambda \in A$, let $z(\lambda) = \Phi((t_0, \lambda))$; then $z(\lambda) \in cl_{vZ}F_{\lambda}$. If $z(\lambda_1) \neq z(\lambda_2)$ for some $\lambda_1, \lambda_2 \in A$, then they have disjoint neighborhoods U_1 and U_2 in vZ, respectively. For i = 1, 2, since $\Phi^{-1}(U_i)$ is a neighborhood of (t_0, λ_i) , there is a neighborhood G_i of t_0 in vT such that $G_i \times \{\lambda_i\} \subset \Phi^{-1}(U_i)$. Then, since $\Phi(E \times \{\lambda_1\}) = \Phi(E \times \{\lambda_2\})$ and $U_1 \cap U_2 = \emptyset$, $G_1 \cap G_2 \cap E = \emptyset$, that contradicts (2). Thus $z(\lambda_1) = z(\lambda_2)$ for each $\lambda_1, \lambda_2 \in A$, and consequently $\bigcap \{cl_{uZ}F_{\lambda} \mid \lambda \in A\} \neq \emptyset$. Hence Z is proved to be the desired space Z(f, n).

3.3. Fact. For every two infinite cardinal t and m, there exists a 0-dimensional m-paracompact space $Z = Z_m(t)$, with $w(Z) = t \cdot m^+$, that has a discrete family \mathcal{F} of closed sets in Z such that $|\mathcal{F}| = \bar{t}$ and $\bigcap \{c|_{vZ} F | F \in \mathcal{F}\} \neq \emptyset$.

Proof. We utilize a space similar to the space Y constructed by Comfort in [5, p. 99]. Let α be the initial ordinal of m^+ , and let S_0 be the quotient space obtained from the product space

$$S_1 = W(\omega_0) \times W(\alpha + 1) \times W(\alpha + 1)$$

by identifying, for each $n < \omega_0$ and each $\gamma \le \alpha$, two points (n, α, γ) and $(n + 1, \gamma, \alpha)$. Let $f: S_1 \rightarrow S_0$ be the quotient map. If we set $S = S_0 - \{s_0\}$, where $s_0 = f((0, \alpha, \alpha))$, then $\nu S = S_0$ as he showed in [5]. Let $T = W(\omega_0 + 1) \times S$. Then, by [16, Theorem 17] T is a 0-dimensional m-paracompact space with $w(T) = m^+$, and it follows from [4, Theorem 5.3] that

$$vT = W(\omega_0 + 1) \times vS. \tag{3}$$

Setting $H_n = f(\{i \mid i \ge n\} \times W(\alpha + 1) \times W(\alpha + 1)) \cap S$ for each $n < \omega_0$, we have a decreasing sequence $\{H_n\}$ of closed sets in S with empty intersection such that $s_0 \in \bigcap \{c_{l_{\nu S}} H_n \mid n < \omega_0\}$. Let us set $E = \{\omega_0\} \times S$, $F = \bigcup \{\{n\} \times H_n \mid n < \omega_0\}$ and $t_0 = (\omega_0, s_0)$; then E and F are disjoint closed subsets of T such that

$$t_0 \in \operatorname{cl}_{\nu T} E \cap \operatorname{cl}_{\nu T} F. \tag{4}$$

Let Λ be the discrete space of cardinality \mathfrak{l} . Let Z be the space obtained from $T \times \Lambda$ by the same way just as in the proof of Fact 3.2, and let $\phi: T \times \Lambda \rightarrow Z$ be the natural map. Then the space Z is easily seen to be m-paracompact since it is no other than the product of S and a metric space with only one non-isolated point. (Use [16, Theorem 5] and the following fact: if Y is a countably paracompact space and X is a metric space, then any closed subset of $X \times Y$ disjoint from $\{x\} \times Y$, where $x \in X$, has a neighborhood whose closure misses $\{x\} \times Y$.) Moreover, Z is 0-dimensional and $w(Z) = \mathfrak{l} \cdot \mathfrak{m}^+$. Let $F_{\lambda} = \phi(F \times \{\lambda\})$ for each $\lambda \in \Lambda$. Then $\{F_{\lambda} \mid \lambda \in \Lambda\}$ is a discrete family of closed sets in Z, and a similar argument to the proof of Fact 3.2 shows that $\bigcap \{c|_{\nu Z} F_{\lambda} \mid \lambda \in \Lambda\} \neq \emptyset$. Hence Z is the desired space $Z_{\mathfrak{m}}(\mathfrak{l})$.

