
Artificial Intelligence 141 (2002) 123–135

www.elsevier.com/locate/artint

Unifying metric approach to the triple parity

Tony Y.T. Chan

The University of Aizu, Aizu-Wakamatsu City, Fukushima Prefecture, 965-8580, Japan

Received 26 June 2001; received in revised form 22 February 2002

Abstract

The even-odd parity problem is a tough one for neural networks to handle because they assume
a finite dimensional vector space. Typically, the size of the neural network increases as the size of
the problem increases. The triple parity problem is even tougher. In this paper, a method is proposed
for supervised and unsupervised learning to classify bit strings of arbitrary length in terms of their
triple parity. The learner is modeled by two formal concepts, transformation system and stability
optimization. Even though a small set of short examples were used in the training stage, all bit
strings of any length were classified correctly in the online recognition stage. The proposed learner
has successfully learned to devise a way by means of metric calculations to classify bit strings of
any length according to their triple parity. The system was able to acquire the concept of counting,
dividing, and then taking the remainder, by autonomously evolving a set of string-editing rules along
with their appropriate weights to solve the difficult problem.
 2002 Elsevier Science B.V. All rights reserved.

Keywords: Parity problems; Artificial neural networks; Supervised learning; Unsupervised learning; Unifying
metric approach; Transformation systems

1. Introduction

Among the most practical and popular vector space approaches to pattern recognition
and machine learning (or pattern learning) are statistical discriminant analysis and neural
network. These approaches in their current forms assume a finite dimensional, normed
vector space. As such, they are unable to deal with the parity problem properly. Minsky
and Papert [10, p. 254–255] pointed out some of the difficulties that a multilayer neural
network would run into, even for solving a supervised parity problem of length 4. In
Chapter 8 of [15], the writing that popularized the back-propagation algorithm, Rumelhart,

E-mail address: t-chan@u-aizu.ac.jp (T.Y.T. Chan).

0004-3702/02/$ – see front matter 2002 Elsevier Science B.V. All rights reserved.
PII: S0004-3702(02) 00 24 8- 5

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82057699?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

124 T.Y.T. Chan / Artificial Intelligence 141 (2002) 123–135

Hinton, and Williams mentioned that this is a “very difficult problem” [15, p. 334]. In [1], a
general metric approach was proposed for inductive learning in two classes. It discovered
class structures by maximizing the distances between objects in different classes while
simultaneously minimizing the distances between objects in the same classes. It solved
the particularly difficult unsupervised parity problem of unbounded length with 100%
accuracy.

The notion of distance is extremely versatile. Grenander [7, Part IV] defined metric
patterns by introducing a probability density on the objects. Besides versatility, another
beauty of the metric approach is that distance can be defined on symbolic (structural)
representations as well as on numeric representations because the normed vector space
is a special case of the metric space. I used the metric approach for the supervised and
unsupervised classification of chromosomes represented by strings [2]. Unlike the case for
the usual parity problem, the median and telocentric chromosomes can be distinguished
rather easily. This is not surprising since the structures of even and odd parities are actually
more complicated than the structures of median and telocentric chromosomes in their string
representations. Given the structures of the classes, this approach will attempt to find a
metric function to sort out the classes in the same domain by exploiting their different
structures. I also tackled the supervised feature subset selection problems in the Euclidean
metric settings [3]. Wong, Shen, and Wong [19] used it for texture classification and
did experiments on hundreds of training vectors at a time. Liang and Clarson used it on
brainwaves [9], represented by vectors. The general unifying metric idea is akin to Fisher’s
discriminant [5, p. 115], which maximizes the distance between class centers while at the
same time minimizing the within-class scatters. Fisher assumed a fixed Euclidean vector
space throughout the process. Here we use dynamic families of metric spaces during
the learning process. The preparation of an introductory book on this subject of metric
approaches to pattern learning is underway [4].

This paper extends the method in [1] to three classes and applies the extension to
the triple parity problem. This is even more difficult to solve than the usual even-odd
parity because the decision surfaces required for triple parity are even more complex. For
the supervised case, we are given three sets of correct examples. The first set contains
some examples of remainder-0 parity strings, the second set contains some examples of
remainder-1 parity strings, and the third set contains some examples of remainder-2 parity
strings. Of course, for learning to be genuine, we do not tell the computer the meanings of
the classes which these examples represent. It only knows that it has some examples of bit
strings from some classes. The problem is for it to learn the generalizations to classify any
bit string according to these examples.

