
Information and Software Technology 57 (2015) 116–140

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector
Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof
Operational release planning in large-scale Scrum with multiple
stakeholders – A longitudinal case study at F-Secure Corporation
http://dx.doi.org/10.1016/j.infsof.2014.09.005
0950-5849/� 2014 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

⇑ Corresponding author. Tel.: +358 50 526 8483.
E-mail addresses: ville.t.heikkila@aalto.fi (V.T. Heikkilä), maria.paasivaara@aalto.

fi (M. Paasivaara), kristian.rautiainen@aalto.fi (K. Rautiainen), casper.lassenius@aal-
to.fi (C. Lassenius), towo.toivola@f-secure.com (T. Toivola), janne.jarvinen@f-secure.
com (J. Järvinen).
Ville T. Heikkilä a,⇑, Maria Paasivaara a, Kristian Rautiainen a, Casper Lassenius a, Towo Toivola b,
Janne Järvinen b

a Department of Computer Science and Engineering, Aalto University, PO Box 15400, FI-00076 Aalto, Finland
b F-Secure Oyj, PO Box 24, FI-00181 Helsinki, Finland

a r t i c l e i n f o
Article history:
Received 3 September 2014
Accepted 14 September 2014
Available online 22 September 2014

Keywords:
Agile software development
Scrum
Large projects
Release planning
Software project management
a b s t r a c t

Context: The analysis and selection of requirements are important parts of any release planning process.
Previous studies on release planning have focused on plan-driven optimization models. Unfortunately,
solving the release planning problem mechanistically is difficult in an agile development context.
Objective: We describe how a release planning method was employed in two case projects in F-Secure, a
large Finnish software company. We identify the benefits which the projects gained from the method,
and analyze challenges in the cases and improvements made to the method during the case projects.
Method: We observed five release planning events and four retrospectives and we conducted surveys in
the first two events. We conducted six post-project interviews. We conjoined the observation notes, sur-
vey results and interviews and analyzed them qualitatively and quantitatively.
Results: The focal point of the method was release planning events where the whole project organization
gathered to plan the next release. The planning was conducted by the development teams in close col-
laboration with each other and with the other stakeholders. We identified ten benefits which included
improved communication, transparency, dependency management and decision making. We identified
nine challenges which included the lacking preparation and prioritization of requirements, unrealistic
schedules, insufficient architectural planning and lacking agile mindset. The biggest improvements to
the method were the introduction of frequent status checks and a big visible planning status board.
Conclusion: The release planning method ameliorated many difficult characteristics of the release plan-
ning problem but its efficiency was negatively affected by the performing organization that was in tran-
sition from a plan-driven to an agile development mindset. Even in this case the benefits clearly
outweighed the challenges and the method enabled the early identification of the issues in the project.

� 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction product development, as it puts into practice the strategy of the
Planning the next product release is recognized to be a chal-
lenging part of market-driven product development [1] and an
important success factor in agile software development projects
[2]. The main goal of release planning is to select an appropriate
scope for a release while taking into account constraints such as
the budget, resources, dependencies and technical aspects, and
factors such as the importance or urgency of the candidate require-
ments [1,3,4]. Release planning is especially vital in market-driven
company [5].
Conceptually, software product release planning is performed

on two levels [5,6]. On the strategic level, the focus is on selecting
the appropriate requirements for the next public release of the
product. On the operational level, the focus is on planning how
the requirements for the next release can be best implemented
[7]. Strategic release planning activities are sometimes called
pre-project activities [1], indicating that requirements gathering,
prioritization and planning are performed before the development
begins. In agile software development projects, strategic and oper-
ational level planning activities are not strictly separated [1]. Sev-
eral strategic release planning activities, such as the market,
customer and competitor analysis, are typically performed by the
product managers or Product Owners. However, most of the
release planning activities on both levels, such as the prioritization
of requirements, implementation scheduling and cost/benefit

https://core.ac.uk/display/82057541?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2014.09.005&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://dx.doi.org/10.1016/j.infsof.2014.09.005
http://creativecommons.org/licenses/by-nc-nd/3.0/
mailto:ville.t.heikkila@aalto.fi
mailto:maria.paasivaara@aalto.fi
mailto:maria.paasivaara@aalto.fi
mailto:kristian.rautiainen@aalto.fi
mailto:casper.lassenius@aalto.fi
mailto:casper.lassenius@aalto.fi
mailto:towo.toivola@f-secure.com
mailto:janne.jarvinen@f-secure.com
mailto:janne.jarvinen@f-secure.com
http://dx.doi.org/10.1016/j.infsof.2014.09.005
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof

V.T. Heikkilä et al. / Information and Software Technology 57 (2015) 116–140 117
analysis, are performed collaboratively with the development
organization [8,9].

