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Abstract. In the theory of denotational semantics, we study event structures which generalize
Kahn and Plotkin’s concrete data structures and which model computational processes. With
each event structure we associate canonically an event domain (a particular algebraic complete
partial order), and conversely we derive a representation resuit for event domains. For a particular
class of event siructures, the canonical event structures, we obtain that any two canonical event
structures are isomorphic iff they have order-isomorphic canonical domains.

1. Introduction

In the mathematical theory of semantics of programming languages, various kinds
of systems of information and associated partial orders (domains) of information
have been extensively studied. Scott [7] introduced information systems as consisting
of a set of tokens (to be imagined as propositions or units of information), together
with consistency and entailment relations. Kahn and Plotkin [4] considered concrete
data structures and concrete domains. Sequential algorithms on these structures
were studied by Berry and Curien [1]. Winskel [9, 10] (cf. also [6]) introduced a
generalization, the event structures and particul- . associated domains. For a variety
of further results, see [2].

In this paper we introduce and study event domains and their relationship with
event structures. An event structure consists of a set E of tokens together with a
consistency relation for finite subsets of E and an enabling relation between finite
subsets and elements of E (satisfying certain natural axioms). The elements of E
can be thought of, for example, as the units of information which can in principle
be computed by a machine, whereas the enabling relation describes the computation
possibilities themselves. A state or configuration of events is a subset X of E such
that each finite subset of X is consistent and each element of X can be deduced
through finitely many successive applications of the enabling relation from a finite
number of elements of X which are “a priori true”, i.e. enabled by the empty set.
The set (D(E), <) of all such states of E, partially ordered under inclusion, will
be called the canonical event domain associated with E.
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Event structures as a model of computational processes have been studied in
detzil in Winskel [9, 10]. They were shown to be related to Petri nets and to Scoit
domains. Also, they can be used to provide semantics t¢ programming languages
for parallel processes like CCS and CSP and to languages with higher types. For
details on this and further background, we refer the reader to [10].

We now give a summary of our results. In Section 2, we first define axiomatically
the class of event domains which are particular algebraic complete partial orders.
We show that any canonical event domain (D(E), <) is an event domain. Con-
versely, any event domain (D, <) is order-isomorphic to (D(E), <) for some
canonically chosen event structure E = Ep,. This partially uses methods and general-
izes results of Kahn and Plotkin [4] and Winskel [9, 10], cf. also [2]. Winskel [9, 10]
cbtained the corresponding characterization theorems under the additional assump-
tion cither that E is stable or that the consistency relation on E is induced by a
binary conflict rela:ion on E. We also show how to derive Winskel’s representation
theorem [9] for “conflict event domains” from our present resuits.

Trivial examples show that two event structures E,, E, with order-isomorphic
domains (D(E,), €), (D(E,), <) themselves need not be isomorphic (i.e. identical
up to renaming of events). Therefore in Section 3 we define the class of canonical
event structures, which are particular event structures. We show for any event
structure E that E is a canonical event structure if and only if E = E, for some
event domain (D, <). As a consequence we obtain that two canonical event structures
E,, E, are isomorphic if and only if their canonical domains ( D(E,), <), (D(E,), <)
are order-isomorphic.

In a sequel to this paper [3], we apply the present results to show that stable
injection-projection pairs can also be used to solve recursive domain equations for
arbitrary event domains; this generalizes results of Berry and Curien [1] for Jistribu-
tive concrete domains.

2. Event structures and event domains

Let us start with a precise definition of event structures and their canonically

associated domains. For any set E, let Fin( E) denote the system of all finite subsets
of E.

