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Abstract. In the theory of denotational semantics, we study event structures which generalize 
Kahn and Plotkin’s concrete data structures and which model computational processes. With 
each event structure we associate canonically an event domain (a particular algebraic complete 
partial order), and conversely we derive a representation resuit for event domains. For a particular 
class of event structures, the canonical event structures, we obtain that any two canonical event 
structures are isomorphic iff they have order-isomorphic canonical domains. 

In the mathematical theory of semantics of programming languages, various kinds 
of systems of information and associated partial orders (domains) of information 
have been extensively studied. Scott [ 73 introduced information systems as consisting 
of a set of tokens (to be imagined as propositions or units of information), together 
with consistency and entailment relations. Kahn and Plotkin [4] considered concrete 
data structures and concrete domains. Sequential algorithms on these structures 
were studied by Berry and Curien [l]. Winskel [9, lo] (cf. also [6]) introduced a 
generalization, the event structures and particul r A associated domains. For a variety 
of further results, see [2]. 

In this paper we introduce and study event domains and their relationship with 
event structures. An event structure consists of a set E of tokens together with a 
consistency relation for finite subsets of E and an enabling relation between finite 
subsets and elements of E (satisfying certain natural axioms). Ihe elements of E 
can be thought of, for example, as the units of information which car. in principle 
be computed by a machine, whereas the enabling relation describes the computation 
possibilities themselves. _A state or configuration of events is a subset X of E such 
that each finite subset of X is consistent and each element of X can be deduced 
through finitely many successive applications of the enabling relation from a finite 
number of elements of X w ich are “a priori true”, i.e. enabled by t ty set. 
The set (D(E), E) of all such states of E, partially ordered under inclusion, will 
be called the canonical event $0~~~~ asMated with E. 
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Event structures as a model of computational processes have been studied in 
detail in Win&e1 [9, lo]. They were shown to be related to etri nets and to Scott 
domains. Also, they can be used to provide semantics tcy programming languages 
for parallel processes like CCS and CSP and to languages with higher types. For 
details on this and further background, we refer the reader to [lo]. 

We now give a summary of our results. In Section 2, we first define axiomatically 
the class of event domains which are particular algebraic complete partial orders. 
We show that any canonical event domain (D(E), C) is an event domain. Con- 
versely, any event domain (LX, G) is order-isomorphic to (D(E), C) for some 
canonically chosen event structure E = ED. This partially uses methods and general- 
r’sl;es results of Kahn and Plotkin [4] and Winskel [9, lo], cf. also [2]. Winskel[9, lo] 
obtained the corresponding characterization theorems under the additional assump- 
tion either that E is stable or that the consistency relation on E is induced by a 
binary conflict rel rGon on E. We also show how to derive Winskel’s representation 
theorem [9] for “conflict event domains” from our present results. 

Trivial examples show that two event structures E,, E2 with order-isomorphic 
domains (D( E,), c), (D( E2), E) themselves need not be isomorphic: (i.e. identical 
up to renaming of events). Therefore in Section 3 we define the class of canonical 
event structures, which are particular event structures. We show for any event 
structure E that E is a canonical event structure if and only if E = ED for some 
event domain (D, s). As a consequence we obtain that two canonical event structures 
E, , E2 are isomorphic if and only if their canonical domains (D( E,), E), (D( E2), c) 
are order-isomorphic. 

In a sequel to this paper [3], we apply the present results to show that stable 
injection-projection pairs can also be used to solve recursive domain equations for 
arbitrary event domains; this generalizes results of Berry and Curien [l] for Zstribu- 
tive concrete domains. 

Let us start with a precise definition of event structures and their canonically 
associated domains. For any set E, let Fin(E) denote the system of all finite subsets 
of E. 