Fundamentally, the goal of pattern learning is for the machine to adapt a working
program for classification and prediction based on some chosen example data that it
has been exposed to. The problem setting involves a pattern language describing a set
P of objects. The object set is divided into exactly three mutually-exclusive subsets,
Q1,Q2,Q3 ⊂ P . Each of these subsets is assumed to be a class of objects. The teacher
supplies three finite training groups of objects to the learning agent. The union of the
training groups Q̌1 ∪ Q̌2 ∪ Q̌3 is called the training set. The agent then autonomously
devises a way to distinguish the three sets Q1,Q2, and Q3 by means of metric calculations.
Hence, the next time an unknown object p ∈ P is presented to the agent, it will be able

T.Y.T. Chan / Artificial Intelligence 141 (2002) 123–135 125

to classify it as belonging to Q1,Q2, or Q3. The learner accomplishes this by deriving a
stable metric space to separate the training groups. A stable metric space is one containing
well-separated, compact clusters.

2. The learning model

The approach is modeled by two formal concepts, transformation system and stability
optimization. Let T = (P,S) be a transformation system, where P is an underlying set of
structural objects described by a pattern language.

Let s = x ↔ y be a substitution operation where x and y are subobjects. An object
X can be transformed to the object Y via rule s by matching a subobject x from X and
replacing it with y . Substitution rules are bidirectional in that the substitution of x by y

implies that the substitution of y by x is also possible. When x = θ is empty, the operation
is called insertion. When y is empty, the operation is called deletion. S = (s1, s2, . . . , sm)

is a list of m bidirectional substitution operations. These operations are the building blocks
by which any object from P can be transformed into any other object from P .

Now we introduce weights to the substitution rules. With each substitution si , we
associate a weight wi , wi � 0, so that it costs wi to operate si . Let W = (w1,w2, . . . ,wm);
and ∆W(p1,p2) = the smallest total cost to transform p1 into p2 using costs W . The
function ∆ takes three arguments of two types: one type appears as a subscript and the
other type appears inside the parentheses. The subscript W is a global (sometimes implicit)
input argument compared with p1 and p2, which are local in scope. When it is clear from
the context which W is meant, we may drop the subscript and write simply ∆(p1,p2).
We interpret the cheapest cost as the distance between two objects. The more they relate,
the closer their distance together, while the more they differ, the greater their distance
apart. The definition of the cheapest cost is obviously dependent on the specific distance
algorithm implementation. Under this model, a fast albeit non-optimal distance calculation
is sometimes necessary as long as it can learn interesting concepts. The weights would
attempt to distinguish the more important building blocks from the lesser ones in terms
of relatedness. When a rule has weight 0, it means that this particular building block has
no discriminant power in separating the classes of objects. When all the weights are 1, ∆
simply counts the minimum number of operations required to transform one object into
another.

Definition 1. The average intra-group distance for a training group k is

ρk(∆W) = 2

n(n− 1)

n∑
i=2

i−1∑
j=1

∆W(q̌i, q̌j)

where q̌i , q̌j ∈ Q̌k and the size of Q̌k is n.

Given a specific training group and a specific distance function, ρ returns the average
distance within a group of training objects. Imagine an n × n distance matrix. It is
symmetric with 0’s on the main diagonal. So, ρ returns the average over the distances

126 T.Y.T. Chan / Artificial Intelligence 141 (2002) 123–135

on the lower triangular part of this matrix. Note that for this formula to work, there must be
at least two training objects. When n is equal to 1, we trivially define ρ = 0. We may drop
the subscript or the input argument for ρ when it is clear from the context which subscript
or argument is meant.

Definition 2. The average inter-group distance between groups k and h is

υk,h(∆W)= 1

nn′
n∑

i=1

n′∑
j=1

∆W(q̌i, řj)

where řj ∈ Q̌h and the size of Q̌h is n′.

