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rake and refine: some results from the author’s paper [la]. For a completely regular 
S@MB X, QX denotes the Hewitt realcompactification of X. It is proved that if 

0(Xx Y) = 0Xx UY for any metacompact subparacompact (or m-paracompacr; space Y, tht3I 
X is locally compact. A P(n)-space is a space in which every intersection of less than n open 
se@ is open. A characterization of those spaces X such that u(X x Y) - vX x VI’ for any 
(metacompact) B(n)-space Y is also obtained. 

1. 

AMS Subj. Class.: Primary 54D60,54BlO; Secondary 54D45,54GlC! I 

Hewitt reakompactifkation realcompact product space 
locally compact metacompad subparacompact 
m-paracompact N+spa= C-embedding 
weskly-n-compact non-measurable cardinal 

All spacces considered are assumed to be completely regular Hausdorff and all 
maps are continuous. The Hewitt realcoapactificstion OX of a qace X is the 
unique reakompactification of X to which esch real-valued continuous function on 
X admits a continuous extension. For details of Hewitt realcompactifications, the 
reader is referred to [9]. The purpose of this paper is to prove a refinement and a 

neralization af the following theorem due to Comfort [6], Hugek [ 12, 631, 

11.2. T&~rrtm. 77ae following csnditions on a space X are equivalenf : 

64 is l~~lly compact, relalco gact cand 1x1~ tnl. - 

(b) u(X x Y) = UX x vYfor any spae Y. 

note the class of all spaces 
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In this paTIer, Ifor a Property 9 of spaces we dentate the class of all spati 31: W& 

that u(X :‘: Y) = vX x vY for any Sb-space Y by @GYP). Let It, no, and I”C denote 
infinite C&A ?Snuls; f* is the smallest car&d greater ban a. S&xii that a &pace is 
~~r~c~~~~~~ &es?. s~b~?a~~~p~~t~ if each open cover has a point 6 
(resrl. a-toeally finite closed) refinement, and that a space is WjxW&xMtpdc~4f each 
open cover of cardindity at most pi ba”a &&& &i& ~~~~~~~~,~nt #& [1])* 

For a space X, x(X) and w(X) denote the character and the weight of X, mspec- 
tively. Our first result shows that 9 = B(metacorn.pact and Mq$k~aeompact~ = 
511 fm - ~ara~o~pact}. 

.A, 1’9,&,memimal space is a space which has a base ~~~~~~~~ of open-arrdhclosed 
sets. As the reader will observe in the proof, we can add O-dimensionallty to the 
cond ltions on Y in (c) and (d). 

A P(tt)-space is a space in which every intersection ol[: less than n apcn sets is 
open. Any space is a P(H&space and a P(N)-space usuaify is CaNed a p-space. 
Rec;Jt from [IO] (or [?‘]) that a space is ~~~~~~~ ~-co~~~t if each open cx?ver has 
a subfamily of cardinality less than n with dense union, A space is called IucaNy 
weakly- n-compact if each point has a weak;ly-n-compact neighborhood. As far as 
I know, this notion first appears in [14]. In [X4] Hwgek proved that if X is 8 locally 
weakly-n-compact, realcompact space with Ixl<tnl and Y is a P(n)-space, then 
v(X x Y) = VX >r: BY. Let n* denote the smallest regular cardinal not less than n. 
The next theorem generalizes his theorem as we11 as Theorem 1.1, and gives a 
characterization of 9 (P( rt)) and @ (metacampact Pf n)). 

It will be remarked in the Ginai section that ii n 
c~~~ta~~y ~~ra~~~mp~~t, then SI?(P 



Hereafter C(X) denotes the set of all real-valued continuous functions on a 
space X, For an ordinal ou, W(a). denotes the space of all ardinais Less than QI, 
topok.@zed with the usual interval topology, and WQ denotes the first infinite ordinal, 
For general terminology, scre [l, 9). 