Scrum is an iterative and incremental agile development
method [10], meaning that work is planned one development iter-
ation, or a sprint, at a time. Scrum was originally created for small
co-located teams, and it emphasizes direct and informal communi-
cation between the team members, which limits the maximum
size of a single development team [8]. The Scrum approach to
release planning is very different from the approach used by tradi-
tional, plan-driven software development life-cycle models [11].
Instead of employing project plans that are based on a set of prede-
fined factors and constraints, Scrum relies on collaborative human
judgement and informal negotiations [8,9].

The majority of published research on software release plan-
ning focuses on different kinds of mathematical models and simu-
lations which are designed to create the most valuable, satisfying
or risk-free release plans when the candidate requirements can
be described in sufficient detail, and key constraints and factors
are known and can be estimated sufficiently accurately [5]. The
model or simulation is then used to generate one or a set of opti-
mal or near-optimal release plan(s). However, the mathematical
approach to release planning has proven to be problematic in prac-
tice, since the above conditions are mostly difficult to fulfill in
practice [4,9,12–14].

According to the 2013 State of Agile survey [15], the Scrum soft-
ware development method has reached an established status in the
software development community, and many large software
development organizations have adopted or aspire to adopt agile
methods. Freudenberg and Sharp [16] gathered participants’ opin-
ions on what were the most important questions or issues related
to agile software development during the XP2010 conference. In
their results, ‘‘Agile and large projects’’ was voted as the most
important issue. Although neither of these surveys was, strictly
speaking, methodologically robust, they both suggest that research
on scaling Scrum and Scrum-based software development methods
are relevant to the industry.

Furthermore, the Scrum approach to planning focuses on the
single iteration level for a single team. Published empirical
research on successful practices for adopting agile methods in
large-scale software development organizations is still scarce
[17], despite the fact that practitioner literature with normative
but empirically weakly supported advice exists [18,19].

Considering the importance of release planning for the success
of a development project [1,2], the dominance of the model-driven
release planning in research [5,13,20], and the lack of solid empir-
ical evidence of successful practices for scaling up Scrum release
planning, there is an obvious gap in the research of release plan-
ning in large-scale agile software development organizations.

In this paper we work towards filling this gap by presenting two
examples of the use of a release planning method in a large Scrum
organization. We describe the release planning method used, as
well as the benefits and challenges of its use. The release planning
method consisted of Release Iteration Planning events, during which
release planning was performed, and of the preparations con-
ducted for those events. Consequently, we call the method the
Release Iteration Planning method. The method has been briefly
described in the practitioner literature [21]. We concentrate on
the collaborative release planning performed in the Release Itera-
tion Planning events. The market facing tasks of product manage-
ment, such as the market, competitor and customer analysis, are
out of the scope of our study. Although these knowledge areas
are important in any market-driven product development project,
there is already a myriad of literature that provides insight and
instructions for these activities (see e.g. [22,23]).

In previous work, we described the Release Iteration Planning
method [24]. This paper considerably expands that work by includ-
ing results from three additional Release Iteration Planning events
and from six post-project interviews, as well as describing and dis-
cussing the benefits and challenges the case organization experi-
enced when applying the method. Additionally, members of the
case organization have published an account of the release plan-
ning in the project from an insider point of view [25]. Compared
with their account, this paper has a similar topic, but it is consid-
erably broader in scope and contains considerably more detailed
description and in-depth analysis of the method and the case
projects.

The main contribution of this paper is that, to our knowledge, it
presents the first empirical and longitudinal in-depth study of the
use of the Release Iteration Planning method. We describe how the
method was applied to a real large-scale agile organization, how
the organization modified the method over the time, and what
the benefits and challenges of applying this method were.