Here n′ can equal 1. In essence, these two rather standard definitions capture the idea of
the average of a distance table where distances are listed between pairs of objects. Distance
matrix (or distance table), in a sense, is the opposite of the idea of a confusion matrix where
the diagonal elements are large and off-diagonal elements are small.

Definition 3. The stability quotient for three groups, 1, 2, and 3, is

Z1,2,3(∆W) = ρ1 + ρ2 + ρ3

υ1,2υ1,3υ2,3
.

The stability quotient serves as the criterion function of an optimization procedure so
that we can simultaneously minimize the within group distances while maximizing the
between group distances. Obviously, we would like to configure the topology in such a
way that, within a group, objects are close to each other, while at the same time they are far
from objects of other groups. The goal is to try to keep all intra-group distances equal to
zero and none of the inter-group distances equal to zero. This is the central idea that gives
the unifying metric approach a sense of intelligence and being able to learn.

It is not intelligent just to minimize the numerator instead of the entire quotient. Let sj
be a useless operation. There are plenty of these around, particularly when we consider
the evolving nature of this system later on in this section. Let wj = 1; then the rest of the
useful and useless operations will all have a weight of 0. With this weighting scheme, the
distance between any two objects in the pattern language is always 0, so that intra-group
distances are automatically 0. Obviously, this weighting scheme has no discriminant power
at all. Yet, minimizing only the numerator will quickly produce this meaningless weighting
scheme. The denominator ensures that this scenario will not occur.

Definition 4. The stability optimization is to minimize

Z(∆W),

subject to the constraint that

m∑
i=1

wi = 1.

T.Y.T. Chan / Artificial Intelligence 141 (2002) 123–135 127

In other words, we want Z to get as close to zero as possible since negative costs are
not allowed.

Why bother calculating Z at all? Why not just calculate the misclassification rate on the
training set, and directly minimize it subject to the same constraint? In fact, the latter is not
a bad idea, particularly for the supervised tasks. The two minimizations work differently.
The advantage of minimizing the misclassification rate is to save CPU time. But how can
the learning agent calculate the misclassification rates when it does not even know the
correct class labels for the training objects? The advantage of minimizing Z is found in the
ability of the agent to detect erroneous labels for the unsupervised tasks by observing an
asymptotic phenomenon during the optimization process, as we shall see later in Section 4.

What happens when the optimal Z-value is so high that it is unacceptable, i.e., as
evidenced by a high misclassification rate? This occurs when the given set of building
blocks cannot discriminate the classes. The classes intermingle with one another in the
current metric space. Now we are ready to consider the evolving nature of this system.
We begin with the given P , an underlying set of structural objects; S0, the initial
given set of substitution operations; and G, a generator or constructor. The generator
systematically constructs new substitution operations, that is, new building blocks from
previous substitution operations. These new substitutions are called macros. (Compare
with Arthur Samuel’s use of products of preexisting predicates to invent new ones in
his checker learning machine [10, p. x].) At each macro generation step t > 0, we have
St = St−1 ∪ G(St−1) so that S0 ⊂ S1 ⊂ S2, At each step t � 0, we associate with the
current transformation system (P,St) its own stability optimization with its own Zt .

There is a simple way to see whether or not the current Zt is satisfactory after arriving
at a certain step t . We suspend the optimization loop at that step and try out the current
optimum solution on the training set (or on a separate validation test set). If the resulting
classifications are satisfactory, we go to the on-line recognition stage. If not, we continue
until another stable step is suspected. The definition of satisfactory could depend on the
best, average, and variance of the misclassification rates thus far in the training process,
and how much training time has already been spent on the current problem. We keep
repeating this cycle of searching and validating on the training set. Convergence can be
verified experimentally. In this way, we are attempting to minimize Z while at the same
time getting some feedback from minimizing the misclassification rate on the training
set.