We list certarin basic facts and definitions that will be used in the sequal. Let X 
and Y be spaces. 

2.1. If Y is Q C-embedded subspace of X, then vY = c& Y 19, Theorem 8.10]. 

2.2. If Y is a cozero-set of vX, then v( Y n X) = Y 13, Rearem 5 D I]. 

Recall from 1133 that a space is pseudo-ml-compact if every locally finite familv .I 

of non-empty open sets is of non-measurable cardinal. A map f : X -) Y is called 
z-closed if the image of each zero-set of X is closed in Y. 

2.3. If the projection WY : X x Y -P Y is 2 -closed, t.+en v(X x Y) = vX x v Y if and 
only if either 1x1~ ml or Y is pseudo-ml-comixzct [14, Theorem 21. 

2.4. If X is weakly-#-compact and Y is 4 B(n)-spue, then the projection WY : X x 
Y -, Y is z-closed [‘II; 10, Theorem 3.13. 

The following result 2.5 is essentially proved bv P&Arthur, and 2.3 ffollows from 
* [13, Theorem 31 and [lS, Theorem 21. 

2.5. If v(X x Y) = OX x v Y for any O-dimensional paracompact space Y with 
wax, then Xis realcompact [17, Theorem 5.2). 

2.6 Ifu(Xx Y)=vXxvYforanydiscretespace Ywith IYIsx(vX), tlzen (xI<tnl. 

,7. Let man. Let S be a set of cardinality m, and let 9’ be tl-e family of all 
subsets GT of S with Ial c n. Define Z(m, n> to be the space 9’~ (00) topologized 
as follows: Each point of 

denote the space obtains 



In proving Theorems 1.2 an(l 1.3, the central issue is how to find a ppattt +Y such 
that v(X x Y) f VX x vY when X is not loally weakly-n-compact. The follow@ 
lemma reduces this issue to the problem of finding a SW 3 ,whi& has a certairr 
locally finite family of subsea. We call a space weakly-(nt, n)-coq~& if each open 
cover of cardinality m has a subfamily of cardina’lity less than n with dense union, 
and denote the character at a point x in X by x(x, X), 

3.1. Lemma. Let X be a spm* having 6s point x0, with ,+o, Xj G & thti has no 
weakly- (m, n j-compact neighbnrhood. Let 2: be a space havZng a locally~fkite family 
9 of subsets in Z such that ISi = f and (1 {cl&[ F E 91 f 0. Then X x Y is not 
C-embedded in X x VU, where Y =x(2, m, n). 

Proof. Recall that Y is the space obtained from 2 xlF(m, n) by letting each point 
of 2 x 9 be isolated, and {J(o) Ia E 9’1 is a neighborhood base of 00 in Z(m, n) 
( = YU {a}). Let {GA 1 A E A} be a neighborhood base of x0 in X with IAl = t. For 
each A E A, since clx GA is not weakly-(m, n)-cowpact, there is an open cover qh 
ofXwithj%*]= m such that no subfamily of cardinality less than n has dense union 
in G,. By the definition of 9, wc may denote the collection of all subfamtiies of 
4?iA whose cardinality is less than n by {4!& 1 u E 9}, and we may assucne that Q c O’ 
if and only if 4!&, c % Aoe. For each 6 E 9, let H Ae = GA - cl* (i, {U 1 V E %,,}). Then 
HAu f 8, so pick x AU E HA, On the other hand, since I$/= f, we may write s = 
{FA /A E A}. For each h E A and each (T E 9, set 

J .?,, = (x A,} x (cl2 F;, x {o)) c X x Y, 

Lu =&a x(clzF~ x(+=Xx Y. 