The paper is structured as follows: Section 2 provides an over-
view of the related work on software release planning, Section 3
describes the research goals and methods, Section 4 presents the
case organization and case project backgrounds, Sections 5 and 6
describe how the Release Iteration Planning method was applied
in the case projects, Section 7 analyzes the benefits of the method,
while Section 8 discusses the challenges faced in applying the
method, Section 9 discusses our findings and their validity, and
finally Section 10 presents the conclusion and directions for future
work.
2. Software release planning

In this section, we review the literature related to software
release planning. First, we describe empirical research on the char-
acteristics of release planning and on the reasons why software
release planning is difficult. Then, we describe existing research
on model-based release planning, the most popular research sub-
ject at the time of writing. Finally, we look at the literature on
release planning in multi-team Scrum development organizations.

2.1. Characteristics of the release planning problem

According to empirical release planning research, there are sev-
eral technical and human factors that make release planning a dif-
ficult task. A shared understanding of the requirements arises
during development and may be weak in the beginning of the
release development project [9]. The requirements selection crite-
ria are time dependent and may change both qualitatively and
quantitatively during the release development project [9]. The
great majority of requirements have dependencies between them
that constrain the implementation order. These dependencies
may be difficult to identify and complex [9,26]. Decision makers
have difficulties expressing how value is created by selecting and
prioritizing requirements [27] and gut-feeling, lobbying, politics,
sell-in and strong individuals affect the requirements prioritization
in practice [28]. The size of the client base affects how the release
planning of a product can be performed, and some customers are
strategically more important than others [27]. The business per-
spective is often considered the most important requirements
selection factor, which results in implicit prioritization of feature
development over system improvement and innovation [27–29].

2.2. Model-based release planning

Software release planning has been widely accepted to be a dif-
ficult problem [3,4,13]. Mathematical release optimization models
treat release planning as an mathematical optimization problem
[4,5]. Such models select requirements to be included in one or

118 V.T. Heikkilä et al. / Information and Software Technology 57 (2015) 116–140
more subsequent releases based on different kinds of factors that
are related to the requirements, releases or stakeholders. The goal
is to optimize an utility function which is typically defined as a sys-
tem of equations. The optimization algorithm must also take into
account any constraints that are in effect, which are typically
defined as inequalities. The inequalities and equations contain
variables that reflect the different factors of the planning problem.
The utility function is expected to represent the overall planning
objective of the software releases. A mathematical algorithm or
simulation is then employed to solve the optimization problem
described by the inequalities and equations. The models produce
one or more release plans which are optimal or near-optimal given
the constraints which are in effect.

The model-based planning research proposes logically compel-
ling models to which decision making should conform. The models
gather the properties of the requirements in isolation one by one
and put the decision making into the hands of a few authoritative
stakeholders [7,30–35]. On the operational level, release planning
research has concentrated on models for optimizing the assign-
ment the development tasks to the developers in relation to a set
goal, for example to maximize the utilization of development
resources or to minimize the overall development time
[6,7,9,13,36].

The model-driven (or plan-driven) approach to release planning
is normative, linear and authoritative and it requires the taming of
the release planning problem into a problem which can be algo-
rithmically solved [13]. This approach has resulted either in mod-
els which are too simple to be useful in practice, or models which
are so complex that the practitioners find it difficult to provide the
necessary input values and find it hard to trust the output, as they
cannot understand the process that created it [4,9,13].

2.3. Release planning in multi-team Scrum development organizations

Small group research has found that groups of 3–6 members are
more productive than larger groups and reach high productivity
faster [37], and that software development teams of nine or more
members are less productive than smaller teams [38]. The pro-
posed way to scale up the size of a Scrum development organiza-
tion is to employ multiple small Scrum teams which
simultaneously develop the same software system [39]. There are
usually architectural complexities which result in a network of
dependencies between requirements [4,9], making coordination
between the independent Scrum teams difficult. The early Scrum
literature provided little guidance for strategic release planning,
as the focus was on planning and developing software one sprint
at the time in a single team, single project context [8]. However,
large development organizations have adopted Scrum practices
[15]. In large, market-driven software development organizations
the existence of release plans is the norm, although they are often
embedded in the product and project plans. In theory, strategic
plans are agnostic towards the implementation of the require-
ments, and by extension, towards the development process
employed [5]. Thus, the adoption of Scrum does not need to affect
the strategic planning process of the company. In a Scrum project,
the release plan provides information on how the goals of the
development project are reached over a multi-sprint time horizon
[40]. The release plan unifies the expectations about the likely out-
come and timeframe of the next release [40].

