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Summary

Bacterial pathogens and symbionts must suppress or

negate host innate immunity. However, pathogens release
conserved oligomeric and polymeric molecules or MAMPs

(Microbial Associated Molecular Patterns), which elicit
host defenses [1–3]. Extracellular polysaccharides (EPSs)

are key virulence factors in plant and animal pathogenesis,
but their precise function in establishing basic compatibility

remains unclear [4–7]. Here, we show that EPSs suppress
MAMP-induced signaling in plants through their polyanionic

nature [4] and consequent ability to chelate divalent calcium
ions [8]. In plants, Ca2+ ion influx to the cytosol from the apo-

plast (where bacteria multiply [4, 5, 9]) is a prerequisite for

*Correspondence: bssrmc@bath.ac.uk
activation of myriad defenses by MAMPs [10]. We show

that EPSs from diverse plant and animal pathogens and sym-
bionts bind calcium. EPS-defective mutants or pure MAMPs,

such as the flagellin peptide flg22, elicit calcium influx, ex-
pression of host defense genes, and downstream resis-

tance. Furthermore, EPSs, produced by wild-type strains
or purified, suppress induced responses but do not block

flg22-receptor binding in Arabidopsis cells. EPS production
was confirmed in planta, and the amounts in bacterial bio-

films greatly exceed those required for binding of apoplastic
calcium. These data reveal a novel, fundamental role for bac-

terial EPS in disease establishment, encouraging novel
control strategies.

Results and Discussion

Bacteria Release Defense Elicitors but Counter
Host Responses

During host invasion, bacterial pathogens betray their pres-
ence by releasing various conserved molecules, which for
the most part cannot be readily altered. The plant Arabidopsis
thaliana, for example, is able to perceive flagellin (a constituent
peptide flg22 is used here), the main peptide component of the
motility organ, through the receptor FLS2; elongation factor
EF-Tu (the peptide elf18 is used here), the most abundant bac-
terial protein, through the receptor EFR; and lipopolysaccha-
ride (LPS), a glycolipid component of Gram-negative outer
membranes, as well as peptidoglycan (PGN), an essential
component of the cell envelope, through unknown receptors
[1–3, 11]. Pathogens have evolved arsenals of type III-secreted
protein effectors in order to counter MAMP-induced innate
immunity, the first line of defense in vertebrates and one of
the two major defense systems in plants [1, 2, 12, 13]. Effectors
target defense components such as signaling pathways,
programmed cell death, ubiquitination, and cytoskeleton and
cell-wall reinforcement [1, 13], whereas plants have evolved
to recognize effectors, directly or indirectly, via the products
of resistance genes. The resulting typical phenotype is local-
ized cell death or the hypersensitive response [1, 2, 13]. In ad-
dition to the effectors that are injected into the host cytoplasm,
pathogens may also suppress defenses through secreted sur-
face molecules. High molecular weight (0.5–2 MDa) bacterial
extracellular polysaccharides (EPSs) have long been linked
with pathogenicity and full virulence of bacteria infecting
plants, invertebrates, and vertebrates [4–7, 14]. Evidence de-
rives mainly from targeted disruptions in genes of EPS biosyn-
thetic clusters such as gum, alg, and ams for xanthan, alginate,
and amylovoran, respectively [5–7]. EPS-defective mutants
activate host defenses more strongly than do their wild-type
(WT) counterparts [5, 12, 15, 16]. EPSs may have other func-
tions as well, including protection from host antimicrobial
components and from environmental stresses such as desic-
cation and UV irradiation [5, 6].

Bacterial Polysaccharides are Polyanionic
and Bind Cations

Comparing structures of many EPSs involved in virulence, we
realized that all are polyanionic by the presence of uronic acids
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(D-GlcA, D-ManA, D-GulA, and less frequently D-GalA) and, of-
ten, ketal-linked pyruvate and succinate. They, therefore, have
the potential to bind or chelate cations. For example, alginate
from Pseudomonas aeruginosa, xanthan from Xanthomonas
campestris, and amylovoran from Erwinia amylovora strongly
bind calcium [7, 8]. Models describing calcium chelation by
alginate and xanthan reveal chain cooperativity and helix for-
mation [8]; binding of Mg2+ is much weaker [17].