Definition 2.1 (cf. [10]). An event structure is a triple € =(E, Cons, ) satisfying
the following conditions:

(a) E is a set (the events or units of information);

(b) Consc Fin(E) is non-empty (the consistent sets) and whenever A< B and
B e Cons, then Ae Cons;

(c) =< Consx E (the enabling relation between consistent subsets and elements
of E) and whenever A~ ¢, A< B and B e Cons, then B e.
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If there is no ambiguity, we also denote (E, Cons, -) simply by E. We say that
aset Ac E is consistent iff Ae Cons. A subset X of E is a state of E, if the following
two conditions are satisfied:

(1) A< X, A finite=> A € Cons (consistency);

(2) ee X=3e,,..., e,€ X such that e, =e and

Visn,{e:j<i}+ e (deductibility).

The set of all states of E, partially ordered by inclusion, is denoted by (D(€), <)
(or simply (D(E), <)) and calied the canonical event domain associated with E.

First we depict a few simple event structures and their canonical domains (Fig.
1) which provide typical examples for many phenomena occurring below.

(1) E,={1,2,3}, Cons=Fin(E,)\{E,}, A+ i for each AeCons, ic E,.

(2) E;=E,,Consasin(1),A—1, A+ 2foreach Ac Cons,and A+ 3iff Ae Cons
and 1€ A or 2€ A
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Fig. 1.

(3) E;={1,2,3,4}, Cons={@, {1}, {2}, {3}, {4}, {1, 2}, {1,3},{2,4}}, A1, A2
for each AeCons, and A3 iff 1€ A, A+ 4 iff 2€ A (A€ Cons).

(4) E,=N,Cons=Fin(N), A+ 1 for each AcCons, and A+~ i+1iff {1,...,i}c
A (ieN, A e Cons).

Our first main goal is to characterize the partial orders (D, <) occurring as
canonical event domains (D(E), <). Our notation needed for this task is standard
(cf. [2]); we summarize it here for the convenience of the reader.

Let (D, <) be a partialiy ordered sei. For x, y € D we write x 1 y if there is ze D
with x<z and y<z, and x 1 y otherwise. A subset A of D is directed if for any
a,be A there is ce A with a<c and b=<c. (D, <) is complete, if D has a smallesi
element, dencted by L, and any directed subset of D has a supremum in D. An
element x € D is called isolated (or compact), if for any directed subset A of D for
which sup A exists and x <sup A there is y € A with x<y. The set of all isolated
points of D is denoted by D°. Then D is algebraic, if for each xe D the set
{d € D% d < x} is directed and has x as supremum. Let x, y € D. We write x —y if
y covers x, i.e. if x <y and there is no z € v with x <z<y. A chain from x to y is
a sequence Xg,...,x, in D such that =x,,y=x, and x;—x;,, for each i=
0,...,n—1. A prime interval of D is a pair (x, x') such that x, x'e D° and x —x";
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this pair is then denoted by [x, x'). For prime intervals we put [x, x]—<[y, y'] if
x—y,x'—y' and y # x". If s, t are elements (prime intervals) of D, a zigzag from
s to 1 is a sequence s, . . - , 5, of elements (prime intervals), respectively, of D such
that £ = s,, t =5, and for all 0<i <n, either s;—<s;,, or 5;;;,—s;. We call two prime
intervals [x, x'] arnd [y, y'] equivalent, denoted by [x, x"]>=<[y, y'], if there exists a
zigzag from [x, x'] to [y, y']. The equivalence class of [x, x'] is denoted by [x, x']..
For any xe D, we put s(x)={[z,z']_: z’<x}. Clearly x<y implies s(x)< s(y).
Now we can state the formal definition of an event domain.

Definition 2.2. An event domain is an algebraic complete partial order (D, =)
satisfying the following conditions for any x, x’, y, y', z€ D"

(F) {d e D: d<x}is finite;

(C) if x—<),x—<z,y#zand y { z, then yvzexistsand y—<yvz,z—<yvz;

(1) [x,x]=<[y,y']and x<y imply x'<y".

We say that an event structure E generates an event domain (D, <), if (D, <)
and (D(E), <) are order-isomorphic.
We note tha: condition (I) contains the following condition as an instance:

(R) [x, x']>.<[y’ y’] and x:y imply xl=y7.