Throughout the adaptation process, P and G are fixed. From an implementational time-
complexity point of view, we have, in effect, added another loop (the t-loop in Fig. 1) on
top of the optimization loop. The optimization loop tries out different cost vectors while the
macro generation t-loop tries out larger and larger sets of macro substitution operations.
Each stability optimization corresponds to a family of metric spaces. The number of
times through the t-loop is the number of families being examined by the agent. In the
unsupervised case, when training examples receive wrong labels or no labels, the training
set will be repartitioned either randomly or according to the best metric obtained so far.
This constitutes the outermost loop. The stopping criterion has always been the same: loop
until it finds a stable metric space. Alternatively, the human designer can preset a time limit,
after which the training process will be halted and new training objects can be introduced
into the training set or some old training objects can be removed. In the perfect case, stable

128 T.Y.T. Chan / Artificial Intelligence 141 (2002) 123–135

Repartition the training groups accordingly
Loop on set of substitution operations (t -loop)

Optimization on weight vector until space stable
Distance calculation of two objects, ∆W(p1,p2)
...

End loops

Fig. 1. Control structure for the unsupervised inductive learning model.

means Z = 0. Otherwise, stable means that the groups in the metric space form well-
defined clusters to the satisfaction of the learning agent, judging by the misclassification
rate on the training set. In these cases, the training process stops and the agent is ready to
go on-line to predict the class labels of any objects in the specified environment.

After the training phase is over, one can prepare for the recognition stage. We store
the shortest object from each training group as the representative of the group. Also, we
store the most stable substitution cost vector W∗ at the end of the training process. When
an unknown object is presented to the system, its distances to the representatives will be
calculated using the weights W∗. It can then be classified according to the nearest neighbor
rule. In the case when the best Z is nonzero, more than one representative can be chosen
from each group and the k-nearest neighbor rule can be used for classification.

3. Supervised case

Now we apply the model to the triple parity problem of bit strings. The idea of triple
parity is a generalization of the usual parity problem. The usual parity problem is the
classification of strings as either even or odd parity. In the triple parity case, we first count
the number of 1’s in a bit string. Then we divide the count by 3 and obtain the remainder.
If the remainder is 0, then the string belongs to class 1; if 1, then class 2; if 2, then class 3.
The underlying set of structural objects P is the set of all finite strings of 0’s and 1’s. The
initial set of substitution operations is

S0 = {0 ↔ θ,1 ↔ θ},
where θ is the null string; i.e., we have two rules: insertion (or deletion) of a 0 and insertion
(or deletion) of a 1. The generator is

G(S) = {
ab ↔ θ | a ∈ {0,1}, b ↔ θ ∈ S

}
.

Consider the training set in Fig. 2. There are three training groups for three classes of
objects. Each class is represented by only two or three relatively short examples. The size
of P is infinite and the longest example from P can be arbitrarily large. We shall see how
the learner proceeds step by step to discover the idea of triple parity.

At step t = 0, the learner can find no satisfactory weight vector for classification. Given
the three training groups and given the two insertion operations, no matter what W it tries,
Z is a relatively large value. There are too many misclassifications in the training set itself.
If we had specified a test set, there would be many misclassifications in the test set as well.

T.Y.T. Chan / Artificial Intelligence 141 (2002) 123–135 129

Group 1
1 00
2 111
3 10101

Group 2
1 01010101
2 1011001

Group 3
1 101
2 11011001

Fig. 2. Training groups with no mislabels.

The learner begins to evolve to the next step t = 1 by generating more operations.
Applying G to S0, it obtains 4 more substitution operations as follows:

S1 =

0 ↔ θ

1 ↔ θ

00 ↔ θ

01 ↔ θ

10 ↔ θ

11 ↔ θ

.

Applying stability optimization under the transformation system (P,S1), it again finds no
satisfactory separation of classes. Even with six rules, no matter how the weights are spread
out, no clear clusters are formed. The training objects still intermingle with one another in
this family of metric spaces.

However, when t = 2,

S2 =

0 ↔ θ

1 ↔ θ

00 ↔ θ

01 ↔ θ

10 ↔ θ

11 ↔ θ

000 ↔ θ

001 ↔ θ

010 ↔ θ

011 ↔ θ

100 ↔ θ

101 ↔ θ

110 ↔ θ

111 ↔ θ

.