Calcium Signaling is Required for Defense Induction

Calcium functions as a second messenger in MAMP or patho-
gen perception. In plants, influx from the apoplastic pool
[Ca2+]apo to the cytosol [Ca2+]cyt, where Ca2+ levels are about
four orders of magnitude lower, is a prerequisite for induced
innate immunity [2, 10]. Associated defense responses include
induction of reactive oxygen species (ROS), cell wall strength-
ening, upregulation of pathogenesis-related (PR) genes, and
accumulation of antimicrobial low-molecular-weight phyto-
alexins [2, 10, 12, 18–21]. Calcium influx is also required for
the hypersensitive response [19]. Because invading bacterial
pathogens make intimate contact with plant cells in the apo-
plast, they have the ability to influence this critical calcium
pool. We focus here on the role of EPS in plant-pathogen inter-
actions and test the hypothesis that EPS suppresses host
immunity by chelation of calcium.

EPS is Required by Wild-Type Bacteria for Virulence and

Suppression of Calcium Signaling and Host Defenses
To study the role of EPSs in plant-pathogen interactions, we
focused on WT X. campestris pv. campestris (Xcc) and
an EPS-deficient mutant, but to demonstrate the broader im-
portance of EPS in pathogenicity, we also carried out equiva-
lent experiments with WT and corresponding EPS2 mutants
of other pathogens. To ensure a rigorous test of our hypothesis,
we examined a range of phenotypes associated with disease
and resistance. First, in pathogenicity tests, Xcc multiplied in
A. thaliana and caused chlorosis and later necrosis; the corre-
sponding mutant (Xcc EPS2) caused no visible symptoms,
did not grow, and was undetectable within 3 dpi (Figure 1A),
although WT and mutant grew equally well in vitro in NYGB
(data not shown). Growth, spread, and symptoms with Pseudo-
monas syringae pv. tomato (Pst) in Arabidopsis (Figure S1A,
available online) and P. syringae pv. syringae (Pss) in bean
(Phaseolus vulgaris) [6] were also reduced in the EPS2 mutants.
The contribution of EPS to virulence clearly varies, but the data
support many studies on the requirement for EPS in pathoge-
nicity, virulence, and symbiosis [4–7, 12, 14, 15, 21–28].

Aequorin-based measurements provide information about
changes to cytosolic calcium concentrations and, thereby,
about calcium influx [2, 10, 19]. Ca2+ ion influx in leaves of
aequorin-transformed Arabidopsis was a single transient and
greater after inoculation with the Xcc mutant than after inocu-
lation with WT (Figure 1B), as was induction of the wound poly-
mer callose by EPS2 mutants of Xcc [21] and Pst as compared
with wild-types (Figure S1B). Generation of ROS was ca. 5-fold
greater in Arabidopsis infiltrated with the Xcc mutant than in
that infiltrated with WT (Figure 1C), and a similar pattern was
given by P. vulgaris to Pss strains (Figure S1C).

Defense-related PR genes were monitored in Arabidopsis
by real-time RT-PCR. Genes were chosen for their representa-
tion of different gene families and different signaling pathways,
as well as for their diverse effects and kinetics; i.e., PR1, PDF1.2,
PAL, MPK3, GST [20]. Generally, EPS-deficient mutants in-
duced rapid and high gene transcription, in contrast to low
Figure 1. EPS is Required by Wild-Type Bacteria for Pathogenicity and

Suppression of Host Defenses and Calcium Signaling

(A) Left: Bacterial-growth dynamics observed in Arabidopsis Col-0 over five

days. Leaves were inoculated with 106 cfu/cm WT and EPS2 X. campestris

pv. campestris (Xcc) (data shows mean of four replicates 6 SD). Right:

Symptoms observed in Arabidopsis leaves 5 days after inoculation with

Xcc WT (left) and mutant (right).

(B) Cytosolic Ca2+ levels in Arabidopsis; Xcc WT and EPS2 infiltrated at 5 3

108 cfu/ml (mean of three replicates; ANOVA, p < 0.0001, df = 2). Significant

differences (different letters) between samples were detected by Tukey-

Kramer HSD.

(C) Oxidative burst (relative light units [RLU]) in Arabidopsis in response to

inoculation with 5 3 108 cfu/ml Xcc WT and EPS2 mutant (mean of three rep-

licates; ANOVA, p < 0.0001, df = 2). Significant differences (different letters)

between samples were detected by Tukey-Kramer HSD.

(D) Expression levels of PR1 and PDF1.2 defense-related genes in response

to inoculation with Xcc WT and EPS2 (5 3 106 cfu/ml) in Arabidopsis Col-0

leaves (mean of two replicates 6 SE). Data are significant at p < 0.001 unless

marked NS (not significant).