Existing empirical research on release planning methods in
large-scale agile development organizations is scarce [41]. In addi-
tion to earlier research [24,25] on the Release Iteration Planning
method described in this paper, to our knowledge there is only
one other publication on the topic. It describes how Ericsson per-
forms continuous release planning in a large, multi-team agile
development organization [42]. Vlaanderen et al. [43] propose an
extension to Scrum which applies Scrum principles to software
product management. Their model does not explicitly address
release planning, but product managers are expected to provide
the developers well refined requirements that the developers are
expected to implement in during following development sprints.
Thus, the selection of requirements that are to be refined implicitly
affects the contents of the next release.

The existing prescriptive guidance for organizing development
and for release planning in a multi-team Scrum development envi-
ronment has been written by practitioners and consultants based
on their personal experiences. A few notable examples are the books
written by Schwaber [39], by Larman and Vodde [44] and by Leffing-
well [18,21]. The approaches prescribed in these books differ nota-
bly on the organization of development and on the process model.

Schwaber [39] suggest organizing the development using a tree
structure of multiple levels of integration Scrum teams in the
branch nodes and (development) Scrum teams in the leaf nodes.
The integration Scrum teams do not develop functional software,
but instead integrate, build and test the software implemented
by the (development) Scrum teams. Both kinds of Scrum teams
have a dedicated Product Owner. All requirements are listed in a
product backlog as user stories. The branch node Product Owners
are responsible for assigning sections of the product backlog for
the lower level teams. Release planning is performed by the root
node Product Owner by selecting a subset of the product backlog
as the release product backlog.

Larman and Vodde [44] propose a two-layer model for a large-
scale, agile development organization. Development teams are
arranged as feature teams that work on a single feature at a time.
Feature teams are grouped into technical product areas. Each prod-
uct area is managed by an area Product Owner, who in turn is man-
aged by a Product Owner. The Product Owner manages the product
backlog and assigns backlog items to the product areas. Features are
large backlog items that describe functionality that is valuable for
the customer. Features are split into smaller backlog items which
can be implemented during a single sprint. The dates of releases
are planned by the Product Owner and the contents of each release
are defined by what is ready by the time of the release.

Our case organization used an early version of Leffingwell’s
release planning method which was further refined and published
in his book in 2011 [21]. The model is based on Leffingwell’s experi-
ences as a practitioner and consultant in several software develop-
ment organizations of different sizes. Among other things, it
prescribes a comprehensive model for scheduling, planning and
managing releases in a large enterprise. The central concept is the
release train, in which the internal and external releases of the soft-
ware follow each other like the cars in a train. The central principles
of the train are frequent timeboxed releases and release planning
events, global milestones, continuous integration, synchronized
development iterations, and hardening (or finalization) iterations.

In this approach, release planning is performed in release plan-
ning events where all stakeholders of the product assemble to plan
the next release together. Leffingwell proposes roughly the follow-
ing agenda for the release planning events: opening, introduction
and guidance presentations, team planning breakouts, plan
reviews and status checks, final plan review, risk and impediment
review, and retrospective. The goal is to create a tentative imple-
mentation plan of the next internal or public release on the user
story level [21].

On a more general level, van Waardenburg and van Vliet [11]
identified challenges in cases where agile methods co-existed with
a traditional, plan-driven enterprise. They studied two companies
that had adopted agile methods and stabilized their software
development processes. Most of these challenges and the strate-
gies for mitigating them were related to planning and require-
ments engineering. They found that concurrent development

Table 1
Overview of the data collection.

Data source Data collected Project

Planning events
Event 1 Voice recordings (13 h 19 min), notes a
Event 2 Voice recordings (7 h 34 min), notes a
Event 3 Voice recordings (5 h 28 min), notes a
Event 4 Voice recordings (5 h 5 min), notes a
Event 5 Voice recordings (3 h 41 min), notes a

Retrospectives
Retrospective Rx Voice recording (1 h) a
Retrospective Ra1 Voice recordings (56 min) a
Retrospective Ra2 Voice recordings (4 h 45 min) a
Retrospective Rpost Field notes a

Surveys
Event 1 survey 33 Responses (response rate � 33%) a
Event 2 survey 26 Responses (response rate � 19%) a