Since cl;;! FA x (u) is open and closed in Y, there is fhrr E C(X x T) such that 
fArr(JAfl 1 = {O) and fAJ(X x Y) -K&! =* {I). Let us show that 50= 
{K Atr 1 A E A, CT E 9’) is locally finite in X >( Y. Let p = (x, y) E X x Y; then y = (z, r) 
for some t E 2 and some T E s(m, n). Since 9 is locally finite, z has a neighborhood 
G(r) in Z which meets only finitely marry mem’bers, say /CA,, . . . , 



JYs) = inf{fh&) t A 6 4 (d E 91, q E X x Y, 

then f is continuous.To see that f admits no continuous extension over X x o Y, 

chcxw z~~&~(cl&” I’A E A}. Then ZOE QZ -7. Since 2 x {a} is C-embedded ii> 
Y, it foll”ows from 2.f that v.Z = v(Z x (~0)) c vY, and so we may consider zo as an 
element of u Y - Y. Let V x W be a given neighborhood of (x0, ro) in X x v Y. Then 
there is A E A with GA E K Since WA (I$ x (00)) # 0, we can find z E FA and CT c=” 9’ 

such that (z, a) E W and (I, a) c VL Then both PI= (x0, (2, a)) and p2 = (A’~, (9,~)) 
belong to V x W and f(pl) = 1, while f( p2) = 0. This shows <hat f does not extend 
continuously to (x0, ~0). Hence the proof is complete. 

3.2. Fad. For every two in@nite cardinals f and n, there exists a (d-dimensional 
metacompact P(n)-space Z = Z(t, n), with w (27) = t 8 (n”)‘, that has a discrete fuzzily 
9 of closed sets in 2 such that ISI = t und n {cl,~ F 1 F E 9} + 0. Moreover the space 
Z = Z(f, HO) is subparacompact. 

Proof. Let al (resp. a~) be the initial ordinal of (n*)* (resp. n*). Define Ti, i = 1,2, 
to be tk subspace of W(ar + 1) obtained by deleting all non-isolated points except 
ai. Let :ts set T = (Tl x T2) - (to}, where to = (al, a*). Then T is a O-dimensional 
metacompact P(a)-space with w(T) = (n!)‘. Since T is C-embedded in Tl x 7’2, it 
follows ir-rim 2.1 that 

vT~TlxT2. (1) 

Let us set E = {al}x (Tz--{az}) and F = (‘I’1 -{al}) ~{a~}; then E and F are disjoint 
closed subsets of T such that 

toe &&?ncl,~F. (2) 

Let A be the discrete space of cardinzzlity !, and let Z’ be the quotient space 
obtained from T x A by collapsing the set {e} x A to a point for each e E E. Let 
4’: 7’ x .A -+Z’ be the quotient map. WC denote a base for the topology on T by 
@. Let Z be the set Z’, retopologized by{ letting U {a(B) 1B E 9) be a base, where 

if RnE#P), 

IA E A}, if BnE=~. 

Then the space Z is easily seen to bt: a O-dimensional metacompact P(n)-space 
with w(Z) = f - (n*)+, a $ map qkTx+4+Z is cent 

family {FA 1 A E A} of closed sets in Z. It remains to show that n (~1,~ F$_ t A E A} # 8. 
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There is a continuous extension @ : o( T x.A) + UZ of 4; l& (I), ~$“r x 4) 3 0 x A 3 
(Tl x T2) x A. For each A G A, let x(A) = #(to, A)); thea rr,k)~ &&$ If &Al) f 
z (A*) for some A 1, A2 E A, then they have disjoint neighborhoods UI and tr;Z in uZ, 

respectively. For i = f,2, since @-‘( UJ is a neighbwhood of (fo, Ai), there is a 
neighborhood G, of to in VT such that Gi X {Ai} C @-‘(V,). Then, s&e Qi(B X {Al}) = 
cP(Ex(A2)) and &A Uz=8, &nC&~G*ld, that COR~~~M&%S (2)+ Thud k(Ai)= 
z(Az)folreachA1,A~EA,andconsequen~~n{cl~F~~A~~}~0.~~nceZisproved 
to be the desired space Z(f, n). 