Current Biology Vol 18 No 14
1080
or late expression caused by WT isolates; this was the pattern
observed with PR1 and PDF1.2 genes in response to Xcc
(Figure 1D) and GST, PAL and MPK3 in response to Xcc
strains, and PR1 to Pst (Figure S7). Sometimes, downregula-
tion of defense-gene expression by WT strains occurred
(Figure 1D, Figure S7), as has been ascribed to the action of
certain Type III effectors [1].

These results are consistent with the suppression of host
responses by WT bacteria by virtue of EPS biosynthesis.

Pure EPSs Suppress Calcium Influx and Defenses Induced

by EPS-Deficient Bacteria and by MAMPs
In order to further investigate the implied role of EPS, EPSs
were purified from plant pathogens Xcc, Pss, E. amylovora,
and Ralstonia solanacearum; from plant symbiont Sinorhi-
zobium meliloti; from plant colonizer and opportunistic
human pathogen Pseudomonas aeruginosa [25]; and from
Photorhabdus luminescens, a symbiont of nematodes and
pathogen of insects [29] and obtained from Escherichia coli

Figure 2. Pure EPSs Suppress Calcium Influx and Defenses Induced

by EPS-Deficient Bacteria and by MAMPs but Do Not Block Receptor

Binding of Flagellin

(A) Intracellular Ca2+ levels in response to flg22 or elf18 after preinfiltra-

tion with water or 10 mg/ml EPS from X. campestris pv. campestris

(Xcc), E. amylovora (Ea), P. syringae pv. syringae (Pss), R. solanacearum

(Rs), S. meliloti (Sm), P. aeruginosa (Pa) (mean of three replicates;

ANOVA, p < 0.0001, df = 4, both graphs). Significant differences (differ-

ent letters) between samples were detected by Tukey-Kramer HSD. All

EPSs were tested against both MAMPs, with similar results; for clarity,

only three of each combination are shown.

(B) Left: Oxidative burst (relative light units [RLU]) in response to flg22

after preinfiltration with various concentrations of xanthan in Arabidop-

sis (mean of three replicates; ANOVA, p < 0.0001, df = 4). Significant

differences (different letters) between samples were detected by

Tukey-Kramer HSD (df = 3, p = 0.05). Xanthan is suppressive at 1, 2.5,

and 5 mg/ml, but xanthan levels of 7.5 and 10 mg/ml were not signifi-

cantly different from water controls and so were omitted. Right: sup-

pression of flg22-induced ROS by alginate (10 mg/ml).

(C) Left: Expression level of PR1 in response to inoculation with Xcc

EPS2 mutant in the presence or absence of xanthan. Right: Expression

level of PDF1.2 in response to treatment with elf18 in the presence or

absence of xanthan (mean of two replicates 6 SE). Data significant at

p < 0.001 unless marked NS (not significant).

(D) Arabidopsis cells were incubated with 10 nM 125I-Tyr-flg22 either

alone (total binding; gray columns) or with an excess of 10 mM unlabelled

flg22 (nonspecific binding; open columns). For determination of specific

binding, nonspecific binding is subtracted from total binding (mean of

three replicates 6 SD; ANOVA, p = 0.387 [nonspecific binding data],

p = 0.050 [total binding data]; df = 3). Also, the EPSs shown and those

from Rs and Sm were used at 1 mg/ml and did not block binding.

Note 1. Xanthan at 1–10 mg/ml, whether free or in the calcium-saturated

form, did not reduce diffusion of 125I-Tyr-flg22, as determined by a dial-

ysis method (data not shown).

Note 2. We included Pss because although Pst DC3000 is used widely

as a model isolate, Pst did not produce significant EPS (alginate) in vitro,

as has been previously reported for this pathovar [35]. However, alginate

is produced in planta by Pst according to detection of EPS and the

biosynthesis gene algD from infected plants [35, 36]. All alginate prepa-

rations used herein derive from Pss, which produces abundant alginate

in vitro.

(capsular polysaccharide K antigen) [22]. EPSs were ana-
lyzed (see Experimental Procedures, data not shown) and
found to be equivalent in composition to published struc-
tures [4, 6–8, 15]. For determining whether EPSs pre-
vented calcium signaling and defense induction, most of
the EPSs were infiltrated into leaves, which were then ex-
posed 15 min–1 hr later to EPS-deficient mutants and

MAMPs. EPSs were generally not perceived as MAMPs
(data not shown; see Conclusions). The EPS concentrations
used (1–10 mg/ml) reflect levels found in planta, as discussed
below. Calcium influx in response to flg22 or elf18 was sup-
pressed to similar extents by purified EPSs (10 mg/ml) from
plant, insect, and human pathogens and symbionts
(Figure 2A). Levan, a neutral fructan produced from sucrose
by some bacterial pathogens [4, 7], showed no significant
suppressive activity (Figure S2).