(cf. [lo]). An event structure is a triple 8 = (E, Cons, I-) satisfying 
the following conditions: 

(a) E is a set (the events or units of information); 
(b) Cons c Fin(E) is non-empty (the consistent sets) and whenever A c B and 
E Cons, then A E Cons; 
(c) I-E Cons between consistent subsets and elements 

of E) and whene E Cons, then B I- e. 
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If there is no ambiguity, we also denote (E, Cons, t-) simply by E. We say that 

a set A c E is consistent iff A E Cons. A subset X of E is a state of E, if the following 
two conditions are satisfied: 

(1) A c X, A finite+A E Cons (consistency); 
(2) eEX*3e,,...,e,+X such that e,=e and 

Vi s n, { ej: j C i) I- ei (deductibility). 

The set of all states of E, partially ordered by inclusion, is denoted by ( 
(or simply (D(E), C_ )) and called the canonical event domain associated with E. 

First we depict a few simple event structures and their canonical domains (Fig. 
1) which provide typical examples for many phenomena occurring below. 

(1) E, = (1,2,3}, Cons = Fin( I?,)\{ E,}, A t- i for each A E Cons, i E E, . 
(2) E,=E,,Consasin(l),AI_l,Ac2foreachAECons,andAc_3iffAECons 

and &A or 2E:A. 

{1,3I {I,21 C2,4I 

Fig. 1. 

(3) ES = {1,2,3,4), Cons = (8, #,12), (31,141, &21,0,31, (2,4H, A I- 1, A t- 2 
foreachAECons,andAt_3iff lEA,At-4iff 2EA(AECons). 

(4) E,=~,Cons=Fin(N),A~1foreachA~Cons,andA~i+liff{l,...,i}~ 
A (i E N, k E Cons). 

Our first main goal is to characterize the partial orders (D, S) occurring as 
canonical event domains (D(E), G ). Our notation needed for this task is standard 
(cf. [2]); we summarize it here for the convenience of the reader. 

Let (0, S) be a partially ordered set. For x, y E D we write x t y if there is z E D 
with xsz and y s z, and x T y otherwise. A subset A of D is directed if for any 
a, b E A there is c E A with a s c and b 6 c, (0, S) is complete, if D has a smallesi 
element, denoted by I, and any directed subset of D has a supremu An 

element x E D is called isolated (or compact), if for any directed subset for 

which sup A exists and x s sup A there is y E A with x s y. The set of all isolated 
points of D is denoted by Do. Then D is algebraic, if for each x E 
(d E Do: d s x} is directed and has x as supremum. Let x, y E D. We w 

y covers x, i.e. if x < y and there is no z E ti with x < z < y. A chaiu fr 
a sequence x0, . . . , x, in D su that =xo,y = X, and Xi-Xi+1 

0 9.e.9 n - 1. A prime ivlterval of air (x, x’) S.U% that x, x’ E D 
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this pair is then denoted by [x, x’]. For prime intervals we put [x, x’] -[y, y’] if 
x-y, x’- y’ and y # x’. If S, t are elements (prime intervals) 

s to c is a sequence so,. . = , s,, of elements (prime intervals), res 

that z=so, t=s,, and for all 0s i<n, either si-=si+, OTSi+l-Si. 

intervals [x, x’] and [y, y’] equivalent, denoted by [x, x’]=+y, y’], if there exists a 
zigzag from [x, x’] to [y, y’]. The equivalence class of [x, x’] is denoted by [x, x’],. 
Fou any x E D, we put s(x) ={[z, ~‘1,: z ‘c x}. Clearly x G y implies s(x) c s(y). 
Now we can state the %ormal definition of an event domain. 

. An event domain is an algebraic complete partial order (0, S) 
satisfying the following conditions for any x, x’, y, y’, z E Do: 

(F) {d E D: d s x) is finite; 
(C) if x-y, x-z, y # z and y f z, then y v z exists and y-y v z, z-y v z; 
(I) [x,x’]-[y,y’] and x~_y imply x’sy’. 

We say that an event structure E generates an event domain (D, s), if (D, s) 

and (D(E), 2) are order-isomorphic. 
We note tha; condition (I) contains the following condition as an instance: 

(R) [x, x’]-[y, y’] and x = y imply x’ = y’. 

