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1. INTRODUCTION 

In his study of the growth of biological populations Volterra [ 111 has 
proposed equations of the form 

u#)/u(t) = a ~ h(t) - )” f(r ~ s)u(s) ds, 
-0 

t > 0, (1.1) 

which describe the growth of a single species whose population density at 
time t is u(f). Here Q and b are non-negative constants and f is a non- 
negative smooth function which is integrable on [0, co). In (l.l), a logistic 
term (which expresses the crowding effect, etc.) is separated into two parts: a 
non-delay term bu, and a hereditary term represented by the Volterra integral 
f * u(t) e jh f(t - s)u(s) ds. For th e systematic investigation of (l.l), see 
Cushing [3], which contains a useful survey of results. 

It seems very interesting to treat (1.1) in a spatially inhomogeneous 
situation. We assume that the species lives in a bounded domain 0 in R” and 
diffuses spatially. Such a situation may be modeled, adding a diffusion term 
to (1. 1 ), by the following equation for u = u(x, t), x = (x, , x2 ,..., xn) E R “, 

u, = Au + u(a - bu -f* u), XER, t 2 0, (1.2) 

where Au = C:=, a’u/axf. At the boundary &2 of Q we impose the no-flux 
condition 

au/an = 0, XEim, t>o, (1.3) 

where a/an denotes the exterior normal derivative to 6’0. Moreover, we 
consider the initial condition 

4x, 0) = uo(x) 2 0, XEI?. (1.4) 
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Recently, Schiaffmo [lo] has treated the initial boundary value problem 
(1.2)-( 1.4) with a, b > 0 and obtained an interesting result. In [lo], it is 
assumed that min{u,(x), x E fin) > 0, f(t) > 0 is decreasing and that the 
hereditary term f * u is dominated by the non-delay logistic term bu in the 
sense that 

jr f(t) dr = a < 6. 

Under these conditions, he has shown that the solution u of (1.2)-(1.4) 
satisfies 

lim u(x, t) = & 
f-r03 

uniformly for x E J7. 

The main purpose of the present paper is to study what influence the 
hereditary term has on the asymptotic behavior of solutions of (1.2) and 
(1.3). As is shown by Schiaffino, the asymptotic stability of the 
“equilibrium” u = a/(b + a) remains true as long as the effect of the 
hereditary term is, in a sense, smaller than that of the non-delay logistic 
term. However, in order to proceed to further investigation it is necessary to 
take account of qualitative properties of the kernel function f as well as its 
quantitative properties. We shall give some sufficient conditions for the 
global asymptotic stability of the equilibrium u = a/(b + a) in terms of the 
Laplace transform of the kernel function. 

The plan of this paper is as follows. In Section 2 we shall state 
assumptions and some preliminary results. The main results are contained in 
Sections 3 and 4 (Theorems 3.2 and 4.2). Their proofs are based on the 
energy method with the use of an appropriate Lyapunov function. As a 
particular result, iff> 0 (& 0) is non-increasing and convex, it is found that 
the hereditary term f * u has such a stabilizing effect on the solution of 
(1.2~( 1.4) as a non-delay logistic term has. However, for general f, we 
cannot always expect the global asymptotic stability of the corresponding 
equilibrium. Under some circumstances, bifurcation of non-constant periodic 
solutions may take place. In Section 5 we shall give an example which 
exhibits a Hopf bifurcation. 

2. ASSUMPTIONS AND PRELIMINARIES 

2.1. Notation 

Throughout this paper, let Q be a bounded domain in R” with smooth 
boundary aQ. 
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For 1 <p < co, LP(R) denotes the Banach space of measurable functions 
u on R satisfying 

In particular, if p = 2, L’(Q) becomes a Hilbert space with the usual inner 
product (., .). We sometimes write 11. I] instead of I/. II2 if there is no 
confusion. For each 1 <p < co and integer k > 1, IVkVp(Q) denotes the usual 
Sobolev space of measurable functions u on R such that u and its 
distributional derivatives up to order k belong to LP(R). 

Let I be any subinterval of [0, co) and let X be any Banach space. Denote 
by C(Z; X) the space of X-valued strongly continuous functions on I. For any 
positive integer j, C’(Z; X) denotes the space of functions u E C(I; X) such 
that u isj-times strongly continuously differentiable on I. 