Here, it finds the perfect stability Z = 0. Specifically, all average intra-group dis-
tances are zero, i.e., ρ1 = ρ2 = ρ3 = 0; and all average inter-group distances are
1

10 , i.e., υ1,2 = υ1,3 = υ2,3 = 1
10 . Fig. 3 shows the perfect weight vector as W∗ =

(0, 1
10 ,0, 1

10 ,
1

10 ,
1

10 ,0, 1
10 ,

1
10 ,

1
10 ,

1
10 ,

1
10 ,

1
10 ,0). It then chooses the shortest object from

each group to represent the group, i.e., 00 from group 1, 1011001 from group 2 and 101
from group 3. The stable metric space contains three point-clusters because there is perfect
stability. Each cluster is represented by its chosen prototype. The distance between any two
clusters or prototypes is exactly 1

10 .
When an unknown object from P such as 1010010111 is presented to the agent to be

classified, it calculates the distances of the unknown from the three prototypes using the

130 T.Y.T. Chan / Artificial Intelligence 141 (2002) 123–135

Index Substitution Weight

1 0 ↔ θ 0
2 1 ↔ θ 1

10
3 00 ↔ θ 0

4 01 ↔ θ 1
10

5 10 ↔ θ 1
10

6 11 ↔ θ 1
10

7 000 ↔ θ 0

8 001 ↔ θ 1
10

9 010 ↔ θ 1
10

10 011 ↔ θ 1
10

11 100 ↔ θ 1
10

12 101 ↔ θ 1
10

13 110 ↔ θ 1
10

14 111 ↔ θ 0

Fig. 3. Perfect weights.

perfect weight vector. When the distance between prototype i and the unknown is zero,
then the unknown belongs to class i . In this way, all strings from the underlying infinite
environment P can be classified correctly in the on-line recognition stage even though
only a small-sized training set is used and only one object is chosen from each class for
comparison.

This triple parity problem is very difficult to handle for methods that use vector
representations. The current discriminant analysis, and neural network assume vector
representations of objects. Fundamentally, the training procedures of these approaches
involve a statistical discriminant analysis in the input vector space [5, pp. 114–121], [14,
18]. Basically, they favor spaces with larger between-class variances (or distances between
class means) and smaller within-class variances. Even when weighted Euclidean distance
(e.g., [11, p. 235], [13, p. 98], [16]) or more generally, Mahalanobis distance, is used, the
space is still fundamentally Euclidean because the matrix of the symmetric bilinear form
(or the inner product) is always positive semidefinite. (One easy way to get round this
limitation is to use an indefinite pseudo-Euclidean inner product.) They begin with a finite
dimensional vector space. Then this input space is partitioned by a sequence of linear and
non-linear surfaces to produce the decision regions where class labels are finally assigned.
A neural network plus its sequence of training vectors can be thought of as defining an
equivalent relation on the rigid input vector space. It partitions the space into equivalent
classes where each equivalent class corresponds to a category of objects. Changing the
initial conditions of the neural network can change the partition (i.e., the equivalent
relation) on this rigid space. In their current popular forms of vector representations
and gradient descent learning algorithms, they are most suitable for problems that are
statistical in character and cannot naturally handle infinite dimensional vectors. (Note that

T.Y.T. Chan / Artificial Intelligence 141 (2002) 123–135 131

metric approaches could also be applied to statistical problems [3,9,19].) Typically, the
architectural complexity and the training time complexity of the neural network increases
as the dimensionality of the problem increases. For the parity problem, C4.5 requires
exponential time to learn the decision tree [13, p. 100]. Ishikawa [8] provided an interesting
modular neural network learning method to alleviate some of these difficulties by using
problem decomposition. (See also [6].)

By contrast, parity objects in an abstract metric space do not have dimensions to speak
of, so that abstract metric approaches can naturally handle objects of unspecified lengths.
The parity vectors, however, must be limited to fixed dimensions, let’s say, 99 dimensions.
Consider a vector v belonging to class i in this space. Its set of Euclidean nearest neighbors
is only a distance of 1 from it. There are 99 of them and none belong to class i . For
any parity vector v, its closest neighborhood is completely overwhelmed by parity vectors
from the other two classes, so that the otherwise very useful k-nearest neighbor algorithm
will fail miserably in this context. Its second set of Euclidean nearest neighbors is only a
distance of 1.41 from it. There are