Next we wish zo check that t e canonical event domain (D(E), c) associated 
with an event structure E is indeed an event domain. As this is similar to the 
argument in 12, lo] for those event structures where Cons is induced by a symmetric 
binary relation of conflict on E, we leave most details to the reader. Note that in 
(D(E), S) suprema are unio nd any upper bounded subset of D(E) has a 
supremum. If [x, x’]-[y, y’J i E), there is e E E with x’ = i, {e} and y’ = y i, {e} 
(here A i, B always denotes a sjoint union); thus now x c y implies x’ c y’, and 
(D(E), C) satisfies condition ence we obtain the following. 

.3. Let E be an event strrlcture. Then (D(E ), E ) is an event domain 
whose isolated elements are precisely theginite states of E. 

Now we wish to prove the converse of Proposition 2.3 that any event domain 
occurs as the canonical event omain of a suitably chosen event structure. The 
following result can be shown in the same way (using only axioms (F) and (C)) as 
the corresponding results in [2]. 

Lemmas 2.2.3,2.2.4,2.2.6(l) J). Let (0, S) be an event domain, and 

(a) If x =G y, there exists a chain from x to y. 

(W Is (Y,L, and hA,,s, are chains from x to y and e is any equivalence class 
of prime intervals, then 
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(4 If x t y, then x vy exists Q& s(x v y) = s(x)v s(y), and if moreover 
y<xvy,x’-xandx’s y, then y-xvyand [y,xvy]-_Cx’,x]. 

As a consequence of Lemma 2.4(b) note that if x E Do and (xi)isn is any chain 
from I to x, then s(x) = {[Xi, Xi+,]-: 0 s i C n}. NOW let e be any equivalence class 
of prime intervals of D; we put n(~, e) = I{ i: [xi, xi+l] E e}l. By Lemma 2.4(b), this 
number is independent from the particular choice of the chain (Xi)i<n . Next we 
wish to show that n(x, e) s 1. Observe that if X, y E DQ, PI (y, e) > n( x, e) and (Xi)icm 
is a zigzag from x to y9 then induction on m shows that [xi, xi+13 E e for some 
0 s i < m [2, Lemma 2.2.71. 

Lemma 25 Let (0, S) be an event domain, and let x, xl, y, y’ E Do such that x -X’S 

y-y’. Then -~([x, x’]-[y, y’])e 

Proof. Suppose we had [x, x’] -[ y, y’]. Let e = [x, x']_ . Let ([xi, Xi])isn be a zigzag 
from [x, x’] to [y, y’]. Then (x&~ is a zigzag from x to y, and as noted above we 
have [xi, xi+l] E e for some i < n. Since [Xi, xi] E e, we obtain xf = xi+] by (I), contra- 
dicting [xi, xi]-[xi+, , x:+,1. Cl 

Next we associate with each event domain a canonical event structure. 

Let (D, G) be an event domain. We define an event structure &, = 
(ED, Cons, k-1 as follows: 

(1) Let ED be the set of all equivalence classes of prime intervals of D. 

(2) Let Cons be the system of all finite subsets A of E. for which there are 
representatives x,, XL E Do such that a = [x,,, xbj_ for each a E A and the set X = 
{XL: a E A) is bounded above in D. 

(3) If A E Cons and e E ED, -. XNe put A I- e iff e = [x, x’], and s(x) c A for some 
x, x’ E Do. 

Then &, = (ED, Cons, I-) is called the canonical event structure associated with 

(D, q. 