ROS induction by flg22 was suppressed by xanthan in a con-
centration-dependent manner, with complete inhibition by R 5
mg/ml (Figure 2B); elf18 elicitation was similarly suppressed
by xanthan (data not shown), and alginate (10 mg/ml) reduced
flg22-induced ROS by > 90% (Figure 2B). Likewise, coinfiltra-
tion of bean leaves with alginate (5 mg/ml) and the Pss EPS-

mutant resulted in low ROS levels equivalent to only those
found in WT cells (Figure S1C). EPSs are well known for provid-
ing bacteria with some protection against ROS toxicity [e.g., 5,
6, 25]. The suppressive effect described here must be against



Calcium-Binding Bacterial EPS Suppresses Defenses
1081
induction of ROS, because xanthan and alginate did not scav-
enge H2O2 from solution (unpublished data; see Experimental
Procedures) as was suggested for EPS from Burkholderia
cenocepacia [28].

EPS pretreatments also suppressed defense-gene in-
duction in response to pathogens or to MAMPs. Xanthan
(1 mg/ml) from Xcc reduced by w90% the level of PR1 tran-
scription induced by Xcc mutant and reduced elf18-elicited
PDF1.2 expression by > 70% (Figure 2C). Induction of the
wound polymer callose by flg22 and elf18 in Arabidopsis
leaves was also markedly reduced by preinfiltration with xan-
than (Figure S3). A related study reported suppression of host
responses (callose formation) via 0.1 mg/ml of a partially
purified xanthan (LPS was not removed) with a 24 hr interval
between pretreatment and exposure to the Xcc EPS2 mutant

Figure 3. EPSs Bind Calcium and EPS Levels in Biofilms Can Potentially

Deplete the Apoplastic Calcium Pool

(A) Calcium-binding potential by EPS from plant, insect, and human bac-

terial pathogens (used at 1 mg/ml and for *Xcc and *Ea, also at 10 mg/

ml). Abbreviations: see Figure 2 legend, also Pp (P. papulans), Pl (Photo-

rhabdus luminescens), Ec (E. coli) (mean of three replicates by AAS;

ANOVA, p < 0.0001, df = 10; (error bars are too small to show because

replicates were highly reproducible).

(B) Intracellular Ca2+ levels in response to treatment with flg22 after pre-

treatment with two concentrations of EGTA (mean of three replicates;

ANOVA, p < 0.0001, df = 2). Significant differences (different letters)

between samples were detected by Tukey-Kramer HSD (p = 0.05).

(C) Ultrastructure of Arabidopsis leaf intercellular spaces 5 dpi with Xcc

(i) and 10 mg/ml pure xanthan 2 dpi (ii). Xanthan produced from bacteria

(b) or infiltrated into apoplast (ap) of leaves appears to interact (arrows)

with the cell wall (cw). (iii) Cell wall (cw) and apoplast (ap) from control,

water-infiltrated leaf.

(D) GC-MS of pure xanthan (inset) and extracts from Xcc-inoculated

4 dpi and control leaves of Nicotiana benthamiana. Peaks are 1 =

GlcA, 2 = Man, 3 = Man-Pyr, 4 = Glc, 5 = Inositol. Gal is a major peak

in controls and infected tissue and slightly obscures Man-Pyr. Note

that Man-Pyr is a characteristic component of xanthan [8]. Calculations

for xanthan concentrations at 2, 4, and 6 dpi are based on a mean of two

runs from two replicate extractions.

[21], but this was found here to be entirely ineffective, pre-
sumably partly because calcium pools become replen-
ished with time and because of the low amounts of EPS
that were used.

Suppression by EPS Does Not Result from Interference
with MAMP-Receptor Binding

We considered the possibility that defense suppression by
EPSs results from physical blocking of MAMPs or of access
to receptors, such as via pores in host cell walls. To check
this, representative EPSs (used at 1 and 2.5 mg/ml) were
examined for interference with binding of 125I-Tyr-flg22 to
its LRR-RLK receptor FLS2 on Arabidopsis cells [30]. There
was no reduction in flg22 binding caused by any of the
purified EPSs from diverse bacterial pathogens (Fig-
ure 2D). Thus, the suppressive effect must be exerted by
prevention of perception, signaling, or both.