2.2. Assumptions and Positive Kernel 

We shall state our assumptions on u0 andf: 

(A.l) uO(x) > 0 (& 0) is a smooth function, say, of class C’(n) 
satisfying au/an = 0 on aR. 

(A.2) f(t) > 0 (& 0) is a C’[O, oo)-function satisfying fE L’(0, co) 
and ffE L ‘(0, CQ). 

In what follows. we set 

a = (.w f(t) dt. 
-0 

As typical examples of kernel functions, the following two types will be kept 
in mind: 

f(t) = (a/T) expWT) and f(t) = WT’> ev(-UT) 

with T > 0. The first function takes its maximum value at t = 0, while the 
maximum of the second is attained at t = T. 

Let us prepare the following terminology for the kernel function (see e.g., 
Barbu [2, Chapter 41 or Nohel and Shea [ 71). 

DEFINITION. A kernel function f is called a positive kernel if 
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for all u E L*(O, T; L’(n)) and T > 0. Furthermore, f is called a strongfJ 
positive kernel if there exist positive constants E and y such that f(t) - E 
exp(--t) is a positive kernel. 

The positivity of the kernel f is intlerpreted in terms of its Laplace 
transform. Define the Laplace transform f of f by 

fip) = 17 e-“‘f(t) dt. 

(If fE L’(0, a), then fip) is analytic for Rep > 0 and continuous for 
Rep > 0.) We have the following useful result due to Nohel and Shea [ 7, 
Theorem 21. 

PROPOSITION 2.1. Assume that fE L ‘(0, co ). Then 

(i) f is a positive kernel if and only if Re j(ir]) > 0 for every q E R ‘. 

(ii) f is a strongl-vpositive kernel if and only if there exists a positive 
constant y such that Re f (iv) > r/( 1 + q’) for every q E R ‘. 

Finally we prepare the following lemma which will be used later. 

LEMMA 2.2. Let fE L’(0, co) and u E LfO,(O, 00; L’(Q)). Then, for 
each T > 0, 

where 

Ur(& 0 = u(x, 0, for t E [0, T], 

= 0, for t E (-co, co)\[O, T] 

and 3u, denotes the Fourier transform of u, with respect to t-variable 

(jTu.)(x, q) = (2n)-“2 fin e-i%T(x, t) dt. 
x2 

ProoJ First observe 

1: (f * u(t), u(t)) dt = jrn (gT(f), +(t)) dt, 
-co 

where gA0 = I-,“f (s)U,(t - s) ds. Since (SrgJtl) =f(itl)Vh)(v), 
Parseval’s equality yields the conclusion. Q.E.D. 
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2.3. Local Existence Results 

Now we consider the initial boundary value problem (1.2)-( 1.4). Before 
stating local existence results for solutions, we observe the following fact: if a 
local solution U(X, t) (x E R, t E [0, to]) of (1.2)-( 1.4) has a prolongation 
lqx,t) (XEO, tE [O,t,l with t, > to), then v(x, t) s @, I + to) (x E a, 
t E [0, t, -to]) satisfies (1.2) with a replaced by a -($f(t + t, -s) 
u(x, S) ds. Hence it will be more convenient to get local existence results for 

u, = Au + u{a(x, t) - bu -f * u}, XER, t>o, (2.1) 

(in place of (1.2)). 
Let p > n be fixed. In L”(Q), define a closed linear operator A with dense 

domain D(A) by 

Au = -Au, D(A) = (u E WZ*p(R); h/&z = 0 on aa}. 

For each 0 < ,U < 1, we introduce the fractional power spaces X, E D(A“) 
equipped with the graph norm of A’. Since it is well known that 

x, G C”@n) if 0 < v < 2p - (n/p) 

(“G” means that the inclusion is continuous), the following relation 

X,G(~EC’(~);au/an=Oona~} (2.2) 

holds if ,U is chosen so close to 1 that 2,~ > 1 + (n/p) is satisfied. Moreover, 
-A generates an analytic semigroup {eetA Jrao which has the estimate 

with some M, > 0 (M, = 1) (see e.g., Krein [4]). 
Clearly, the initial boundary value problem (2.1), (1.3), and (1.4) can be 

reduced to the integral equation 

u(t) = e-fAUo + ff e-u-sM u(s) (a(s) - bu(s) -f * u(s)} ds 
-0 

= (h)(t). 
(2.4) 