Post-project interviews
Product Owner Voice recording (1 h 22 min) a;b
Scrum Master/Facilitator Voice recording (1 h) a;b
SPI Manager Voice recording (1 h) a;b
Product Manager A Voice recording (41 min) a
Product Manager B Voice recording (58 min) b
R&D Line Manager Voice recording (48 min) a

V.T. Heikkilä et al. / Information and Software Technology 57 (2015) 116–140 119
streams, separated layer development and different process
approaches increased the IT landscape complexity. The high IT
landscape complexity then caused problems with communication,
dependent definition of done and difficulties creating change. They
identified the following strategies for mitigating the high IT land-
scape complexity: stimulating a common sense of purpose, manag-
ing programme level alignment, combining product backlogs, end-
to-end representation in team and facilitating project manage-
ment. They also found that centralized IT department and tradi-
tional project organization caused lack of business involvement.
The lack of business involvement caused problems with require-
ments gathering, slow reaction to change, problems with require-
ments prioritization and limited feedback from business. The
mitigation strategies for lack of business involvement were the fol-
lowing: changing business’ mindset, channelling business knowl-
edge through the Product Owner and managing business-level
alignment with intense stakeholder communication.

3. Research method

3.1. Research objective and questions

The overall objective of the research presented in this paper is
to start filling the large-scale agile planning research gap by

describing the Release Iteration Planning method adopted in a large
organization that employed the Scrum software development
method in two multi-team development projects.
We aim to reach the research objective by answering the fol-
lowing three research questions:

RQ1: How did the case projects adopt the Release Iteration Plan-
ning method in practice?

RQ2: What kind of benefits did the case projects gain from adopt-
ing the Release Iteration Planning method?

RQ3: What kind of challenges did the case projects face in adopt-
ing the Release Iteration Planning method?

We focus on the release planning that was conducted in the
Release Iteration Planning events. The market facing tasks of prod-
uct and project management are out of the scope of our study.
These knowledge areas include, but are not limited to, market anal-
ysis, competitor analysis, product strategy, roadmapping, product
pricing, recruitment and project budgeting (see e.g. [22,23,45]).

3.2. Case study method

We conducted the research as a longitudinal multiple case
study [46]. According to Yin, the case study method is most appro-
priate when the subject of the study is contemporary, situated in a
real-world context and the researcher has little or no control of the
events [46]. The case organization was purposefully selected, as it
provided an opportunity to perform an information-rich longitudi-
nal study [46,47]. In addition, the first of the studied development
projects was the largest in the company history (in terms of the
number of developers), which made the project a prime candidate
for an information-rich, or a revelatory, case study [46]. Table 1
shows an overview of the data sources and the quantity and type
of data from each data source in the two studied projects. Details
of the data collection are described in the two following sections.

3.3. Project a data collection

The researchers observed five Release Iteration Planning events
which took place over a nine-month time period between Decem-
ber 2009 and September 2010. The Release Iteration Planning
events were part of a project (hereafter called Project a) for devel-
oping a new version of a software product. The Release Iteration
Planning events are hereafter referred to as Events 1–5.

Data was collected by three researchers. Data collection was
performed using multiple methods. We used several data sources
to allow for data triangulation and multiple researchers for inves-
tigator triangulation to increase the reliability and construct valid-
ity of the results [48,47,46]. During the events, we attempted to
identify and observe the most interesting or remarkable discus-
sions and happenings. We observed how the different develop-
ment teams worked and interacted with the participants. We
voice-recorded the plan reviews, status checks and interesting dis-
cussions during the events. During the planning events, we acted
as neutral observers and did not affect proceedings.

We used two data collection methods in the Release Iteration
Planning events. First, we used voice recorders to record the pre-
sentations and informal dialogue during the events. Second, we
took field notes during the planning events. Immediately after each
event, we compared notes and composed an entry into a case diary.
Each entry contained an abridged description of the observations
and an initial analysis of the observations. We provided feedback
reports for the organization after Event 1 (see Section 5.4.6) and
Events 2 and 5 (see Section 5.5.10). These reports were based on
the case diary. They described the biggest issues we had identified
in the events and improvement suggestions, and in the case of
Event 2 and 5, observations of improvements from the previous
events.