Proof. We utilize a space similar to the spa .;e Y constructed by Coinfort in [5, p, 991. 
Let ar be the initial ordinal of m*, and let So be the quotient space obtained from 
the product space 

SI = Wi,,) x W(a; f I) x W(CY + 1) 

by identifying, for each n c 00 and each y G a, two points (A, ex, y) and (n G 1, y, a). 
Let f:S1+ SO be the quotient map. If we set S = So-{so}, where so =f((Q a, a)), 
then OS = So as he showed in [S]. Let T = W(wo f 1) x S. Then, by [16, Theorem 171 
T is a O-dimensional m-paracompact space with w( ?‘) = m ‘, and it follows from 
[4, Theorem 5.33 that 

VT = W(oo+ l)uS. (3) 

Setting H,, = f({i 1 ian)x W(cu+l)xW(a+l))nS for each n<oo, we have a 
decreasing sequence {I&} of closed se:? in S with empty intersection such that 
so~n{cl,~H,In<w~}. Let us set E=(oo}xS, F=U{{n}xH,ln<oo} and to=- 

ha, SO); then E and F are disjoint closed subsets of T such that 

Let A be the discrete spbace of cardinality f. Let i? be the space obtaiilred from 
T x ,I by the same way just as in the proof af Fact 3.2, and let # : T x A +Z he 
the natural map. Then tke space 2 is easily seen to be ut-paracompact since it is 
no other than the product of S and a metric space with only one non-isolated point. 
(Use [ 16, Theorem 51 and1 the following fact: if Y is ;a countiE\hiy paracompact space 
and X is a metric space,, then any closed subset of X x I+’ disjoint from {x} X X 
where x E X, has a neighborhood whose closure miss% (x} x Y.) Moreover, Z is 
O-dimensional and w(Z) = le l nit. Let FA = &F x {A}) for each A G A, Then 

) is a discrete family of closed sets in 2, and a similar argument to the proof of 
act 3.2 shows that n (~1,~ FA 1 A E ,II) 7c Bi. Hence 2 is tire desired space 
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sequence {I&,} of &sad-subsets with empty intersection such that 
($I&$&? i+0, ,wI me use IP instead of 5’ it: the proof of Fast 3.3, thzn the resulting 
space Z is- a &dimetiional-&&,-ore space with w(Z) = t l exp No. This space wil! be 
used in [19]:tQ chuatierize t1 c class @Moore). 

I- \ .~ 
Before proving Theorems 1.2 and 11.3, we establish the following theorem which 

is ? geneq&atiaE of [6J%eorem 2.11 and 118, Theorem I]. 

3.5. -rem. Let n be an infinite cardinal. 7’Ren the following conditions on a 
space& with IXl< ntl, are equivalent: 

(a) X isliocally wgakly- n*-compact. 
(b)’ XFx Y is C-embed‘<ed in XX vYjbr any P(n)-space Y. 
(c) X x Y is %-embedded in X x G 1’ for any metacompact P(n)-space Y with 

w(Y)bexp w(X). 
In case n = MO, the following conditions (c’) dnd (d) are also equivalent to (a): 
(c’) X x Y is C-embedded in X x v Yfiw an y O-dimensional metacompact subpara - 

compactspace Y with w(Y)s w(X) l MI. 

(d) X x Y is C-embedded in X Y v Y for any O-dimensional m -paracompact space 
Y with_ w(Y) s w(X) 9 d. 