For the time being, suppose that u. E D(A),fE C’[O, T], and a E Ce([O, T]; 
C(a)) with 0 < t9 < 1 (which denotes the space of C(6)-valued functions v 
on [0, T] such that t + u(t) is Holder-continuous with exponent 0). By virtue 
of (2.2) and (2.3), it can be shown that, with a sufficiently small To 
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(0 < T, < T), S is a contraction mapping sending a suitable ball in 
C(]O, T,,]; C(fi)) into itself. Hence the standard method based on Banach’s 
fixed-point theorem allows us to conclude the existence and uniqueness of a 
soluJion u E C([O, T,,]; C(fi)) of (2.4). Since u,, E D(A) and a E C”([O, T]; 
C(0)), one can also show, with use of the technics _developed by Pazy [8, 
pp. 30-321, that t -+ u(t) is Holder-continuous in C(f2). This fact yields the 
Holder continuity of t + u(t) (a(t) - bu(t) -f * u(t)) in L”(Q), so that we 
find in the usual manner that u actually satisfies (2.1), (1.3), and (1.4) in 
LP(J2). 

Summarizing these results we have: 

PROPOSITION 2.3. If u. E D(A), f~ C’[O, T] and a E C’([O, T]; C(d)) 
with 0 < I3 < 1, then there exists a positive constant T, (<T) such that the 
initial boundary value problem (2.1), (1.3), and (1.4) has a unique solution 
u E C’([O, To]; LP(R)jn C([O, 7’01; D(A)). 

Moreover, u has the following properties: 

(i) u(x,t)>OfirxEfiundtE [O,T,,] fu,(x)>OforxEfi. 

(ii> Ifs (20) is not identically zero, then u(x, t) is positive for x E fi 
and t f (0, T,]. 

Remark 2.1. The non-negativity (positivity) of u in Proposition 2.3 is 
derived from the maximum principle for parabolic differential equations. 

Remark 2.2. Let u be a maximal solution of (1.2~(1.4) on [O, 7); in 
other words, there is no solution of (1.2)-(1.4) on [0, T’) if T’ > T. If 
II wlm is bounded on [0, 7) n [0, r] for any r > 0, then we can show 
T = 0~) by using a translation argument (cf. [8]). 

3. RESULTS FOR VOLTERRA EQUATIONS WITH NON-DELAY 
LOGISTIC TERMS 

Throughout this section, (A. 1) and (A.2) are always assumed and a is a 
non-negative constant. Moreover, b is assumed to be a positive constant, 
which means the presence of a non-delay logistic term in (1.2). 

We are interested in not only the existence of a bounded global solution 
for (1.2~( 1.4), but also its asymptotic behavior as t -+ 00. First we have: 

THEOREM 3.1. The initial boundary value problem (1.2), (1.3), and (1.4) 
has a unique solution u E C’([O, co); L”(Q))n C((0, 00); D(A)) which 
satisfies 

0 < u(x, tj < max{llu,Il,, a/b) = m, XE a, t >o, (3.1) 
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and 

I grad 4x, [)I < M, XE fi, t >o. (3.2) 

where 1 grad u(’ = XI=, (L?u/~+x,)~ and A4 is a positiue constanr. 

Proof. Since u,, > 0, the non-negativity of u follows from Proposition 2.3. 
Moreover, the comparison theorem for parabolic differential equations 
enables us to derive an a priori estimate 

u(x, t) < max{llu,II,~ Ot, for x E fi, t > 0. 

Hence, in view of Proposition 2.3 and Remark 2.2, we may conclude the 
existence and uniqueness of a global solution of (1.2~( 1.4) which satisfies 
(3.1). 

It remains to prove (3.2). Let us first observe that u satisfies 

u(t) = e-“u(t - 1) + 1.’ e-(‘--S’AF(s) ds, for t>l, (3.3) 
-I-I 

where F(t) = u(t) {a - h(t) -f * u(t)}. By (3. l), it is easy to show 

IIF(~)ll,~m(a+(~+a)mt-m,, t 2 0. (3.4) 

Operating A” (0 <,D < 1) to both sides of (3.3) and recalling (2.3), we have 

which, together with (3.1) and (3.4), gives 

II~“Wl, < M, IfiI”W + (ml/cl -PI)), f> 1, 0 <P < I. (3.5) 

where IR 1 denotes the volume of Q. 
For 0 < t < 1, use the following integral equation in place of (3.3): 

u(t) = e-‘.4uo + (.Ie~‘mr’rF(s) ds. 
-0 

Then one can show 

II~“Wl, < II~“~ollp + (l/(1 -PU>)MuW IQY~ 
O<t< 1, O<P < 1, 

in the same way as (3.5). 