Diverse EPSs Bind Calcium Ions

All EPSs (1 mg/ml) bound from 5 to 43 mg Ca2+/mg EPS
(Figure 3A). Xanthan and amylovoran were also examined
at a higher polymer concentration (10 mg/ml) when calcium
binding increased by > 50%, presumably due to chain-
chain cooperativity and ion chelation [8, 17]. A modified
xanthan (lacking pyruvyl and acetyl groups) [8, 21]

sequestered about 50% of the amount of calcium as com-
pared with WT xanthan (Figure S4), and its suppression
against flg22-induced Ca2+ influx was about half that of the
WT polymer (data not shown). The calcium chelator EGTA R
10 mM mimicked EPS suppression of flg22-induced Ca2+ in-
flux, suggesting that EPSs function in this way and confirming
the apoplastic origin of MAMP-induced calcium influx
(Figure 3B). Likewise, LaCl3, the calcium surrogate acting as
a calcium-channel blocker, suppressed flg22-induced calcium
influx at % 1 mM (Figure S5).

EPS levels in Bacterial Biofilms and in Infected Hosts
Can Potentially Deplete the Apoplastic Calcium Pool

In order for us to ascertain the calcium-binding potential of
EPS present in bacterial biofilms, as are formed during
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invasion of the host apoplast [4, 9, 12, 31], we first assessed
amounts (w/v) of EPS in agar biofilms. GC-MS revealed xan-
than from Xcc at 36 mg/ml, and the Pss biofilm comprised
24 mg/ml alginate. [Ca2+]apo has been measured at w50–150 mM
[32]. From data in Figure 3A, the xanthan concentration
found in agar biofilms would be theoretically capable of bind-
ing 648 mg/ml and alginate could bind 480 mg/ml calcium; this
equates to > 10 mM Ca2+ and far exceeds that needed to
impair local signaling.

Confirmation of EPS levels and timing in planta is also crucial
for the understanding of their role. Amounts of EPSs reported
from infected plants (from 1 mg/g fresh weight [23] to 30–50
mg/g dry weight [4, 24]) are likely to be considerable underes-
timates, because the apoplast may constitute only 10% of
overall tissue volume [23]; also, EPSs can form gels with
calcium and with some host-wall polymers [8]. Figure 3C
shows pure xanthan infiltrated into Arabidopsis leaves, resem-
bling the fibrillar biofilm matrix ultrastructurally visible in
xanthomonad infections and, likewise, apparently interacting
with host-wall fibrils. Interaction of xanthan with wall polymers
has been noted by us before (Xanthomonas axonopodis pv.
manihotis in cassava, unpublished data) and might reflect
sequestration of Ca2+ ions, which perform a crosslinking struc-
tural function for the polygalacturonan matrix. Weakening of
the wall could further contribute to host invasion.

We examined EPS production by Xcc in Nicotiana benthami-
ana, a pathosystem [21] that provides sufficient material for
GC-MS analysis. After 2 dpi (water-soaking symptoms), 4 dpi
(chlorosis), and 6 dpi (necrosis), xanthan levels from GC-MS
were 14 (1), 19 (2), and 25 (6) mg/g as dry weight and fresh
weight (bracketed), respectively; amounts were calculated
from GC-MS runs as represented by Figure 3D. These concen-
trations of xanthan are sufficient for binding local [Ca2+]apo

and suppressing signaling. This result supports ultrastructural
studies showing bacteria embedded in an EPS matrix from
early infection [4] (e.g., after 2 hpi [9] and 8 hpi [31], and 18
hpi in this study), and concurs with the requirement for xanthan
production in initial infection by Xcc [14]. Some evidence sug-
gests that quorum sensing (QS) control of EPS biosynthesis
results in relatively late appearance of these polymers
[23, 33]. Alternative regulation of EPS biosynthesis, such as
via surface contact (colanic-acid production by E. coli) and
in response to reactive oxygen and desiccation stress (algi-
nate from P. syringae and P. aeruginosa) [5, 6], might explain
this apparent contradiction. Nevertheless, QS is likely to oper-
ate in the high populations ultrastructurally evident in early
localized biofilms in planta.