proof0 The implication (a) + (b) is a simple consequence of 2.3 and 2.4, and (b) + (c) 
is obvious. To prove (c)+(a), suppose on the contrary that X is not locally 
weakly-n*-compact at XOE X. Let 2 be the space Z(t, n*j constructed in Fact 3.2, 
where t =&OS X), and let Y = C(Z, w(X), n”). Then by 2.7 Y is a metacornpact 
P(n)-space, and w(Y) s t . (n*)’ l exp w(X) = exp w(Xj. Since x0 has no weakly- 
(w(X), n*)-compact neighborhood and 2 has a locally finite family 9 of subsets 
such that \*I = t and n {&$‘IFE 4r) + 0, it follows from Lemma 3.1 that X x Y 
is not C-embedded in X x vY. This contradiction estabiishes the implication. In 
case n = &, the impiications (a) + (c’) and (a) + (d) follow from 16, Theorem 2.11, 
and the proof that (c’)+ (a) ((d)+ (a)) is the same as above if one use Z(t, NO) 
(Z,,,(E)) instead of Z(t, n*). Hence the proof is complete. 

3.6. Proof of Theorem 1.2. Since the imI.Gations 1,1(a) + (c) and 1,1(a) -+ (d) 
foilow from [6, Corollary 2.21, we prove that (c) ((d)) implies 1.1(a). I3y 2.5 and 
2.6, (c) ((d)) implies that X is realcompact and 1x1~ ml. To complete the proof 
suppose that X is not !or=ally compact at x0 E X. Then each neighborhood of x0 is 
not pseudocompact, because a re;icomr(act pseudocompact space is compact, and 
so .:o has no weakly-(NO, M&compact neighborhood. Let Z = Z(1, Koj (2 = Z,(f)), 
where =x(x”, Xj, and let Y = E(Z, Ho, No). Then Y satisfies the condition stated 
in (c) f(d)), and it follows from Lemma 3.1 that v(X x Y) # x vY’. Hence the 
proof is complete. 

>-s ince v 

v(dc x j = VX x vY by Theorem 3.5, and so it remains tc 
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(b’) + (c’). Obvious. 
(c’) + (a’). By 2.6, IX[< ml, and it follows from Theorem 3.5 that X is localiy 

weakly-n*-compact, To complete the proof, suppose that (a’) is f&e: at x0 i UX -X. 
Let (G, 1 A E A} be a neighborhood base of XQ in & wLth IJ+] =&RX). F&r each 
A E A, X n cl ux GA is not weakly-n”-compact, and thus there is ali open cover qA 
of X such that no subfamily of cardinality less than n* has dense union in X R GA. 
With the notation in 2.7, let x(m, nr) = 9u{U}, where wt = IV(X). Since it an be 
assumed without loss of generality that I%J = IR, we den:& the +o&etion af aLI 
subfamilies of %A whose cardinality is less than n* by 1% 4q 1 CT E sp), atid we may 
then assume that o c of if and only if 4Qna e %ho~. For each a~ 9, let M1, = 
(XnG*)-clx(U(UIUE~~,)),andpi~kx Aa E I&, Topo\~gize A with the discrete 
topology. Let Y be the quotient space obtained from C(nt, n*) XA by collrapsing 
the set (00) x A to a point y. E Y, and let # : C(m, n*) x A -) Y be the quotient map, 
Then Y is a O-dimensional paracompact P(n)-space with tu( Y) ~exp w(vX). ‘For 
each A E A and each 0 E 9, let yAo - &(a, A)), and set 

Since {yAo) is open in Y, there is fAQ E C(X x Y) such that fAe(p&=O and 
f&Xx Y)-K,,)=(1). We show that %?=(Kbcrl& c-4, CFEZ~~ is locally finite in 
X x Y. Let p = (x, y) E X x Y. In case y # yo, X x (y} is a ti>+:ighborhobr! of p which 
meets only one element of 3E In case y = yo, choose a weakly-n%ompact neighbor- 
hood i:‘i(x) of x ; then for each A E A there is o,, (59 such that G(x)e 
cM._J{~i~c&,A}). Let G(Y)“~J{~(J(~~)~{A})~AE~), wiyere I= 
@J)u{flE,SPJ c = CQ). Then G(y) is a neighborhood of y, and G!x) >r’ G(y) meets 
no mecrber of X. Thus %@ is proveId to be locally finite in X x Y. Therefore if we 
define a function f on X x Y by 

then f is continuous. Let V x W lx a neighborhood of (--, yO) in uX x Y. Choose 
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3e& ~ +(I) The condittion 1.3(a’) implies that both X and OX are locally 
we&@M%ompact, but. the conveis-e is not true in general. In fact, let X = W(a), 
where rll is the initial urdind of n* l Nr; then both X and vX ( = W(a + I)) are 
locally compact, but X does not satisfy 1,3(a’), _ 