(99
2

) = 4851 of them and only some of them belong to
class i . These heavily intermingled class distributions of the triple parity problem are even
more complex than the ones for the even-odd parity. The distributions make the decision
surfaces in the 99-dimensional vector space for the three classes extremely complicated
and extremely difficult to train by a sequence of linear and non-linear surfaces. The space
itself resembles a unit hypercube in a 99-dimensional boolean space rather than a genuine
99-dimensional real vector space. Every parity vector is on a corner (vertex) of the cube
with no objects between the corners. Finally, otherwise important vector space tools,
such as mean vector, covariance matrix, eigenvalue, Euclidean distance, inner product,
derivative, etc., are rather meaningless and useless in this boolean setting. Discriminant
analysis depends heavily on covariance matrix, and neural network’s gradient descent on
derivative.

The unifying metric approach proposed here, however, does not assume any vector
space or even any fixed topology. Instead, when it encounters a bad topology, it throws
it out completely and gets another one by explicitly changing the distance function. By
changing the distance function directly, it eventually changes the topology of the space.
(Of course, not every topological space is metrizable. See [12]. But for our purpose,
it is sufficient that we confine the discussion to metrizable topological spaces, that is,
metric spaces.) A particular distance function can be thought of as defining an equivalent
relation on the input pattern language which is a space far more flexible than the orderly,
Cartesian vector space. It partitions the language space into (equivalent) classes. Changing
the distance function can change the partition. For the parity problem, we need structural
representation, not vector representation. Our method relies on the string representation of
the objects to find a solution for separating the classes. Naturally, string operations, like
the insertion and deletion of a symbol or substring, are used in the hope of obtaining good
separation of classes in terms of string distances. Instead of a normed vector space, families
of metric spaces are dynamically selected. Eventually, the learning agent successfully
devised a way to classify bit strings according to triple parity, even though the agent was
never told its concept or meaning. It was able on its own to acquire the idea of counting,
dividing, and taking the remainder by evolving a set of substitution rules.

132 T.Y.T. Chan / Artificial Intelligence 141 (2002) 123–135

It is not exactly surprising that the insertions and deletions of 1, 11, 111, etc. can capture
the idea of triple parity. There is really no magic here. The representations of the input
patterns must implicitly somehow already contain the information for class discrimination.
Otherwise no method can derive a successful classifier no matter what you do. Minsky
and Papert [10] capture this important idea on the nature of learning rather succinctly: “No
machine can learn to recognize X unless it possesses, at least potentially, some scheme for
representing X”. Every pattern learning session is characterized by three things: the initial
set of assumptions or facts (the initial knowledge), an efficient domain-specific learning
procedure that can work on these facts, and finally, the learned new facts/concepts (i.e.,
the learned procedure). There is no universal learning machine, in the sense that one
machine can learn everything efficiently. The push in the field of pattern learning is to
develop different learning technologies and models of learning agents that can learn non-
obvious concepts quickly from as few initial facts as possible, so that human intervention is
minimal. Of course, one is willing to spend more time learning the more difficult concepts,
especially in the absence of a teacher.

4. Unsupervised case

Now, let us consider the unsupervised triple parity problem, which is quite hopeless
for any vector space approach to attempt. In essence, the unsupervised problem is the
supervised problem with erroneous labels applied mistakenly. There could be many sources
of errors. The three primary sources are the teacher, a noisy environment, and imprecision
in the measuring instruments. It does not matter where the mistakes come from; it does not
matter whether they are supervised or unsupervised tasks. In any case, we always presume,
at least temporarily, that every object is correctly labeled. In this spirit, we corrupt group 1
with one erroneous string from class 2, group 2 with one erroneous string from class 3, and
group 3 with three erroneous strings, one from class 1 and two from class 2, as shown in
Fig. 4. Note that with group 3, there are actually more erroneous labels than proper labels.
There are a total of 5 mislabels among 12 training objects.

We use the same initialization as previously. At step t = 0, the learner can find no
satisfactory weight vector for classification. The system begins to evolve to the next step
t = 1 by generating more operations just as before with similarly unsatisfactory stability
values and misclassification rates. At t = 2, unlike the previous supervised case, there is

Group 1
1 00
2 111
3 10101
4 10

Group 2
1 01010101
2 1011001
3 11

Group 3
1 101
2 11011001
3 000
4 010111
5 01

Fig. 4. Training groups with 5 mislabels.