Next we wish (o check that the canonical event domain (D(E), <) associated
with an event structure E is indeed an event domain. As this is similar to the
argument in [2, 10] for those event structures where Cons is induced by a symmetric
binary relation of conflict on E, we leave most details to the reader. Note that in
(D(E), <) suprema are unions and any upper bounded subset of D(E) has a
supremum. If [x, x']><[y, y'] in D(E), there is e € E with x'= U{e} and y'=y U {e}
(here AU B always denotes a disjoint union); thus now x < y implies x'c y’, and
(D(E), <) satisfies condition (I). Hence we obtain the following.

Proposition 2.3. Let E be an event structure. Then (D(E), <) is an event domain
whose isolated elements are precisely the finite states of E.

Now we wish to prove the converse of Proposition 2.3 that any event domain
occurs as the canonical event domain of a suitably chosen event structure. The
following result can be shown in the same way (using only axioms (F) and (C)) as
the corresponding results in [2].

Lemma 2.4 ([2, Lemmas 2.2.3,2.2.4,2.2.6(1)]). Let (D, <) be an event domain, and
let x,x', ye D°

(a) If x<y, there exists a chain from x to y.
(b) If (yn)n<p and (z,,)n<, are chains from x to y and e is any equivalence class
of prime intervals, then
{i: [y, yin]€ el =|{j: [z, Zi1)€ e}l.

In particular, all chains from x to y have the same length.
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(c) If x%y, then xvy exists and s(xvy)=s(x)us(y), and if moreover
y<xvy,x'—<xandx'<y, then y—<xvy and [y, xv y]>—=[x’, x].

As a consequence of Lemma 2.4(b) note that if x€ D° and (x;);<,, is any chain
from L to x, then s(x) ={[x;, X;+1]-: 0< i< n}. Now let e be any equivalence class
of prime intervals of D; we put n(x, e) =|{i: [x;, X;+;] € e}|. By Lemma 2.4(b), this
number is independent from the particular choice of the chain (x;);<,. Next we
wish to show that n(x, e) <1. Observe that if x, ye D°, n(y, e)> n(x, e) and (x;)i<m
is a zigzag from x to y, then induction on m shows that [x;, x;.;]€ e for some
0<i<m[2, Lemma 2.2.7].

Lemma 2.5. Let (D, <) be an event domain, and let x, x', y, y' € D° such that x —<x'<
y—y'. Then ([x, x'1=—=[y, y']).

Proof. Suppose we had [x, x"]><[y, y']. Let e =[x, x'].. Let ([ x;, x;]);<, be a zigzag
from [x, x'] to [y, y']. Then (x;);<, is a zigzag from x to y, and as noted above we
have [x;, x;.,] € e for some i < n. Since [x;, x{] € e, we obtain x; = x;,, by (I), contra-
dicting [x;, x/]—<[xi+1, xix1). O

Next we associate with each event domain a canonical event structure.

Definition 2.6. Let (D, <) be an event domain. We define an event structure €, =
(Ep, Cons, ) as follows:

(1) Let Ep, be the set of all equivalence classes of prime intervals of D.

(2) Let Cons be the system of all finite subsets A of Ep for which there are
representatives x,, x, € D° such that a=[x,, x,]1. for each ac A and the set X =
{x.: a € A} is bounded above in D.

(3) If AcCons and ec€ Ep, we put A+ e iff e=[x, x'].. and s(x) = A for some
x, x' € D°.

Then &p=(Ep,Cons,+) is called the canonical event structure associated with
(D, =).

After these preparations, we can prove our first main result. Note that if
(D, <), (D,, <) are two algebraic complete partial orders and f: D,~> D, maps
(DY, <) isomorphically onto (D, <) and is continuous (i.e. f(sup A) =sup f(A)
for any non-empty directed subset A of D,), then f is an isomorphism from (D,, <)
onto ([}, <). .