Conclusions and Implications
Our results are consistent with the suppressive effects of bac-
terial EPSs on MAMP-elicited defenses exerted via apoplastic
calcium sequestration and reduction of consequent signaling.
Plant pathogenic bacteria proliferate adjacent to the host cell
wall, which contains the apoplastic calcium pool. There, they
produce EPS in amounts sufficient for depletion of the local
free [Ca2+]apo. The overall contribution of EPS to basic compat-
ibility in host-pathogen interactions is likely to be additive to
the rapidly produced type III effectors, of which some can sup-
press signaling mediated by multiple MAMPs [1, 13]. However,
the novel and fundamental role revealed here for EPS under-
lines why most pathogens are dependent on EPS synthesis.
Functions beyond mere protection have long been surmised
[4, 8]. Evaluation of equivalent suppressive function for EPS
of pathogens of animals requires suitable host-pathogen
models, possibly as described for Staphylococcus spp. [27],
but it currently remains a matter for speculation with respect
to any role for calcium binding.

Clearly, EPSs are potential disease-control targets. One
control strategy in the context of this study could involve
depolymerases such as alginate, amylovoran, and xanthan
lyases [8]. The resulting oligosaccharides would not only
lose affinity for Ca2+ ions, which can be dependent on the 3D
structure of the polymer, involving chain cooperation and
chain length [8, 17], but the degradation products may also
function as MAMPs. There are reports of eliciting activities of
xanthan and alginate oligomers (e.g., [34]). Also, we have
shown MAMP activity with the induction of ROS by hydrolysed
Pss alginate in Arabidopsis cells (unpublished data). Intact,
calcium-free EPSs have low eliciting activities, but calcium-
saturated xanthan elicited PR1, PDF1.2, and PAL genes
(Figure S6). Presumably, this form was no longer able to
‘‘self protect’’ by means of chelating calcium ions.

Supplemental Data

Supplemental data include supplemental experimental procedures and

seven figures and can be found with this article online at http://www.

current-biology.com/cgi/content/full/18/14/1078/DC1/.

Acknowledgments

We acknowledge many colleagues for their provision of MAMPs, some

EPSs, bacterial cultures, and seed (see Experimental Procedures). We thank

Allan Downie (John Innes Centre, Norwich) and Ian S. Roberts (Manchester

University) for early discussions. Research was mainly supported by a grant

from The Leverhulme Trust to R.M.C. Electron microscopy was performed

by Ursula Potter and Louise Haste (University of Bath).

Received: April 25, 2008

Revised: June 18, 2008

Accepted: June 19, 2008

Published online: July 17, 2008

References

1. He, P., Shan, L., and Sheen, J. (2007). Elicitation and suppression of

microbe-associated molecular pattern-triggered immunity in

plant-microbe interactions. Cell. Microbiol. 9, 1385–1396.

2. Erbs, G., Silipo, A., Aslam, S., De Castro, C., Liparoti, V., Flagiello, A.,

Pucci, P., Lanzetta, R., Parrilli, M., Molinaro, A., et al. (2008). Peptidogly-

can and muropeptides from pathogens Agrobacterium and Xanthomo-

nas elicit plant innate immunity: structure and activity. Chem. Biol. 15,

438–448.

3. Kunze, G., Zipfel, C., Robatzek, S., Niehaus, K., Boller, T., and Felix, G.

(2004). The N terminus of bacterial elongation factor Tu elicits innate im-

munity in Arabidopsis plants. Plant Cell 16, 3496–3507.

4. Denny, T.P. (1995). Involvement of bacterial polysaccharides in plant

pathogenesis. Annu. Rev. Phytopathol. 33, 173–197.

5. Kemp, B.P., Horne, J., Bryant, A., and Cooper, R.M. (2004). Xanthomo-

nas axonopodis pv. manihotis gumD gene is essential for EPS produc-

tion and pathogenicity and enhances epiphytic survival on cassava

(Manihot esculenta). Physiol. Mol. Plant Pathol. 64, 209–218.

6. Yu, J., Penaloza-Vazquez, A., Chakrabarty, A.M., and Bender, C.L.

(1999). Involvement of the exopolysaccharide alginate in the virulence

and epiphytic fitness of Pseudomonas syringae pv. syringae. Mol.

Microbiol. 33, 712–720.

7. Bugert, P., and Geider, K. (1995). Molecular analysis of the ams operon

required for exopolysaccharide synthesis of Erwinia amylovora. Mol.

Microbiol. 15, 917–933.

8. Sutherland, I.W. (1994). Structure-function relationships in microbial

exopolysaccharides. Biotechnol. Adv. 12, 393–448.