T.Y.T. Chan / Artificial Intelligence 141 (2002) 123–135 133

1 2 3 4 5

1 0 0 2ε ε ε

2 0 0 2ε ε ε

3 2ε 2ε 0 ε ε

4 ε ε ε 0 0
5 ε ε ε 0 0

Fig. 5. Distance table for group 3.

still no perfect stability value. However, the system notices a peculiar occurrence. Here, the
learning agent observes that near a boundary point of the weight space, at the cost vector

W ′ = (0, ε,0,w4,w5,w6,0,w8,w9,w10,w11,w12,w13,0)

with w4,w5,w6,w8,w9,w10,w11,w12,w13 > ε > 0 and

ε +w4 +w5 +w6 +w8 +w9 +w10 +w11 +w12 +w13 = 1,

there is an asymptote phenomenon related to the numerator of the stability quotient.
First, it observes that for the denominator υ1,2υ1,3υ2,3 �= 0. This means that no two

groups have an average distance of 0 between them. This is good because if any one of the
factors is 0, then one class has its training objects split into exactly two groups while the
third group contains the combined training objects of the other two classes. As long as the
denominator is not equal to 0, there is hope for an asymptote in the numerator.

Second, for the average intra-group distances, ρ1 = 3
6ε, ρ2 = 2

3ε and ρ3 = ε, so that the
numerator is equal to 13

6 ε. Fig. 5 shows the intra-group distances for group 3. Interestingly,
the numerator can be made to approach zero as ε also approaches 0. We could have
included even more erroneous labels in the groups and the asymptote phenomenon would
still occur. We do not want ε = 0, because when it does, the inter-group distances will also
be zero. Indeed, the formulation of the stability quotient is such that even if only one inter-
group distance is 0, it is unacceptable. When there are noisy training data in the training
groups, and there are multiple operations, any of which can suitably separate the classes,
this asymptotic phenomenon is not unusual (similar occurrence in [1]).

Now, the learner can use W ′ to repartition the training set by performing a simple
spanning tree clustering algorithm in the finite metric space (Q̌1 ∪Q̌2 ∪Q̌3,W

′). Objects of
the same classes in this space have a distance of 0. Objects of different classes in this space
have a distance of at least ε. Clearly, there are three point-clusters in this finite space. After
the repartition, the system once again finds the same W∗ as before to be the perfect weight
vector and stores the shortest string from each group as representative to do classification
for any members of P with 100% accuracy.

For the no-label unsupervised problem, the agent is given, let’s say, the same initial
set of substitution operations, generator, and seven training examples as in Section 3, but
importantly—no class labels. However, it is told that there are three classes among these
seven training objects. Without further information, the agent would randomly partition the
seven parity strings into three groups and give them temporary labels. Then it will execute
the strategy outlined in Fig. 1 until a stable space is found. Given these standard initial
conditions (no problem-specific bias), the most natural class concept to be found is the

134 T.Y.T. Chan / Artificial Intelligence 141 (2002) 123–135

triple parity. When the learner was given the same initial conditions except that it was told
that there were only two classes, then it found the even-odd parity concept as occurred
in [1]. Changing any of the initial conditions, i.e., a different starting set of substitutions,
generator, training examples, labeling, distance algorithm, or number of classes, would
result in different bit string concepts to be learned (more of this in a future paper). For
example, without the generator, it could solve the 2-bit exclusive-or problem [1] and the
chromosome classification problem [2].

The basic model here with its (macro) transformation system and stability optimization
naturally lends itself to unsupervised learning for more than three classes. One could, for
example, concentrate on learning one class at a time, and temporarily put all the other
clusters together as the second class. Learning then will proceed in a hierarchical (vertical)
or tall manner. (See [17].) Other schemes, such as in a flat (horizontal) manner, are also
possible, by dividing the training set into 2 subsets (groups), with each subset actually
containing a number of classes. The goal is to try to keep all intra-group distances equal
to zero and none of the inter-group distances equal to zero at all levels of the decision
(learning) tree.