(3.5)’ 
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Consequently, it follows from (3.5) and (3.5)‘, combined with (2.2), that 
there exists a positive constant M satisfying (3.2). Q.E.D. 

Theorem 3.1 assures the existence of a bounded global solution of 
(1.2)-( 1.4). We are ready to study its asymptotic behavior as t + co. Set 

p G inf{ Re j(iq); q E R ’ 1. 

THEOREM 3.2. Let b + /3 > 0. Then the solution u of (1.2)-( 1.4) satisfies 

lim u(x, t) = a/(b + a) 
t-00 

uniformly for x E fi. 

Remark 3.1. Theorem 3.2 extends the result of Schiaffino [lo]. He has 
shown the global asymptotic stability of the “equilibrium” u = a/(b + a) 
when the non-delay logistic term bu is predominant over the hereditary term 
f * u in the sense 

a = [“f(t) dt < 6. 
-0 

Our condition b + /? > 0 always holds if a < b, because 

b = &.f, Re&itI) = &l, j’m cos r,vf(t) dr > - cz > -6. 
0 

However, this equilibrium may be globally asymptotically stable even if 
b > a does not hold. For example, if fE C* [0, 00) (& 0) is a non-negative, 
non-increasing, and convex function, a simple calculation shows that 
ReF(iq) > 0 for all ?,J E R’ (i.e., /3 > 0). In this situation, Theorem 3.2 asserts 
the global asymptotic stability of a/(b + a) independently of the size of 
kernel function J 

Proof of Theorem 3.2. If a = 0, it is clear from the comparison theorem 
that u(x, C) decays to zero (uniformly for x E a) as t + co. 

In what follows, we assume a > 0 and put u,=a/(b +a) > 0. 
Equation (1.2) may be rewritten as 

u,=h+u I -b(u -u,) -f * (u - urn) + u, j1” f 6) ds 17 

x E 52, I > 0. (3.6) 

We introduce two non-negative functionals 

E,(u) = I, /u(x) - u, - u, log 2 / dx, (3.7) 
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and 

E,(u) = t [ I grad u(x)]’ dx 
-0 

(3.8) 

(cf. Mimura and Nishida (61 and Williams and Chow [ 121, where similar 
functionals are used). 

For simplicity, we shall prove Theorem 3.2 in the case u,, > 0. For general 
U, > 0, the proof will be carried out with a slight modification, because 
u(x, t) is positive for x E Q and t > 0 (Proposition 2.3(ii)). Differentiation of 
E,(u(t)) with respect to t leads to 

~E,(u(r))=j*u,(x,r)(l-~)dx 

_ u, jn I gr”:‘,s4;20z dx-b((u(t)-u,((’ 
9 

where we have used (3.6). Integrate (3.9) over 10, r] for any T > 0 and 
rearrange the resulting expression with the use of (3.1); then 

E,(u(T)) + 3 jr Ilgrad u(t)l12 dc + b jar II u(f) - u,l12 df 
0 

+ j.r (f* (I.4 - s,N>~ u(t) - u,) dl 
-0 

< E,(u,) + u,(m + u,) InI f= f(t) dr = K,, 
-0 

T > 0. (3.10) 

Observe that Lemma 2.2 yields 

rr (f* (u - d(fh u(t) - u,) dt = fz Re.f(irl) IV? - GM~)II~ dvl 
-0 cc 

2 P [a IV-@ - ~&rl)ll’ dv (3.11) 
cc 

(The last equality of (3.11) is due to Plancherel’s theorem.) Therefore. it 
follows from (3.10) and (3.11) that 
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EOMT)) + 3 1.’ E,+(t)) dt + (b + P) 1’ II u(t) - u, II’ dt < K, 
.O -0 

for every T > 0, (3.12) 

which, in particular, implies E,(u(.)) E L’(0, 03) and l/u(.) - u,ll* E 
L ‘(0, 00) (note b + p > 0). 