After these preparations, we can prove our first main resuh Note that if 
(D,, s), (D2, S) are two alg ic complete partial orders and f: 
(Dy, S) isomorphically onto , S) and is continuous (i.e. J(sup 
for any non-empty directed subset isomorphism fro 

onto (L&, s)- 4 

Theorem 2.7. FOP any event structure ( E9 Cons, I-), (D(E), c) is an event 

Conversely, let (D, S) be an event domain and ZTD = (E,, Cons, t-) the canonical 

event structure associated with ( s). Then the mapping 

s:(D, d)+(D(E&, E), by xws(x), x E 

is an isornor~hism. 
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Iproof. The first assertion is immediate by Proposition 2.3. Now let (D, s) be an 
event domain. Let x E D; we claim that s(x) is a state of Zo. If z s(x) is finite, 

for each a E A there are x,, XL E Do such that rz = [x~, XL]_ and xl, G x. 
A E Cons. If e E s(x), there is [y, y’] E e with y’s x. Thus s(y) c s(x) and s(y) I- e. 
By induction on the length of a chain from _L to y’, this proves our claim. 

Next we show that s maps (Do, s) isomorphically onto (D’(E,), E). Let x, y E Do. 

Clearly xs y implies s(x) E s(y). NOW suppose s(x) E s(y). We claim that xsy 
and prove this by induction on the length of a chain from 1 to x. So let us assume 
that there is X’E Do with x’dx and x’s y. Let 

be a chain from _L to y passing through x’. Since [x’, X]E s(x) c s(y), by Lemma 
2.4(b) we have [x’, x]-[[Vi, yi+l] for some i < n. Then p s i by Lemma 2.5. NOW (I) 
implies X G yi+l G y. 

To show that s maps Do onto D’(E&, let SE ED be a finite state. We can 
enumerate S = (e, , . D . , en} such that 

Vi S ?l, {ej: j < i} I- ei. 

Let S’ = (ej: j < n} and assume by induction that S’ = s(x’) for some X’E Do. Choose 
X E S’ minimal with respect to X I- e,. Thus there are z, Z’E Do such that X = s(z) 
and [z, z’] E e,. We claim that z’ t x’. As S is consistent, there are ai, ai E Do such 
that ei = [ai, al]_ (1 c is n) and the set A = {al: 1 s X n} has an upper bound 
a E Do. I-Ience 

s(a)zlj s(a:)r,S=s(x’)us(z’), 
i=l 

so a2:x ’ and a 2 z’ by what we have shown in the previous paragraph. Thus, by 
Lemma 2.4(c), z’ v X’E Do and S = s(z)) u s(x’) = s(z’ v x’). 

Finally, observe that s(x) = U {s(x’): x”fDo,xQ~x}foreachxED,hences:D+ 
D(E& is continuous. Consequently, s is an isomorphism from (0, s) onto 

(D(G), E). q 

In the remainder of this section we wish to study the relationship between the 
event structures and domains of Winskel [9] (cf. [2]) and the event structures and 
event domains considered here. We will also show how Winskel’s representation 
theorem can be derived from Theorem 2.7. The subsequent definition of conflict 
event structures, in which a symmetric binary relation of conflict is replaced by a 
consistency predicate, can be easily seen to be equivalent to Winskel’s original one. 

n event structure (E, Cons, I-) is called a conJlict event structure, 
if for any finite subset of E, A is consistent iff each subset B of A with precisely 
two elements is consis 
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(b) ‘4 conflict event domain is an algebraic complete partial order (D, S) satisfying 
(F), (C) (cf. Definition 2.2) and for any x, x’, x”, y, y’, y’k Do the following axioms: 

(R) [x, x’] -[x, x”] implies x’ = x”; 

(V) cx, x’l=[v, Y’l, c x, x”] -[y, y”] and x’ f X” imply y’ t y’. 

It is easy to see that for any conflict event structure (E, Cons, I-), (D(E), E) is a 
conflict domain. Now we show: 

Proposition 2.9. Any conflict event domain is an event domain. 

Proof. Let (D, S) be a conflict event domain. To check condition (I), let x, x’: y, y’ E 
Do with [x, x’]-[y, y’] and xsy. Then s(x’) = s(x) u {[x, x’]_) c s(y’), and now 
an argument as in [2, proof of Theorem 2.2.91 shows x’ t y. If y = x’ v y, trivia?ly 
x’sy’. If y<x’vy, we have y -x’vy and [y,y’]-[x,x’]-[y, x’vy] by Lemma 
2.4(c), hence x’ <x’vy=y’by (R). 0 

Now we show the following. 