9. Brown, I., Mansfield, J., Irlam, I., Conrads Strauch, J., and Bonas, U.

(1993). Ultrastructure of interactions between Xanthomonas campestris

pv. vesicatoria and pepper, including immunocytochemical localization

http://www.current-biology.com/cgi/content/full/18/14/1078/DC1/
http://www.current-biology.com/cgi/content/full/18/14/1078/DC1/


Calcium-Binding Bacterial EPS Suppresses Defenses
1083
of extracellular polysaccharides and the AvrBs3 protein. Mol. Plant-

Microbe Interact. 6, 376–386.

10. Lecourieux, D., Raneva, R., and Pugin, A. (2006). Calcium in plant de-

fence-signalling pathways. New Phytol. 171, 249–269.

11. Bedini,E., De Castro,C., Erbs, G., Mangoni,L., Dow, J.M., Newman,M.-A.,

Parrilli, M., and Unverzagt, C. (2005). Structure-dependent modulation of

a pathogen response in plants by synthetic O-antigen polysaccharides. J.

Am. Chem. Soc. 127, 2414–2416.

12. Keshavarzi, M., Soylu, S., Brown, I., Bonas, U., Nicole, M., Rossiter, J.,

and Mansfield, J. (2004). Basal defences induced in pepper by lipopoly-

saccharides are suppressed by Xanthomonas campestris pv. vesicato-

ria. Mol. Plant-Microbe Interact. 17, 805–815.

13. Jones, J.D.G., and Dangl, J.L. (2006). The plant immune system. Nature

444, 323–329.

14. Newman, M.A., Conrads-Strauch, J., Scofield, G., Daniels, M.J., and

Dow, J.M. (1994). Defense-related gene induction in Brassica cam-

pestris in response to defined mutants of Xanthomonas campestris

with altered pathogenicity. Mol. Plant-Microbe Interact. 7, 553–563.

15. Fraysse, N., Couderc, F., and Poinsot, V. (2003). Surface polysaccharide

involvement in establishing the rhizobium-legume symbiosis. Eur. J.

Biochem. 270, 1365–1380.

16. Araud-Razou, I., Vasse, J., Montrozier, H., Etchebar, C., and Trigalet, A.

(1998). Detection and visualization of the major acidic exopolysacchar-

ide of Ralstonia solanacearum and its role in tomato root infection and

vascular colonization. Eur. J. Plant Pathol. 104, 795–809.

17. Lattner, D., Flemming, H.-C., and Mayer, C. (2003). 13C-NMR study of the

interactions of bacterial alginate with bivalent cations. Int. J. Biol. Mac-

romol. 33, 81–88.

18. Cooper, R.M., Resende, M.L.V., Flood, J., Rowan, M.G., Beale, M.H.,

and Potter, U. (1996). Detection and cellular localization of elemental

sulphur in disease-resistant genotypes of Theobroma cacao. Nature

379, 159–162.

19. Grant, M., Brown, I., Knight, M., Ainslie, A., and Mansfield, J. (2000). The

RPM1 plant disease resistance gene facilitates a rapid and sustained in-

crease in cytosolic calcium that is necessary for the oxidative burst and

hypersensitive cell death. Plant J. 23, 441–450.

20. Tsuda, K., Sato, M., Glazebrook, J., Cohen, J.D., and Katagiri, F. (2008).

Interplay between MAMP-triggered and SA-mediated defense re-

sponses. Plant J. 53, 763–775.

21. Yun, M.H., Torres, P.S., El Oirdi, M., Rigano, L.A., Gonzalez-Lamothe, R.,

Marano, M.R., Castagnaro, A.P., Dankert, M.A., Bourab, K., and Vojnov,

A.A. (2006). Xanthan induces plant susceptibility by suppressing callose

deposition. Plant Physiol. 141, 178–187.

22. McNulty, C., Thompson, J., Barrett, B., Lord, L., Andersen, C., and

Roberts, I.S. (2006). The cell surface expression of group 2 capsular

polysaccharides in Escherichia coli: the role of KpsD, RhsA and

a multi-protein complex at the pole of the cell. Mol. Microbiol. 59,

907–922.

23. McGarvey, J.A., Denny, T.P., and Schell, M.A. (1999). Spatial-temporal

and quantitative analysis of growth and EPS1 production by Ralstonia

solanacearum in resistant and susceptible tomato cultivars. Phytopa-

thology 89, 1233–1239.

24. Gross, M., and Rudolph, K. (1987). Demonstration of levan and alginate

in bean plants (Phaseolus vulgaris) infected by Pseudomonas syringae

pv. phaseolicola. J. Phytopathol. 120, 9–19.