Theorem 2.7. Foi any event structure (E, Cons,+), (D(E), <) is an event domain.
Conversely, let (D, <) be an event domain and &p=(Ep,Cons,-) the canonical
event structure associated with (D, <). Then the mapping

s:(D,<)>(D(Ep), <), defined by x—s(x),xe D,

is an isomorphism.
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Proof. The first assertion is immediate by Proposition 2.3. Now let (D, <) be an
event domain. Let x € D; we claim that s(x) is a state of &p. If A< s(x) is finite,
for each a€ A there are x,, x,e D° such that a=[x,, x,].. and x/,<x. Hence
AeCons. If ee s(x), there is [y, y']€ e with y'<x. Thus s(y)< s(x) and s(y)+e.
By induction on the length of a chain from L to y’, this proves our claim.

Next we show that s maps (D°, <) isomorphically onto (D°(Ep), <). Let x, y€ D°.
Clearly x <y implies s(x)< s(v). Now suppose s(x)< s(y). We claim that x<y
and prove this by induction on the length of a chain from 1 to x. So let us assume
that there is x'€ D® with x'—<x and x'<y. Let

— 4 -
Yo—sr =Y =X =t =y,

be a chain from L to y passing through x’. Since [x’, x]€ s(x) < s(y), by Lemma
2.4(b) we have [x’, x]>=<[y;, yi+1] for some i < n. Then p<i by Lemma 2.5. Now (I)
implies x<y;,, <y

To show that s maps D° onto D°(Ep), let S< Ep be a finite state. We can
enumerate S={e,,..., e,} such that

Visn{e¢:j<i}+e.

Let S’ = {e;: j < n} and assume by induction that S’ = s(x’) for some x’€ D°. Choose
X < S’ minimal with respect to X + e,. Thus there are z, z'e D° such that X = s(z)
and [z, z']€ e,. We claim that z' { x". As S is consistent, there are a;, a‘c D° such
that e;=[a;, a;]- (1<i<n) and the set A={a}: 1</<n} has an upper bound
ae D°. Hence

s(a)2U s(a)) =28 =s(x")us(z"),
i=1
so a=x' and a=2z' by what we have shown in the previous paragraph. Thus, by
Lemma 2.4(c), z’vx'e D® and S=s(z')u s(x’')=s(z'v x').
Finally, observe that s(x) ={_J {s(x°): x°e D°, x°< x} for each x € D, hence s: D~

D(Ep) is continuous. Consequently, s is an isomorphism from (D, <) onto
(D(Ep),<). O

In the remainder of this section we wish to study the relationship between the
event structures and domains of Winskel [9] (cf. [2]) and the event structures and
event domains considered here. We will also show how Winskel’s representation
theorem can be derived from Theorem 2.7. The subsequent definition of conflict
event structures, in which a symmetric binary relation of conflict is replaced by a
consistency predicate, can be easily seen to be equivalent to Winskel’s original one.

Definition 2.8. (a) An event structure (E, Cons, ) is called a conflict event structure,

if for any finite subset A of E, A is consistent iff each subset B of A with precisely
two elements is consistent.
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(b) A conflict evert domain is an algebraic complete partial order (D, <) satisfying
(F), (C) (cf. Definition 2.2) and for any x, x’, x", y, ', y" € D° the following axioms:

(R) [x, x']>=<[x, x"] implies x'=x";

(V) [x, x]=—=[y,¥'], [x, x"1=<[y, "] and x' § x" imply y' 1 y".

It is easy to see that for any conflict event structure (E, Cons, ), (D(E),c)is a
conflict domain. Now we show:

Proposition 2.9. Any conflict event domain is an event domain.

Proof. Let (D, <) be a conflict event domain. To check condition (I), let x, x". y, y'€
D° with [x, x"]><[y, y'] and x<y. Then s(x')=s(x) u{[x, x']..} = s()’), and now
an argument as in [2, proof of Theorem 2.2.9] shows x' 1 y. If y=x"v y, trivielly
x'<y'. If y<x'vy, we have y—x'vy and [y, y']><[x, x']><[y, x"v y] by Lemma
2.4(c), hence x'<sx'vy=y' by (R). O

Now we show the following.