Corollary 2.10 [9]. Let (D, S) be a conflict event domain. Let ED denote the set of 

equivalence classes of prime intervals of D, and dejne a binary relation # (“conJlict”) 
and Cons*, I-* as follows: 

(a) Whenever z, z’, Z”E Do with z-z’, z” and z’jl(z”, then [z, z’]_#[z, z”]_. 

(b) Let Cons* be the system of all finite ubsets A of E. such that whenever 
e, , e2 E A, then l( e, # e,). 

(c) For any x, X’E Do and A E Cons* with x-x’ and s(x) c A, let A I-* [x, x’]_. 
Then E’* = (ED, C OIIS”, I-*) is a conflict event structure, and s is an isomorphism from 

(0,~) onto (D(%*), c). 

Proof. Clearly ‘%* .S an event structure. By Proposition 2.9, (D, S) is an event 
domain. We first z:b + : that d:ry [2, Lemmas 2.2. 6,2.2.8] (D, S) has the following 
properties where all zlemen~ considered belong to Do: 

(1) If x T y! there are c, z’, z” with z-z’, z-z” and z’ T z’ such that [z, z’], E s(x) 
and [z, z”], E s(y). 

(2) If x-x’sy-y’ and z, z’, z” satisfy [x, x’] -[z, z’] and [y, y’] -[ z, z”], then 
z’ # z” and z’ t z”. 
IVow we prove the converse of (1): 

(3) If [z, z’]_ E s(x) and [z, z’], E s(y), then z’ t z’ implies x t y. 
To check this, assume x y. Then x v y exists by Lemma 2.4(c). 

chain from I to x v y. By Lemma 2.4(b), [z, z’]-[xi, xi+,] and Iz, z”]-[xj, x~+I] for 

some i,j < n. But now i = j implies z’= z” by (R), and i # j implies z’ t z” by (2), 

in both cases a contradiction. 
(4) Let A = {Xl). D I, X”} c DC ny two elements of A 

bourd in ka. ?‘hen A has a supre 
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For this, suppose i < n is maximal such that x == x1 v l l l v xi exists in 0, but 
x v Xi+1 does not exist. Then X T Xi+], and by (1) there are [z, z’]_ E s(x), [z, z”], E 
s(xi+l) such that z’ a 2”. Then [z, z’]_ E S(Xj) for some j G i by Lemma 2. 
xj r xi+1 by assumption, contradicting (3). 

Now define Cons and + for & as in Definition 2.6, and put % = (ED, Cons, t-). 
We show that D( %*) = D( 8); then the result follows from Theorem 2.7. 

First, let A be a finite state of %*. For each a E A there are x,, XL E Do such that 
a = [x0, XL]_ and s(x,) C_ A. Thus s(xL) = S(IC,)U (ale A. Now for any a,, a2E A 
we have XL, t x&, since otherwise by property (1) there are ei E s(xh,) (i = 1,2) with 
el # e2, contradicting el , e2 E A. Now property (4) shows that X = {x.:: a E A1 is 
bounded abpve in D. Hence A E Cons and thus A E D( 2%‘). 

Conversely, let A be a state of 8. Suppose el# e2 for some e, , e2 E A. Then 
e, = [z, z’], , e2 = [z, z’], with z’ t z’, and also e, = [x, x’],, e2 = [y, y’]_ with x’ t y’. 
But then [z, z’]_ E s(x’) and [z, z”]_ E s(y’), contradicting (3). Hence A is a state 
of g*. cl 

In view of Definitions 2.2 and 2.8 and Proposition 2.9 the qucrstion arises whether 
any algebraic complete partial order (D, G) satisfying axioms (F), (C) and (R) is 
an event domain, i.e. whether in Definition 2.2 axiom (I) can be replaced by (R). 
That this is not true can be seen by examining the FartiaJ order (Q G) with 13 
elements shown in Fig. 2. 