Next, differentiating E,(u(t)) with respect to t we have 

$ W(I)) = (u,(t), -W)) 

= - IlAu(t)ll’ + (grad(u(t)(a - bu(t) -f * u(t)}? grad u(t)) 

< - IlW)ll’ + allgrad u(t)l12 
- (u(t)(f* grad u)(t), grad u(t)) 

,< - II M)l12 + a II grad dtI12 

+ m(f* II grad 4)(t) II grad 4, 

where we have used the non-negativity of u. For any T > 0, integration of the 
above expression over [0, T] gives 

< E,(u,) + 2a fT E,@(t)) dt 
-0 

.’ +m 
J (1 

.’ f(t - s) II grad u(s)ll ds (I grad u(t)11 dt. 
0 -0 

(3.13) 

Since the L2-norm on [0, T] of jhf(t - S) IIgrad u(s)ll ds is majorized by J‘l 
f(t) dt t.f,’ II grad +)ll 2 ds 1 I” ( use the fact that the convolution of an L’ 
function with an L2 function is an L2 function), the right-hand side of (3.13) 
is bounded above by 

E,(u,) + 2(a + am) [‘E,(u(t)) dt. 
-0 

Therefore, in view of (3.12), we get 

EMT)) + jr Il~~~tIl’ dt G E,@o) + 
(a + am)m2Ko 

(3.14) 
0 urn ’ 

for any T > 0. 
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We are also able to prove 

with suitable constants K, and K,. Hence, by virtue of (3.12) and (3.14) 
both (d/dt) )I u(f) - u, (1’ and (d/df) E,(u(t)) belong to L’(0, co); so that, 
since 1) u(t) - U, II* E L’(0, co) and E,(u(f)) E L’(0, co), we find 

lim II U(t) - U, II = fit 11 grad u(t)11 = 0. 
I’oc, + (3.15) 

Note the following inequality 

II4I, Q Iblk-“‘” II4I:‘” (3.16) 

for u E L”O(R) and p > 2. Both llu(t) - U, Iloo and ([grad u(t)ll, being 
bounded by (3.1) and (3.2), convergence properties (3.15) combined with 
(3.16) imply 

lim II U(t) - U, lip = 1”; I( grad u(t)llp = 0, 
t-cc 

(3.17) 

for any p > 2. 
In order to complete the proof we invoke Sobolev’s imbedding theorem: 

for p > n, there exists a positive number C = C(n, n, p) such that 

lI4I, G Wll, + Iled 41pi - WIIIc.l.p (3.18) 

for u E lV’Up(fl). The conclusion of the theorem is easily derived from (3.17) 
and (3.18). Q.E.D. 

Remark 3.2. It seems that our condition b +/I > 0 is the best possible 
one for the global asymptotic stability * of the equilibrium $ = U, 
(=a/(b + a)). F or example, take f(r) = (at/r’) exp(- -t/T). Since Ref(iq) = 
a(1 - ~‘~‘)/(l + q*T*)* > - a/8, it follows from Theorem 3.2 that for 
a < 86 any non-negative solution (&O) of (1.2) and (1.3) converges to U, 
(uniformly for x E fi) as f --* co. However, for a > 86. bifurcation of non- 
constant periodic solutions can take place (see Section 5). 



444 YOSHIOYAMADA 

4. RESULTS FOR VOLTERRA EQUATIONS WITHOUT 
NON-DELAY LOGISTIC TERMS 

In this section we shall deal with initial boundary value problems for 
Volterra diffusion equations without non-delay logistic terms, i.e., 

u,=Au+u(a-f*u), xEf2, t>o, (4.1) 

with (1.3) and (1.4). Conditions (A.l) and (A.2) are imposed on f and uO. In 
general, we do not know whether problem (4.1), (1.3), and (1.4) has a 
bounded global solution or not. However, it will be shown that, if f is a 
(strongly) positive kernel, the hereditary term f * u has a stabilizing effect on 
solutions to (4.1) and (1.3). 

Put u, = a/a. We have 

THEOREM 4.1. Assume that f is a positive kernel. I f  u, j,” tf(t) dt < 1, 
then the initial boundary value problem (4. l), (1.3), and (1.4) has a unique 
solution u E C’( [0, co); L”(R)) n C( [0, 00); D(A)) satisfying 

0 Q 4x, 4 < m, XED, t>o, 

I grad 4x, 01 < M XEfi, tao, 

with some positive constants m and M. 