Corollary 2.10 [9]. Let (D, <) be a conflict event domain. Let E, denote the set of
equivalence classes of prime intervals of D, and define a binary relation % (*conflict”)
and Cons*,—* as follows:

(a) Whenever 2,2, 2"€ D° with z—z',z" and z' ¥ 2", then [z, 2'] _#[z, 2"]._.

(b) Let Cons* be the system of all finite iwubsets A of Ep such that whenever
e, e,€ A, then — (e #e,).

(c) For any x,x'e D° and A € Cons* with x—<x' and s(x)< A, let A-*[x, x'] .
Then €* =(Ep, Cons*, —*) is a conflict event structure, and s is an isomorphism from
(D, <) onto {D(&%*), <).

Proof. Clearly €* s an event structure. By Proposition 2.9, (D, <) is an event
domain. We first =iu.: thaf by [2, Lemmas 2.2.6,2.2.8] (D, <) has the following
properties where all zlements considered belong to D°:

(1) If x 4 y.thereare z, z', z" with z—2', z—z" and 2z’ 1 z" such that [2,2']-€s(x)
and [z, z"] . € s(y).

(2) If x—<x'<y—y' and z, z’, z" satisfy [x, x']><[z, z'] and [y, y']1=<[z, 2"}, then
z’#z"and z' 1 Z".

Now we prove the converse of (1):

(3) If [z, z']..€ s(x) and [z, z"].. € s(y), then 2’} z" implies x T .

To check this, assume x 1 y. Then x v y exists by Lemma 2.4(c). Let (x;);<, be a
chain from L to x v y. By Lemma 2.4(b), [z, z']><[x;, xi+:] and { 7, 2"]=<[x;, x;..] for
some i, j<n. But now i=j implies z’'=z" by (R), and i #j implies z' 1 z” by (2),
in both cases a contradiction.

(&) Let A={x,,..., x,} < D such that any two elements of A have an upper
bourd in 2 Then A has a supremum in D.



44 M. Droste

For this, suppose i <n is maximal such that x==x,v- - -vx; exists in D, but

acs F s

XV Xx;4; does not exist. Then x % x;.,, and by (1) there are {z, 2']._e s(x),[z 2"]-€
s(x;4,) such that z' f z". Then [z, z']_€ s(x;) for sonie j<i by Lemma 2.4(c) and
x; 1 X;+; by assumption, contradicting (3).

e nzad € Nafinitinn
lVUW UCllllC Cons ana + ior LD as lll LICIIIIUUL
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We show that D(€*)= D(%); then the result follows from Theorem 2.7.

First, let A be a finite stut° of €* For each a € A there are x,, x, € D° such that
a=[x,, x,]- and s(x;) < A. Thus s(x})=s(x,)u{a}< A. Now for any a,,a,€ A
we have x, 1 x,,, since otherwise by property (1) there are ¢, € s(x;,) (i=1, 2) with
e ¥e,, contradnctmg e,, e;€ A. Now property (4) shows that X ={x/,:ac A}l is

bounded ab~ve in D. Hence A € Cons and thus A€ D(%).
Conversely, let A be a state of &. Suppose e;#e, for some e,, e;€ A. Then
=[z 2'].., &=z, 2"} with z' 1 z",and also e; =[x, x'] _, e; = [y, y'].- with x" 1 y'.
But then [z, z']..€ s(x’) and [z, z"].-e s(y'), contradicting (3). Hence A is a state
of €. 0O

In view of Definitiors 2.2 and 2.8 and Proposition 2.9 the question arises whether
any algebraic complete partial order (D, <) satisfying axioms (F), (C) and (R) is
an event domain, i.e. whether in Definition 2.2 axiom (I) can be replaced by (R).
That this is not true can be seen by examining the partia! order (D, <) with 13
elements shown in Fig. 2.