25. Yorgey, P., Rahme, L.G., Tan, M.W., and Ausubel, F.M. (2001). The roles

of mucD and alginate in the virulence of Pseudomonas aeruginosa in

plants, nematodes and mice. Mol. Microbiol. 41, 1063–1076.

26. Cuccui, J., Easton, A., Chu, K.K., Bancroft, G.J., Oyston, P.C.F., Titball,

R.W., and Wren, B.W. (2007). Development of signature-tagged muta-

genesis in Burkholderia pseudomallei to identify genes important in sur-

vival and pathogenesis. Infect. Immun. 75, 1186–1195.

27. Begun, J., Gaiani, J.M., Rohde, H., Mack, D., Calderwood, S.B., Ausu-

bel, F.M., and Sifri, C.D. (2007). Staphylococcal biofilm exopolysacchar-

ide protects against Caenorhabditis elegans immune defences. PLoS

Pathog. 3, e57.

28. Bylund, J., Burgess, L.A., Cescutti, P., Ernst, R.K., and Speert, D.P.

(2006). Exopolysaccharides from Burkholderia cenocepacia inhibit neu-

trophil chemotaxis and scavenge reactive oxygen species. J. Biol.

Chem. 281, 2526–2532.

29. Ffrench-Constant, R.H., Waterfield, N., Burland, V., Perna, N.T., Daborn,

P.J., Bowen, D., and Blattner, F.R. (2000). A genomic sample sequence

of the entomopathogenic bacterium Photorhabdus luminescens W14:
potential implications for virulence. Appl. Environ. Microbiol. 66, 3310–

3329.

30. Bauer, Z., Gomez-Gomez, L., Boller, T., and Felix, G. (2001). Sensitivity

of different ecotypes and mutants of Arabidopsis thaliana toward

the bacterial elicitor flagellin correlates with the presence of receptor-

binding sites. J. Biol. Chem. 276, 45669–45676.

31. Cason, E.T., Richardson, P.E., Essenberg, M.K., Brinkerhoff, L.A., John-

son, W.M., and Venere, R.J. (1978). Ultrastructural cell-wall alterations in

immune cotton leaves inoculated with Xanthomonas malvacearum.

Phytopathology 68, 1015–1021.

32. Felle, H.H., Hanstein, S., Steinmeyer, R., and Hedrich, R. (2000). Dynam-

ics of ionic activities in the apoplast of the sub-stomatal cavity of intact

Vicia faba leaves during stomatal closure evoked by ABA and darkness.

Plant J. 24, 297–304.

33. Vojnov, A.A., Slater, H., Daniels, M.J., and Dow, J.M. (2001). Expression

of the gum operon directing xanthan biosynthesis in Xanthomonas

campestris and its regulation in planta. Mol. Plant-Microbe Interact.

14, 768–774.

34. Liu, H., Huang, C., Dong, W., Du, Y., Bai, X., and Li, X. (2005). Biodegra-

dation of xanthan by newly isolated Cellulomonas sp. LX, releasing elic-

itor-active xantho-oligosaccharides-induced phytoalexin synthesis in

soybean cotyledons. Process Biochem. 40, 3701–3706.

35. Keith, R.C., Keith, L.M.W., Hernandez-Guzman, G., Uppalapati, S.R.,

and Bender, C.L. (2003). Alginate gene expression by Pseudomonas sy-

ringae pv. tomato DC3000 in host and non-host plants. Microbiology

149, 1127–1138.

36. Fett, W.F., and Dunn, M.F. (1989). Exopolysaccharides produced by

phytopathogenic Pseudomonas syringae pathovars in infected leaves

of susceptible hosts. Plant Physiol. 89, 5–9.


	Bacterial Polysaccharides Suppress Induced Innate Immunity by Calcium Chelation
	Results and Discussion
	Bacteria Release Defense Elicitors but Counter Host Responses
	Bacterial Polysaccharides are Polyanionic and Bind Cations
	Calcium Signaling is Required for Defense Induction
	EPS is Required by Wild-Type Bacteria for Virulence and Suppression of Calcium Signaling and Host Defenses
	Pure EPSs Suppress Calcium Influx and Defenses Induced by EPS-Deficient Bacteria and by MAMPs
	Suppression by EPS Does Not Result from Interference with MAMP-Receptor Binding
	Diverse EPSs Bind Calcium Ions
	EPS levels in Bacterial Biofilms and in Infected Hosts Can Potentially Deplete the Apoplastic Calcium Pool
	Conclusions and Implications

	Supplemental Data
	Acknowledgments
	References