Proof: Let u be a solution of (4.1), (1.3), and (1.4) on [0, 7J with any 
specific T > 0. By recalling the proof of Theorem 3.1, it suffices to derive an 
estimate (independent of 7) for IIu(t)lla: to arrive at the conclusion. 

If a = 0, then it is easy to see ]] u(t)ll, < ]( u,, Iloo by virtue of the comparison 
theorem. 

Hereafter we shall assume a > 0 and prove the theorem in the case u, > 0; 
the proof for general u, > 0 is essentially the same. Note that (3.9) holds 
with b = 0. Since f  is a positive kernel, integration of (3.9) yields 

E,(u(t)) ,< &,(uo) + 1 1 f  6) W, 9 ~(5) - urn) df 
-0-r 

(4.2) 

~ E,(u,) + Jo Jo f  (s) ds(u, ) u(5)) dr 

for any 0 < t < T, where E,(u) is defined by (3.7). Moreover, since 

V(u) = u - u, - UC0 hiwGxJ 
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is a non-negative convex function, we have, by Jensen’s inequality, 

~~(40) = j ~(4~~ 0) dx a I ~2 I Y (j u(x, 0 dx/l R I). (4.3) 
n n 

Hence it follows from (4.2) and (4.3) that 

II WI 1 - urn IQ I 1% II WI I 

G 1 {uo(x) - u, log(li2 1 uo(x))~ dx + ji jjmfb) ds(umv 45)) dr (4.4) 
-a 

for any 0 < t < T. 
Now set m(t) = max(llu(s)ll, ; 0 < s < t). It follows from (4.4) that m(t) 

satisfies 

m(f) < K, log m(f) + K,m(f) + K,, 

where K, =u, 101, K,=u,Ir ff(f)df and K, =ja (u,(x)-uu, lR( 
104 Q I dx)) 1 dx. S ince K, < 1 by the assumption, we can deduce 

m,<m(O<m,, O<r<T, (4.5) 

where m, and m, (m, < m,) are positive numbers satisfying 

(1 - K,)m, = K, log m, + K,, i= 1, 2. 

Hence, estimate (4.5) gives 

II u(Oll I Q m2 y O<t<T. 

(Note that m, is independent of T.) We make use of the result of Alikakos 
[ 1, Theorem 3.11: if SUP,>~ Ilu(t) <K with a ml e positive constant K, then f ‘t 

supt>o IIWlm is bounded above by a suitable positive constant depending 
on K and (Jr&,. Thus we complete the proof. Q.E.D. 

We are now in a position to study the asymptotic behavior of the solution 
u in Theorem 4.1. 

THEOREM 4.2. In addition to the assumptions of Theorem 4.1, suppose 
that f is a strongly positive kernel. Then the solution u in Theorem 4.1 
satisfies 

lim u(x, f) = UC0 
I-cc 

uniformly for x E G. 

ProoJ Since both liu(t)[lm and (Igrad u(r)\l, are bounded for all t 2 0, the 
idea of proof is almost the same as that of Theorem 3.2. 

409/88/Z-9 
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First we shall prove the case a > 0. Observe the following fact: for every 
T > 0, all the L’-norms on [0, T] of )/grad u(t)lj*, df* (U - u,)(t), 
~(0 - urn) and Il~Wl’ are bounded above by a positive number K 
independent of T (see (3.10) and (3.13)). This fact enables us to prove 

fi”, I( grad u(f)11 = 0 

in the same way as the proof of (3.15). 
In order to complete the proof, it suffices to show 

lim 11 u(t) - U, 1) = 0. 
t-m (4.6) 

From the definition of the strong positivity off, there exist positive constants 
e and y such thatf(r) - se-Yt is a positive kernel. Hence, for any T > 0, 

K > -’ U* (u - Q(t), u(f) - ucx> df J 

,:,.‘(I-(f),.(f,.,)df, 
0 

where 

r(f) = j’ e-y(t-s)(u(s) - u,) ds. 
-0 

Note the following; 

For any T > 0, integration of this identity over [0, T] leads to 

IIT(r)ll’ + Zyjr IIT(f)l12 df = 2 j,‘(r(f), u(f) - urn) df G WE, 
0 

(4.7) 

(4.8) 

where (4.7) has been used. Since a/&F(f) = u(f) - u, - yT(f) is in L”O(0, 03 ; 
L2(LI)), t -+ r(r) is uniformly continuous on [0, co) in L2(L?)-norm. Hence it 
follows from (4.8) that 

lim r(f) = 0 in L.*(Q). (4.9) 
t-03 

Moreover, since f + X(f)/& is also uniformly continuous on [0, co) in 
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L’(R)-norm, we can show with the use of (4.9) and the mean value theorem 
that 

jiz i r(t) = 0 weakly in L2(R). (4.10) 

(See e.g., Batbu 12, Chapter 41 and Nohel and Shea [7], where similar 
technics are employed.) 