Fig 

Y’ 

Y 

2. [x,x’]=[y,y’],x~y but not x’sy’. 

HA this section we show that the canonical event structure ELP associated with an 
event domain (0,~) has several properties which make it nice to behave. This 
allows us to derive a uniqueness criterion for event structures with given domains, 
and we also study the relations ip between the structures E and E,, EI, for any 
event structure E. 
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efinithm 3.1. An event structure 8 = (E, Cons, t-) will be called canonical, if the 
following conditions are satisfied: 

(1) For each x E E there is a state X of E such that x E X. 
(2) Whenever A E Cons, there exists a state X of E such that A c X. 
(3) If e E E and A E E is finite and minimal with respect to A F e, then A u {e j E 

mEh 
(4) Whenever x, x’, y, y’ E D”( E ) and e E E such that x’ = x ir {e} and y’ = y ti {e}, 

then [x, x’]+y, y’] in (D(E), G). 

Intuitively, these conditions of Definition 3.1, with possibly the exception of 
condition (4), seem to be quite natural for event structures. The event structures 
E,- E4 given for Fig. 1 all satisfy conditions (l;-(3) of Definition 3.1, and El, E3, E4 
also satisfy condition (4). Hence El, E3, E4 are canonical event structures. Now we 
show the following. 

Pacog&tion 3.2. Let (D, C) be an event domain and En the canonical event structure 
associated with (0, s). Then ED is a canonical event structure. 

Proof. Let e E ED. Then e = [SC, x’]_ for some x, X’E Do, and s = s(x’) is a state of 
ED with e E s. This proves condition (I) of Definition 3.1. Next, we check condition 
(3.1)(2). Let A = {e,, . . . , en} E Cons( ED). There are xi, xi, z E Do such that ei = 

iIxi, xll-= and xfsz for all i=l,..., n. Hence A c s(z) and s(z) is a state of ED. 
For condition (3.1)(3), let e E ED and let A G ED be minimal with respect to A I- e. 
Then A = s(x), e = [x, x1]_ for some x, x’ E Do. Hence Au {e} = s(x)) E D( ED). 

To check condition (3.1)(4), let X, X’, Y, Y’ be finite states of ED and e E ED 
such that X’= X 6 (e} and Y’= Y ti {e). By Theorem 2.7, the mapping s : (0, c) + 
(D( E,), C) is an isomorphism. Choose x, x’, y, Y’E Do with s(x) = X, s(x)) = 
X’, s(y) = Y and s(y’) = Y’. Then x-x’ and e E X’\X = s(x’)\s(x) = {[x, x’]-}, 
similarly y - y’ and e = [y, y’]_ . Hence [x, x’] -[y, y’] in (D, “-), and thus [X, X’] - 
[ Y, Y’] in (D(E,), E). q 

Now let % = (E, Cons, I-) and ‘&‘* = (E*, Cons*, t---*1 be two event structures and 
Q : E + E* a mapping. We say that q preserves consistewy, if A E Cons implies 
q(A) E COIX*F. Likewise, q preserves enahlin~j if A G E9 4 E E and A!-- e imply 

q(A) t- q(e). Finally, ~0 is an isomorphism from ‘Z onto %‘*, if ~0 is bijective and 
both q and cp-’ preserve consistency and enabling. We write % = %* (or, also, Zmply 
E s E*) if there exists an isomorphism from Z onto %*. Next we study the 
relationship between the event structures E and EDcEI. 

Detirmitiom 3.3. Let E be an event structure. Define cp : EDcEI + E 
cp([x, x1]_) = e whenever x, X’E D”(E) slmch that x’= K ir (e). Then q is called the 
canonical ~a~~~n~ from EDt E) into E. 



46 M. Droste 

Now we show that q preserves the consistency and enabling relations and that 
as a set-valued mapping operating in the natural way on the states of 
inverse to s. 