3.4. Remark. Let Ψ be the space described in [9, 51, p. 79]. The space Ψ is known to be a Moore space which is pseudocompact but not countably compact. Thus Ψ

has a decreasing sequence $\{H_n\}$ of closed subsets with empty intersection such that $\bigcap cl_{\Psi} H_n \neq \emptyset$. If one use Ψ instead of S in the proof of Fact 3.3, then the resulting space Z is a 0-dimensional Moore space with $w(Z) = I \cdot \exp \aleph_0$. This space will be used in [19] to characterize the class \Re (Moore).

Before proving Theorems 1.2 and 1.3, we establish the following theorem which is a generalization of [6, Theorem 2.1] and [18, Theorem 1].

3.5. Theorem. Let n be an infinite cardinal. Then the following conditions on a space X, with $|X| < m_1$, are equivalent:

(a) X is locally weakly-n*-compact.

(b) $X \times Y$ is C-embedded in $X \times vY$ for any P(n)-space Y.

(c) $X \times Y$ is C-embedded in $X \times vY$ for any metacompact P(n)-space Y with $w(Y) \leq \exp w(X)$.

In case $n = \aleph_0$, the following conditions (c') and (d) are also equivalent to (a):

(c') $X \times Y$ is C-embedded in $X \times vY$ for any 0-dimensional metacompact subparacompact space Y with $w(Y) \leq w(X) \cdot \aleph_1$.

(d) $X \times Y$ is C-embedded in $X \times vY$ for any 0-dimensional m-paracompact space Y with $w(Y) \le w(X) \cdot m^+$.

Proof. The implication (a) \rightarrow (b) is a simple consequence of 2.3 and 2.4, and (b) \rightarrow (c) is obvious. To prove (c) \rightarrow (a), suppose on the contrary that X is not locally weakly-n*-compact at $x_0 \in X$. Let Z be the space $Z(\mathfrak{k}, \mathfrak{n}^*)$ constructed in Fact 3.2, where $\mathfrak{k} = \chi(x_0, X)$, and let $Y = \Sigma(Z, w(X), \mathfrak{n}^*)$. Then by 2.7 Y is a metacompact $P(\mathfrak{n})$ -space, and $w(Y) \leq \mathfrak{k} \cdot (\mathfrak{n}^*)^+ \cdot \exp w(X) = \exp w(X)$. Since x_0 has no weakly- $(w(X), \mathfrak{n}^*)$ -compact neighborhood and Z has a locally finite family \mathscr{F} of subsets such that $|\mathscr{F}| = \mathfrak{k}$ and $\bigcap \{cl_{\nu Z} F | F \in \mathscr{F}\} \neq \emptyset$, it follows from Lemma 3.1 that $X \times Y$ is not C-embedded in $X \times \nu Y$. This contradiction establishes the implication. In case $\mathfrak{n} = \aleph_0$, the implications (a) \rightarrow (c') and (a) \rightarrow (d) follow from [6, Theorem 2.1], and the proof that (c') \rightarrow (a) ((d) \rightarrow (a)) is the same as above if one use $Z(\mathfrak{k}, \aleph_0)$ ($\mathbb{Z}_{\mathfrak{m}}(\mathfrak{k})$) instead of $Z(\mathfrak{k}, \mathfrak{n}^*)$. Hence the proof is complete.

3.6. Proof of Theorem 1.2. Since the implications $1.1(a) \rightarrow (c)$ and $1.1(a) \rightarrow (d)$ follow from [6, Corollary 2.2], we prove that (c) ((d)) implies 1.1(a). By 2.5 and 2.6, (c) ((d)) implies that X is realcompact and $|X| < m_1$. To complete the proof suppose that X is not locally compact at $x_0 \in X$. Then each neighborhood of x_0 is not pseudocompact, because a realcompact pseudocompact space is compact, and so x_0 has no weakly-(\aleph_0, \aleph_0)-compact neighborhood. Let $Z = Z(\mathfrak{k}, \aleph_0)$ ($Z = Z_m(\mathfrak{k})$), where $\mathfrak{k} = \chi(x_0, X)$, and let $Y = \Sigma(Z, \aleph_0, \aleph_0)$. Then Y satisfies the condition stated in (c) ((d)), and it follows from Lemma 3.1 that $v(X \times Y) \neq vX \times vY$. Hence the proof is complete.