Fig. 2. [x, x']><[y,»'], x< y but not x'<y".

3. Uniqueness properties of event structures

In this section we show that the canonical event structure Ej, associated with an
event domain (D, <) has several properties which make it nice to behave. This
allows us to derive a uniqueness criterion for event structures with given domains,

and we also study the relationship between the structures E and Ep,, for any
event structure E.
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Definition 3.1. An event structure € =(E, Cons, ) will be called canonical, if the
following conditions are satisfied:

(1) For each x € E there is a state X of E such that xe X,

(2) Whenever A € Cons, there exists a state X of E such that Ac X,

(3) If ec E and Ac E is finite and minimal with respect to A - ¢, then Au {e}¢e
D(E).

(4) Whenever x, x’, y, y'e D(E) and e€ E such that x'=x U {e} and y' = y U {e},
then [x, x'}>=<[y, y'} in (D(E), ).

Intuitively, these conditions of Definition 3.1, with possibly the exception of
condition (4), seem to be quite natural for event structures. The event structures
E,-E, given for Fig. 1 all satisfy conditions (1,-(3) of Definition 3.1, and E,, E;, E,
also satisfy condition (4). Hence E,, E,, E, are canonical event structures. Now we
show the following.

Proposition 3.2. Let (D, <) be an event domain and E, the canonical event structure
associated with (D, <). Then Ep, is a canonical event structure.

Proof. Let ec Ep. Then e =[x, x']_ for some x, x'e D° and s = s(x’) is a state of
Ep with e € s. This proves condition (1) of Definition 3.1. Next, we check condition
(3.1)(2). Let A={e,,...,e,}€Cons(Ep). There are x;, x!,ze D° such that ¢,=
[x:, xi)— and x{=<z for all i=1,...,n. Hence Ac s(z) and s(z) is a state of Ep.
For condition (3.1)(3), let e€ Ep, and let A< E;, be minimal with respect to A+ e,
Then A =s(x), e=[x, x'}_ for some x, x'€ D°. Hence Au {e}=s(x')e D(Ep).

To check condition (3.1)(4), let X, X', Y, Y’ be finite states of Ep, and e€ Ep,
such that X'= X U{e} and Y'= Y U {e}. By Theorem 2.7, the mapping s:(D, <)~
(D(Ep), <) is an isomorphism. Choose x,x’,y,y'e D° with s(x)=X, s(x')=
X', s(y)=Y and s(y')=Y'. Then x—x' and ee X'\ X =s(x')\s(x)={[x x']_},
similarly y—y’and e =y, y']... Hence [x, x"J><[y, y']in (D, <), and thus [ X, X"]—
[Y, Y'lin (D(Ep),<). O

Now let €= (E, Cons, ) and €*=(E*, Cons*, —*) be two event structures and
¢:E- E* a mapping. We say that ¢ preserves consistency, if A€ Cons implies
¢(A) e Cons*. Likewise, ¢ preserves enabling, if ASE, ec E and Ar-e imply
¢(A)+ ¢(e). Finally, ¢ is an isomorphism from & onto &%, if ¢ is bijective and
both ¢ and ¢! preserve consistency and enabling. We write € = &* (or, also, cimply
E = E*) if thers exists an isomorphism from & onto €*. Next we study the
relationship between the event structures E and Ep().

Definition 3.3. Let E be an event structure. Define o:Ep,> E by putting
¢([x, x']_) = e whenever x, x'e D°(E) such that x'=x U {e}. Then ¢ is called the
canonical mapping from Ep g, into E.
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Now we show that ¢ preserves the consistency and enabling relations and that
as a set-valued mapping operating in the natural way on the states of Epg,, ¢ is
inverse to s.