5. Conclusion

The idea of concept learning is seen here as the process of deriving a stable metric space
to separate the training groups. A stable metric space is one containing well-separated,
compact clusters. When the space is not stable, the learner would change the space by
directly changing the way distance is to be calculated until it has found a stable space. Each
training group contains examples of a concept. Ideally, each concept can be represented by
a single prototype. The problem then becomes finding a transformation system that can
transform objects to their respective prototypes at a relatively cheap or nil cost.

The proposed method has been applied to learning with an error-free teacher, learning
with an erroneous teacher, and learning without a teacher. For the unsupervised learning
tasks, it turns out that it is instructive to treat them as supervised tasks with mislabels.
Interestingly, under the unifying metric model, such mistakes can be detected by the learner
in the observing of an asymptotic behavior during the metric learning process.

I have extended the model in [1] for unsupervised inductive learning in three classes. All
bit strings were classified correctly during on-line recognition. The agent has successfully
learned to devise a way to classify bit strings according to the concept of triple parity.
The system itself is able to acquire the concept of counting, dividing, and then taking the
remainder by evolving a set of substitution operations by which to transform one object
into another.

Acknowledgements

I’d like to thank the anonymous reviewer for his most insightful comments.

T.Y.T. Chan / Artificial Intelligence 141 (2002) 123–135 135

References

[1] T.Y.T. Chan, Inductive pattern learning, IEEE Trans. Systems Man Cybernet.—Part A: Systems and
Humans 29 (6) (1999) 667–674.

[2] T.Y.T. Chan, Unsupervised classification of noisy chromosomes, Bioinformatics 17 (5) (2001) 438–444.
[3] T.Y.T. Chan, Fast naive Euclidean concept learning, in: Proceedings of the 2nd IEEE International

Conference on Systems, Man, and Cybernetics, IEEE Computer Society, 2002.
[4] T.Y.T. Chan, Pattern Learning: A Unifying Approach, Kluwer Academic, Boston, MA, 2003.
[5] R.O. Duda, P.E. Hart, Pattern Classification and Scene Analysis, Wiley, New York, 1973.
[6] L. Franco, S.A. Cannas, Generalization properties of modular networks: Implementing the parity function,

IEEE Trans. Neural Networks 12 (6) (2001) 1306–1313.
[7] U. Grenander, General Pattern Theory: A Mathematical Study of Regular Structures, Oxford University

Press, Oxford, 1993.
[8] M. Ishikawa, Learning of modular structured networks, Artificial Intelligence 75 (1995) 51–62.
[9] J.J. Liang, V. Clarson, A new approach to classification of brainwaves, Pattern Recognition 22 (6) (1989)

767–774.
[10] M. Minsky, S. Papert, Perceptrons, Expanded edition, MIT Press, Cambridge, MA, 1988.
[11] T. Mitchell, Machine Learning, McGraw Hill, New York, 1997.
[12] J.R. Mundres, Topology, Prentice Hall, Englewood Cliffs, NJ, 1975.
[13] J.R. Quinlan, C4.5, Morgan Kaufmann, San Mateo, CA, 1993.
[14] D.W. Ruck, S.K. Rogers, M. Kabrisky, M.E. Oxley, B.W. Suter, The multilayer perceptron as an

approximation to a Bayes optimal discriminant function, IEEE Trans. Neural Networks 1 (4) (1990) 296–
298.

[15] D.E. Rumelhart, J.L. McClelland, PDP Research Group, Parallel Distributed Processing: Explorations in the
Microstructure of Cognition, Vol. 1, MIT Press, Cambridge, MA, 1986.

[16] J. Schürmann, Pattern Classification: A Unified View of Statistical and Neural Approaches, Wiley, New
York, 1996.

[17] L. Talavera, J. Béjar, Generality-based conceptual clustering with probabilistic concepts, IEEE Trans. Pattern
Anal. Machine Intelligence 23 (2) (2001) 196–206.

[18] A.R. Webb, D. Lowe, The optimal internal representation of multilayer classifier networks performs
nonlinear discriminant analysis, Neural Networks 3 (1990) 367–375.

[19] A.K.C. Wong, H.C. Shen, P. Wong, Search-effective multi-class texture classification, Internat. J. Pattern
Recognition Artificial Intelligence 4 (4) (1990) 527–552.