3.7. Proof of Theorem 1.3. (a') \rightarrow (b'). Let Y be a P(n)-space. Since νX is locally weakly- n^* -compact, $\nu(\nu X \times Y) = \nu X \times \nu Y$ by Theorem 3.5, and so it remains to

prove that $X \times Y$ is C-embedded in $\upsilon X \times Y$. Let $f \in C(X \times Y)$, and let $x \in \upsilon X - X$. It suffices to find a neighborhood G of x such that f admits a continuous extension over $(X \times Y) \cup (G \times Y)$. Choose a cozero-set neighborhood G of x in υX such that $X \cap cl_{\upsilon X}G$ is weakly-n^{*}-compact. If we set $X_1 = X \cap cl_{\upsilon X}G$, then it follows from 2.3 and 2.4 that $X_1 \times Y$ is C-embedded in $\upsilon X_1 \times Y$. There is a cozero-set G_1 of υX_1 such that $G_1 \cap X_1 = G \cap X$. Then f can be continuously extended over $(X \times Y) \cup (G_1 \times Y)$. Since $G_1 = \upsilon (G_1 \cap X_1) = \upsilon (G \cap X) = G$ by 2.2, f a limits a continuous extension over $(X \times Y) \cup (G \times Y)$, as required.

 $(b') \rightarrow (c')$. Obvious.

 $(c') \rightarrow (a')$. By 2.6, $|X| < m_1$, and it follows from Theorem 3.5 that X is locally weakly-n*-compact. To complete the proof, suppose that (a') is false at $x_0 \in vX - X$. Let $\{G_{\lambda} | \lambda \in A\}$ be a neighborhood base of x_0 in vX with $|A| = \chi(vX)$. For each $\lambda \in A$, $X \cap cl_{vX} G_{\lambda}$ is not weakly-n*-compact, and thus there is an open cover \mathcal{U}_{λ} of X such that no subfamily of cardinality less than n* has dense union in $X \cap G_{\lambda}$. With the notation in 2.7, let $\Sigma(m, n^*) = \mathcal{G} \cup \{\infty\}$, where m = w(X). Since it can be assumed without loss of generality that $|\mathcal{U}_{\lambda}| = m$, we denote the collection of all subfamilies of \mathcal{U}_{λ} whose cardinality is less than n* by $\{\mathcal{U}_{\lambda\sigma} | \sigma \in \mathcal{S}\}$, and we may then assume that $\sigma \subset \sigma'$ if and only if $\mathcal{U}_{\lambda\sigma} \subset \mathcal{U}_{\lambda\sigma'}$. For each $\sigma \in \mathcal{S}$, let $H_{\lambda\sigma} =$ $(X \cap G_{\lambda}) - cl_X(\bigcup \{U \mid U \in \mathcal{U}_{\lambda\sigma}\})$, and pick $x_{\lambda\sigma} \in H_{\lambda\sigma}$. Topologize A with the discrete topology. Let Y be the quotient space obtained from $\Sigma(n_1, n^*) \times A$ by collapsing the set $\{\infty\} \times A$ to a point $y_0 \in Y$, and let $\phi : \Sigma(m, n^*) \times A \rightarrow Y$ be the quotient map. Then Y is a 0-dimensional paracompact P(n)-space with $w(Y) \leq \exp w(vX)$. For each $\lambda \in A$ and each $\sigma \in \mathcal{S}$, let $y_{\lambda\sigma} = \phi((\sigma, \lambda))$, and set

$$p_{\lambda\sigma} = (x_{\lambda\sigma}, y_{\lambda\sigma}) \in X \times Y,$$
$$K_{\lambda\sigma} = H_{\lambda\sigma} \times \{y_{\lambda\sigma}\} \subset X \times Y.$$

Since $\{y_{\lambda\sigma}\}$ is open in Y, there is $f_{\lambda\sigma} \in C(X \times Y)$ such that $f_{\lambda\sigma}(p_{\lambda\sigma}) = 0$ and $f_{\lambda\sigma}((X \times Y) - K_{\lambda\sigma}) = \{1\}$. We show that $\mathcal{H} = \{K_{\lambda\sigma} | \lambda \in A, \sigma \in \mathcal{S}\}$ is locally finite in $X \times Y$. Let $p = (x, y) \in X \times Y$. In case $y \neq y_0$, $X \times \{y\}$ is a neighborhood of p which meets only one element of \mathcal{H} . In case $y = y_0$, choose a weakly-n⁴-compact neighborhood G(x) of x; then for each $\lambda \in A$ there is $\sigma_A \in \mathcal{S}$ such that $G(x) \subset cl_X(\bigcup \{U \mid U \in \mathcal{U}_{\lambda\sigma_A}\})$. Let $G(y) = \bigcup \{\phi(J(\sigma_A) \times \{\lambda\}) \mid \lambda \in A\}$, where $J(\sigma_A) = \{\infty\} \cup \{\sigma \in \mathcal{G} \mid \sigma \supset \sigma_A\}$. Then G(y) is a neighborhood of y, and $G(x) \times G(y)$ meets no member of \mathcal{H} . Thus \mathcal{H} is proved to be locally finite in $X \times Y$. Therefore if we define a function f on $X \times Y$ by