It follows from (4.9) and (4.10) that 

lim u(t) = u, 
t-w 

weakly in L’(R) 

and that, since {u(t)},>, is bounded in W’*‘(J2), 

lim u(r) = U, weakly in W’*‘(n). (4.11) 
r-a 

Since W’*‘(0) is compactly embedded in L’(R), (4.11) gives (4.6). 
It remains to prove the case a = 0: 

I(, = Au - u(f* u), XER, tao. (4.1)’ 

Integration of (4.1)’ over fi X [0, T] with any T > 0 yields 

[ u(x, t) dx + j.’ I’ u(x, t)(f* u(x, e))(t) dx dr = [ q,(x) dx. 
-R -0 -0 -R 

(4.12) 

Furthermore, by taking the L’(a)-inner product of (4.1)’ with u(t), it is 
easily seen that, for every T > 0, 

(4.13) 

which insures ]]Au(.)]]‘E L’(0, co) (see (3.13)). Making use of (4.12) and 
(4.13), we have only to repeat the preceding arguments to complete the 
proof. Q.E.D. 

Remark 4.1. Theorems 4.1 and 4.2 assert that, iff is a strongly positive 
kernel, the equilibrium is (globally) asymptotically stable. In this sense, the 
hereditary termf* u with a strongly positive kernel has a stabilizing effect as 
a nondelay logistic term has. 

Especially, take a C2[0, co)-function f (f0) such that 

(-l)kf(kyr) > 0, t E [0, oo), k = 0, 1, 2. 
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It is well known that f is a strongly positive kernel (see Barbu [2] or Nohel 
and Shea [ 71). As is stated above, the effect of time delay of such a function 
is not so significant. 

5. REMARKS ON BIFURCATION OF PERIODIC SOLUTIONS 

In the previous sections we have discussed the global asymptotic stability 
of a suitable equilibrium. In particular, if a kernel function fE C2 [0, co) n 
L ‘(0, co) (&O) is non-negative, non-increasing and convex, then the 
hereditary term f * u represents a ‘weak” delay in the sense that the 
maximum response to the growth rate is due to current population density 
and past densities have a decreasing influence. In such a situation, the effect 
of time delay is not so significant (see Remarks 3.1 and 4.1). 

In this section we shall give some remarks about effects which generic 
delay kernels have on the asymptotic behavior of solutions to (1.2) and 
(1.3). As a special kernel function, we take f(t) = (at/T2) exp(-f/T) and 
regard CI as a positive parameter. This is the case when the maximum 
influence on growth rate response at any time t is due to population density 
at the previous time f - T. It is already shown that any non-trivial solution 
u > 0 of (1.2) and (1.3) satisfies 

lim U(X, t) = U, (E ff/(b + a)) 
t-lx 

uniformly for x E D, 

if a < 8b (Remark 3.2). What will happen if a > 8b? 
In what follows, a and b are assumed to be positive. Observe that, if u is a 

solution of (1.2), then u’(t) G u(t + 7’) satisfies (1.2) withf* u(r) replaced by 
IL T f(t - s) G(s) ds. Therefore, letting T-+ co we may consider 

u,=Au+u(a-bu- 1’ f(t-s)u(s)ds), xESZ, tER’, (5.1) 
cc 

in place of (1.2). Put u = 2.4 - U, and neglect second-order terms with respect 
to u; this linearization procedure leads us to 

xEQ, tERL. (5.2) 

We shall seek solutions of (5.2) with zero Neumann condition in the form 
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where #k (k = 0, 1, 2,...) are eigenfunctions corresponding to the eigenvalues 
1, (with O=I,<J.,<J.,<...) associated with the following eigenvalue 
problem 

-Au = h, in R, 

au/&z = 0, on L%2. 