(21) The latter half of “the proof of ‘Theorem 1.3 tells us that if X is locally 
weakly-n*-c~~~ctSand if X x Y is C-embedded in vX x Y for any paracompact 
P($-&&’ Y, then’etich’point of t& -2 has a neighborhood G in vX such that 
6 A & is’~eak”iy-~!*-compact, It might be interesting to know whether this statement 
&I’ ti pro&d without assuming local weak-n*-compactness of X or not (cf. 
Problem 4.3). 

4. P’mbharas mad remarks 

44. Et b mwanable to ahsk what property 9 of spaces satisfies the equality 9?(B 
and ~~~~)-=~~(P(a)). in view of, 2.5,2.6 anti Lemma 3,1, if 9 satisfies the following 
condiriotls. (a)-(c), then 9? (9 and P(n)) = B@(n)). 

(a) EveiT O-dimensional paracompact space has 9. 
(b) 2.7(b) holds for 9. 
(c) For every infinite cardinal f, there exists a % and P(n)-space 

2 = Z(& a) having a locally finite family 9 of subsets such that lsGl= f and 
n~duz~pdqittiik 

Conversely, if n <ml and if a(9 and P(n)) = @(P(n)), then 
(d) there exists a p- and P(n)-space Z having a count3blr locally finite family 

9 of open sets such that n {c&FIF c 9) # 0. For, if g d3es not satisfy Cd)? the;\ 
it follov- from [19, Remarks 3.5(l)] that any metric space of non-measurable 
cardinal belongs to a(gb and P(q)), while it is easy 50 find a metric space of 
non-measurable cardinal which does not belong to B(P(n)) (use 1.3(a’)). 

Emblem. For every two infinite cardinals t and n, do there exist the following 
spaces? 

(1) 8 normal P(n)-space Z(1, n), 
(2) a nt-paracompact P(n)-space ZJt, n) fo:: n > HO, 
(3) a metacompact subparacampact m-paracompact space J&(1, NO). 

Since normal countable paracompactness does not satisfy (d), g(norma1 count- 
(n)) in case n c tnl. Therefore, if there exists (1) for 

n< ntl, then it must . In case f = Ho an8 n = &, there exists 
constructed by Rudin in [20] is a 

sequent {D,} of closed subsets 

closed subsets of a normal space T have disjoint closures in VT, 



P&Tern. Characterize %![L [n)j for n >?%. 
.’ f I_ 

i,_ i I :. :: ./ , 
_’ ‘., 

As is easily seen, $8 (a, (II)) = 99 (weakly-n-compirct). “ch& 

for n = UO. In fact, an at @Wspa~e is precisf$ +jQ~lIy 
and 113, Theorem 4] shovers that !%(lo&lly COII&& 
pseudo-ml-compact spaces. 

4.3. Paobkm.~ Characterize B (paracompact P(n)) for n > NO, 
: / .“.i :, . : :. _r .; 

Recently, t!he author has proved that if X is a reolcompa~ space with 1x1 c‘ml, 
then u(X x Y) = UX x UY for any paracompact space Y. Th&.&t *~bined with 
Z.5 and 2.6 implies that !%(paracompact) is precisely #the dlitss‘ of ~Wre&&iii@xt 
spaces X with 1x1~ ml ; however, the characterititi& of 9e(paracomp&:t P[n;>) is 
rtot yet known in case n > NO. 

. 
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