$$f(q) = \inf\{f_{\lambda\sigma}(q) \mid \lambda \in \Lambda, \sigma \in \mathcal{G}\}, \quad q \in X \times Y,$$

then f is continuous. Let $V \times W$ be a neighborhood of (\neg, y_0) in $\upsilon X \times Y$. Choose $\lambda \in \Lambda$ with $G_{\lambda} \subset V$ and $\sigma \in \mathscr{S}$ with $y_{\lambda\sigma} \in W$. Then both $p_1 = (x_{\lambda\sigma}, y_0)$ and $p_2 = (x_{\lambda\sigma}, y_{\lambda\sigma})$ belong to $V \times W$ and $f(p_1) = 1$, while $f(p_2) = 0$. This shows that f does not extend continuously to (x_0, y_0) , and thus $\upsilon(X \times Y) \neq \upsilon X \times \upsilon Y$. Hence the proof is complete.

3.8. Remarks. (1) The condition 1.3(a') implies that both X and vX are locally weakly-n*-compact, but the converse is not true in general. In fact, let $X = W(\alpha)$, where α is the initial ordinal of $n^* \cdot \aleph_1$; then both X and vX (= $W(\alpha + 1)$) are locally compact, but X does not satisfy 1.3(a').

(2) The latter half of the proof of Theorem 1.3 tells us that if X is locally weakly-n*-compact and if $X \times Y$ is C-embedded in $vX \times Y$ for any paracompact P(n)-space Y, then each point of vX - X has a neighborhood G in vX such that $G \cap X$ is weakly-n*-compact. It might be interesting to know whether this statement can be proved without assuming local weak-n*-compactness of X or not (cf. Problem 4.3).

4. Problems and remarks

4.1. It is reasonable to ask what property \mathcal{P} of spaces satisfies the equality $\mathcal{R}(\mathcal{P} \text{ and } P(n)) = \mathcal{R}(P(n))$. In view of 2.5, 2.6 and Lemma 3.1, if \mathcal{P} satisfies the following conditions (a)-(c), then $\mathcal{R}(\mathcal{P} \text{ and } P(n)) = \mathcal{R}(P(n))$.

(a) Every 0-dimensional paracompact space has \mathcal{P} .

(b) 2.7(b) holds for \mathcal{P} .

(c) For every infinite cardinal \mathfrak{k} , there exists a \mathscr{P} - and $P(\mathfrak{n})$ -space $Z = Z(\mathfrak{k}, \mathfrak{n})$ having a locally finite family \mathscr{F} of subsets such that $|\mathscr{F}| = \mathfrak{k}$ and $\bigcap \{ cl_{\nu Z} F | F \in \mathscr{F} \} \neq \emptyset$.

Conversely, if $n < m_1$ and if $\mathscr{R}(\mathscr{P} \text{ and } P(n)) = \mathscr{R}(P(n))$, then

(d) there exists a \mathscr{P} - and P(n)-space Z having a countable locally finite family \mathscr{F} of open sets such that $\bigcap \{cl_{\nu Z} F | F \in \mathscr{F}\} \neq \emptyset$. For, if \mathscr{P} does not satisfy (d), then it follor from [19, Remarks 3.5(1)] that any metric space of non-measurable cardinal belongs to $\mathscr{R}(\mathscr{P})$ and P(n), while it is easy to find a metric space of non-measurable cardinal which does not belong to $\mathscr{R}(P(n))$ (use 1.3(a')).

Problem. For every two infinite cardinals t and n, do there exist the following spaces?

- (1) a normal P(n)-space Z(t, n),
- (2) a m-paracompact P(n)-space $Z_m(\mathfrak{k}, n)$ for $n > \aleph_0$,
- (3) a metacompact subparacompact m-paracompact space $Z_m(t, \aleph_0)$.