OS Let E be an event structure ant! q : EDcE, + 

Then &s(x)) 1 x fir each state xE DW 

Meal mapping. 

i ‘TO, Q preserves the consistenq and 

enabling relations. 

msf. Let x={e,,..., en} E D’(E). We may :. :-sume that the enumeration of the e, 
is such that Z$= {e,, . . . , ei) E D(E) for each i = 1,. . . , n. Put Z$= 9). Then s(x) = 
{[q,ei+ll_: i=O,..., n - 1). as ~([&,ei+l]_J = ei+l, we obtain q(s(x)) =x. For 
arbitrary elements x E D(E) note that s(x) = u {s(x’): X’E Do(E), x0< x}. 

Now let A E Cons( ED). There are states Xi, xi, z of E and elements ei E E such 
that x~=xii,{ei}Sz for all i=l,...,n and A={[Xi,Xi]-: i=l,...,n}. Then 

cp(A)=Ie,,-•*, e,,} E z, proving q(A) E Cons(E). 
Next, let A c ED and e E ED with A t- e. Choose x, X’E Do such that e = [x, x’], 

and s(x) G A. Then x’= x 6 {e’} for some e’E E. As shown above, we have q(s(x)) = x 
and q(e) = e’. There is B C_ x C_ q(A) with B t- e'. Since A E: Cons( ED), we obtain 
cp(A)~Cons(E) as shown above. Hence p(A) I- q(e). Cl 

Next we state the main result of this section. 

3.5. Let 25’ = (E, Cons, I-) be an event structure and rp : EDc E) + E the canoni- 

cal mapping. 
(a) Q is subjective if and only if %? satisjes condition (Xl)(l). 

(b) Q is injective if and only if Z satisfies condition (X1)(4). 

(c) Q is an isomorphism if and only if 8 is a canonical event structure. 

We write D = D(E) for abbrevrztion. 
Assume % satisfies condition (3.1)(l), and let e E E. Choose a seate z of E 

with e E z and then finite states x, x’ c z such that x’ = x i, {e). Then Q([x, xl]-) = e. 
Hence Q is surjective. The converse is clear. 

(b) Trivial. 
(c) One implication is clear by Proposition 3.2. Now assume that 8 is a canonical 

event structure. By (a) and (b), Q is bijective, and by Proposition 3.4, Q preserves 
consistency and enabling. We show that 4p-1 preserves consistency. Let A = 

Ie I,**. } E Cons(E). There exists a state z of E with A c_ z. Choose states 
Xi, X:E such that x~=xiG{e~}Ez for each i=l,...,n. Then Q-‘(A)= 

{[xi, xi]-: i = 1,. . . , n} E Cons( ED). 
Finally, we show that Q-' preserves enabling. Let A c E and e E E with 

Choose x c A minimal with respect to x t- e. Then x’ = x u {e} is a state of E. Hence 
Also, ~&S(X)) =x by ?roposition 3.4, and Q([x, x']_) = e. Thus 

sistency, we obtain Q-'( 



47 Event structures and domains 

We have two immediate consequences of Theorem 3.5(c). 

Let E be (an event structure. The following are equivalent: 
( 1) E is a canonical eoent structure. 

(2) E = E. for some event domain (0, s). 

(11) + (2): Apply Theorem 3.5(c) with D = D(E). 
(2 13 (1): Immediate by Proposition 3.2. q 

Finally, we state our uniqueness result for canonical event structures with given 
event domains. 

Corollary 3.7. Let E,, E2 be two canonical event structures which generate the same 
event domain (0, G). Then E, and E2 are isomorphic. 

Proof. Since D( E,) = D = D(E,), by Theorem 3.5(c) we have El = EDtE,) = EDtE,) s 
E2. Cl 

As a consequence we see that the mappings E - D(E) and De ED provide, up 
to isomorphism, inverse bijections between the classes of canonical event structures 
and event domains. 
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