It is easy to verify that Tk (k = 0, 1, 2,...) satisfy 

f'k(k(f) + (bu, + &)T,(t)+ u, j-' f(t - s)T&)ds = 0, (5.3) 
. -a3 

where “*” means d/dt. For (5.3), Miller [5] has shown that T, = 0 is 
asymptotically stable if and only if 

P + @wx + &J + &AP) f 0 for Rep>O; 

in other words, 

D,(p)= T*P’ + (2 +(bu, +&)T)Tp'+ (1 + 2(bu, + A,)T)p+(a +&) 

#O for Rep>O. (5.4) 

Moreover, a straightforward application of the Hurwitz criterion assures that 
(5.4) is equivalent to 

{(bu, + &)T+ 2}(2(bu, +I,)T+ l)-(a + &)T> 0. (5.5) 

(When a < 86, (5.5) always holds true for every k = 0, 1, 2,... .) A simple 
calculation shows that for every k > 1 (5.5) is true if a is sufficiently close to 
86, while for k = 0 (5.5) is violated at a = 86 and UT = 9. 

Hereafter, we assume aT = 9 for convenience. With the use of a new 
parameter ,B = 96/(b + a) (which means that a = 8b corresponds to ,U = l), 
D,(p) = 0 is rewritten as 

p’ + ((2 + W-b* + ((1 + WT*)P + (9/T’) = 0. (5.6) 

For u = 1, (5.6) has three roots {-3/T, &id/T}, which, in particular, 
implies that (5.3) (with k = 0) has non-constant periodic solutions 
{exp(* i(fi/T)t)}. Denote by p@) the root of (5.6) such that p(l) = i&‘T. 
Since Rep/( 1) < 0, this will be a case to which the Hopf bifurcation theory 
is applicable. 

Taking account of the preceding arguments, we shall find spatially 
homogeneous solutions of (5.1); i.e., 

.’ u, = u(a - bu - 
J 

f(r - s)u(s) ds), IER’, 
-cc 
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which may be written with a new unknown function v = u - ucor 

v, = -(v + urn) 
( 

bv + 1.l f(t - s)v(s) q9 tER’. (5.7) 
--cc 

We shall follow the argument used by Cushing [ 3, Chapter 5 1. By putting 

v, = v, v2 = I1 f(t - s)v(s) ds, and ti, = v,, 
cc 

the single equation (5.7) is reduced to the system 

lj, = -bu,v, -I&v* - v,(bv, + v2), 

v2 = 03, 

ir, = (a/T2)v, - ( 1/T2)v, - (2/79v,. 

Note that the characteristic equation of the matrix 

is given by (5.6) with aT= 9 and p = 9b/(b + a). 
Consequently, the Hopf bifurcation theory (see e.g., Poore [8]) asserts 

that, for sufftciently small E, > 0, Eq. (5.1) has non-constant periodic 
solutions of the form 

96 

‘=b+a 
- = 1 - &B(E), (5.8) 

where v and 6 are differentiable functions on I--E, , E, ] satisfying ~(0) = 
6(O) = 0, and where v(t, E) (s&O) is a 2nT/fi-periodic function of t for each 
E E [- E, , E, 1. Moreover, making use of the result of Poore [ 8, Theorem 4.11 
we can show after some tedious calculations that 

V(O) > 0 and S’(0) > 0. 

Since ,u = 1 - ES(E) = 1 - e2B’(0) + o(E’) as E -+ 0, the bifurcated periodic 
orbit (5.8) exists in a neighborhood of (u,p) = (l/bT, 1) only for ,D < 1, 
which corresponds to a > 8b. The period of the solution u = u(t, E) in (5.8) is 

(27rT/fi)(l + q-(c)) = (27rT/fi)( 1 + E’v’(O) + o(E’)) as E -+ 0 

and increases from 2nTlfi. 
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Remark 5.1. Let f(t) = (at/r’) exp(-r/7’) with a > 8b. Suppose that 
(5.5) holds for every k = 0, 1, 2 ,...; or, equivalently, 

(2 - a7’)a’ + b(4 + 3aT)a + 2b2(aT+ 1)2 > 0. 

In this case, we can prove that u = u, (=a/(b + a)) is locally asymptotically 
stable for (1.2k(l.4). 

On the other hand, if a = a, satisfies 

(2 - a7’)ai + b(4 + 3a7’)a, + 2b2(aT+ l)I = 0, 

then it is possible to show that non-constant periodic solutions of (5.1) and 
(5.2) bifurcate from (u, a) = (u,, a,,). 

These results will be discussed elsewhere 
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