Since normal countable paracompactness does not satisfy (d), \mathcal{R} (normal countably paracompact $P(n) \neq \mathcal{P}(n)$) in case $n < m_1$. Therefore, if there exists (1) for $n < m_1$, then it must be a Dowker space. In case $\mathbf{f} = \aleph_0$ and $n = \aleph_1$, there exists such a space. In fact, the Dowker space X constructed by Rudin in [20] is a $P(\aleph_1)$ -space and has a dec easing sequence $\{D_n\}$ of closed subsets with empty intersection such that $\bigcap cl_\infty$, $D_n \neq \emptyset$ as she essentially proved. The technique used in Facts 3.2 and 3.3 cannot the applied to make (1), because every pairwise disjoint closed subsets of a normal space T have disjoint closures in νT .

4.2. For convenience, we call a space X an $\alpha(n)$ -space if each point of n Y has a neighborhood G in νX such that $G \cap X$ is weakly-n-compact.

Problem. Characterize $\Re(\alpha(n))$ for $n > \aleph_0$.

As is easily seen, $\Re(\alpha(n)) = \Re(\text{weakly-n-compact})$. This problem has been solved for $n = \aleph_0$. In fact, an $\alpha(\aleph_0)$ -space is precisely a locally compact, realcompact space, and [13, Theorem 4] shows that $\Re(\text{locally compact}, \text{ realcompact})$ is the class of all pseudo-m₁-compact spaces.

4.3. Problem Characterize \mathcal{R} (paracompact P(n)) for $n > \aleph_0$.

Recently, the author has proved that if X is a realcompact space with $|X| < m_1$, then $v(X \times Y) = vX \times vY$ for any paracompact space Y. This fact combined with 2.5 and 2.6 implies that \mathcal{R} (paracompact) is precisely the class of all realcompact spaces X with $|X| < m_1$; however, the characterization of \mathcal{R} (paracompact P(n)) is not yet known in case $n > \aleph_0$.

References

- R.A. Aló and H.L. Shapiro, Nor nal Topological Spaces (Cambridge University Press, Cambridge, 1974).
- [2] K. Alster and R. Engelking, Subparacompactness and product spaces, Bull. Acad. Polon. Sci. 20 (1972) 763-767.
- [3] R.L. Blair, On v-embedded sets in topological spaces, Lecture Notes in Math. 378 (Springer, Berlin, 1974) 46-79.
- [4] W.W. Comfort and S. Negrepontis, Extending continuous functions on $X \times Y$ to subsets of $\beta X \times \beta Y$, Fund. Math. 59 (1966) 1-12.
- [5] W.W. Comfort, Locally compact realcompactifications, General Topology and its Relations to Modern Analysis and Algebra II (1966) 95-100.
- [6] W.W. Comfort, On the Hewitt realcompactification of a product space, Trans. Amer. Math. Soc. 131 (1968) 107-118.
- [7] Z. Frólik, Generalizations of compact and Lindelöf spaces, Czechoslovak Math. J. 9 (1959) 172-217 (Russian).
- [8] R.F. Gitting, Some results on weak covering conditions, Canad. J. Math. 26 (1974) 1152-1156.
- [9] L. Gillman and M. Jerison, Rings of Continuous Functions, (Van Nostrand, Princeton, N.J. 1960).
- [10] A.W. Hagev Projections of zero-sets (and the fine uniformity on a product), Trans. Amer. Math. Soc. 140 (1969) 87-94.
- [11] A.W. Hager and S.G. Mrówka, Compactness and the projection mapping from a product space, Notices Amer. Math. Soc. 12 (1965) 368.
- [1?] M. Hušek, The Hewitt realcompactification of a product, Comment. Math. Univ. Carolin. 11 (1970) 393-395.
- [13] M. Hušek, Pseudo-m-compactness and $v(P \times Q)$, Indag. Math. 33 (1971) 320-326.
- [14] M. Hušek, Hewitt realcompactification of products, Topics in Topology, Keszhely (1972) 427-435.
- [15] I. Juhász, On closed discrete subspaces of product spaces, Bull. Acad. Polon. Sci. 17 (1969) 219-223.
- [16] J. Mack, Directed covers and paracompact spaces, Canad. J. Math. 19 (1967) 649-654.
- [17] W.G. McArthur, Hewitt realcompactifications of products, Canad. J. Math. 22 (1970) 646-656.

محمد منهم جديدة من المراجع الم والمحمد منهم المراجع الم

- [18] H. Ohta, Local compactness and Hewitt realcompactifications of products, Proc. Amer. Math. Soc. 69 (1978) 339-343.
- [19] H. Ohta, The Hewitt realcompactification of products, Trans. Amer. Math. Soc. 263 (1981) 363-375.
- [20] M.E. Rudin, A normal space X for which X × I is not normal, Fund. Math. 73 (1971) 179-186.