Proposition 3.4. Let E be an event structure and! ¢ : Epg)~> E the cononical mapping.
Then ¢o(s(x))=x for each state xe D/::> / "vo, ¢ preserves the consistency and
enabling relations.

Proof. Let x={e,,..., e,} € D°(E). We may : -:u2me that the enumeration of the ¢
is such that ¢;:={e,,..., e}e D(E) for each i=1,..., n. Put €;:=§. Then s(x)=
{[€,€mn]-:i=0,...,n—1}. As ¢([€, €]~} =e+,, we obtain ¢(s(x))=x. For
arbitrary elements x € D(E) note that s(x) ={_) {s(x°): x°e D°(E), x"<x}.

Now let AeCons(Ep). There are states x;, x;, z of E and elements e;€ E such
that x=x;U{e}cz for all i=1,...,n and A={x, x{]-:i=1,...,n}. Then
o(A)={e,,...,e,} < z, proving ¢(A) e Cons(E).

Next, let Ac Ep and e Ep, with A+ e. Choose x, x'e D° such that e =[x, x'].
and s(x) < A. Then x’' = x U {e'} for some e’ € E. As shown above, we have ¢(s(x)) =x
and ¢(e)=¢e'. There is B< x< ¢(A) with Bt e'. Since A€ Cons(Ep), we obtain
¢(A) e Cons(E) as shown above. Hence ¢(A) - ¢(e). O

Next we state the main result of this section.

Theorem 3.5. Let € = (E, Cons, ) be an event structure and ¢ : Epg)-> E the canoni.
cal mapping.

(a) ¢ is surjective if and only if & satisfies condition (3.1)(1).

(b) ¢ is injective if and only if € satisfies condition (3.1)(4).

(c) o is an isomorphism if and only if & is a canonical event structure.

Proof. We write D= D(E) for abbreviation.

(a) Assume & satisfies condition (3.1)(1), and let e< E. Choose a state z of E
with e € z and then finite states x, x'< z such that x’'=x U {e}. Then ¢([x, x'].)=e.
Hence ¢ is surjective. The converse is clear.

(b) Trivial.

(c) One implication is clear by Propositior 3.2. Now assume that € is a canonical
event structure. By (a) and (b), ¢ is bijective, and by Proposition 3.4, ¢ preserves
consistency and enabling. We show that ¢~' preserves consistency. Let A=
{ei,...,e,}eCons(E). There exists a state z of E with A<z Choose states
x;, x;e D° such that x,=x,0{e}cz for each i=1,...,n. Then ¢ '(A)=
{[xi,x{]-:i=1,...,n}eCons(Ep).

Finally, we show that ¢ ' preserves enabling. Let Ac E and ec E with A e.
Choose x = A minimal with respect to x - e. Then x' = x U {e} is a state of E. Hence
e£x and xe D. Also, ¢(s(x))=x by Proposition 3.4, and ¢([x, x']..)=e. Thus
s(x)< ¢ '(A). Since ¢ ' preserves consistency, we obtain ¢ "'(A)e Cons(E,) and
hence ¢ '(A) - ¢ '(e). Thus ¢ is an isomorphism. [
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We have two immediate consequences of Theorem 3.5(c).

Corollary 3.6. Let E be an event structure. The follawing are equivalent:
(1) E is a canonical event structure.
(2) E = Ep, for some event domain (D, <).

Proof. (1)- (2): Apply Theorem 3.5(c) with D= D(E).
(21> (1): Immediate by Proposition 3.2. []

Finally, we state our uniqueness result for canonicai event siructures with given
event domains.

Corollary 3.7. Let E,, E, be two canonical event structures which generate the same
event domain (D, <). Then E, and E, are isomorphic.

Proof. Since D(E,)= D= D(E,), by Theorem 3.5(c) we have E, = Epg,,= Ep (g, =
E,. O

As a consequence we see that the mappings E+— D(E) and D~ Ej, provide, up
to isomorphism, inverse bijections between the classes of canonical event structures
and event domains.
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