A survey was conducted after Event 1 and Event 2 to gather
opinions on the planning method from the participants. The survey
conducted after Event 1 contained questionnaire statements on a
six-point Likert-like scale, open questions, and a question for grad-
ing the event. Event 2 survey contained a subset of the statements
from the first survey, selected by the case organization representa-
tives and by the researchers based on the topics seen as the most
important for the success of the planning. The surveys were anon-
ymous to increase the reliability of the results. All participants of
the events were invited to respond to the surveys.

In addition to the planning events, we participated in four ret-
rospectives. A retrospective (Retrospective Rx) of a project previ-
ous to Project a was conducted in June 2009. The discussions
during the retrospective were recorded with a voice recorder.

120 V.T. Heikkilä et al. / Information and Software Technology 57 (2015) 116–140
The goal was to identify issues regarding requirements
management.

In Event 2 the introduction and vision presentations were fol-
lowed by a retrospective (Retrospective Ra1). The purpose of the
retrospective was to find and solve impediments and learn from
the good and bad practices observed in the project so far. The ret-
rospective was performed in role-based groups. The groups were
given 1.5 h to conduct the retrospective. Each group presented
their briefing to the other groups at the end of the retrospective.
The briefings were voice recorded.

A retrospective of the first release iteration (Retrospective Ra2)
was conducted the day before Event 3. The goal was to identify
and solve issues in the software development and development
management processes in the project. Eleven topics were selected
for discussion by the participants. There were three discussion ses-
sions which lasted for 45 min each. The participants split into
groups which each discussed a single topic during the discussion
session. Between the sessions the topics were changed and the par-
ticipants selected new groups. There was a 45-min review of the
results after the third session. Two researchers observed the retro-
spective and used two voice recorders to record several discussion
sessions and the final review of the results. Overall, this retrospec-
tive lasted for three hours.

A retrospective (Retrospective Rpost) of Project a was conducted
after Event 5 in December 2010. The purpose of the retrospective
was to learn from the issues identified in the project so far. Due
to confidentiality issues, the researcher and case organization rep-
resentatives agreed that the retrospective would not be recorded.
Instead, the researcher took detailed field notes. The retrospective
lasted for four hours.

Project a officially ended in October 2011 and in August 2012,
the first and third author conducted five post-project interviews
in the case organization to gather more data on the Release Itera-
tion Planning method, and to gather data on the developments in
Project a after Event 5 and regarding the planning process after
the case study period.

The interviewees of the post-project interviews were purpose-
fully selected. The goal was to interview the most information
rich informants, and the selection was performed together with
a case company representative. The interviewees had the follow-
ing roles: Product Owner, Scrum Master, Software Process
Improvement (SPI) Manager, Product Manager and R&D Line
Manager. The interviews were conducted in a semi-structured
fashion. The list of interview questions was based on the analysis
of the previously collected data. Specifically, the questions cov-
ered the history of the project preceding Project a, the motivation
for adopting the Release Iteration Planning method in Project a,
the changes in the project organization during Project a, the
developments in Project a after Event 5, and the evaluation of
the Release Iteration Planning method including both challenges
and benefits of the method. The full list of interview questions
can be found in Appendix A.

Fig. 1 shows the timeline of the data collection. The segments
above the timeline show the approximate time span of each
release iteration.

3.4. Project b data collection

During the post-project interviews on Project a, we were
informed that another project, Project b, had adopted the Release
Iteration Planning method. In effort to increase the validity of our
results, we decided to include Project b in the scope of our study.
The interviews for collecting data of Project b were conducted
alongside the interviews about Project a in August 2012. A total
of three persons were interviewed concerning Project b. Two of
the interviewees were also interviewed about Project a. These
were the Software Process Improvement (SPI) Manager and the
Scrum Master. The Scrum Master had worked as a Scrum Master
in Project a and facilitated the Release Iteration Planning events
in Project b (thus he will be called the Facilitator regarding Pro-
ject b) and the SPI Manager had participated in the introduction
of the method to Project b. The third interviewee was the Product
Manager responsible for the product that was developed in Pro-
ject b.
3.5. Data analysis

All the post-project interviews and the recordings from the retro-
spectives were transcribed in their entirety. The transcribed retro-
spectives and the transcribed interviews were imported into the
qualitative analysis program Atlas.ti for analysis. The transcribed
materials were then coded based on a concept list which was created
based on the analysis of the data collected during the case study. The
concepts included the following stakeholders that were identified
during the data collection: architects, development teams, Product
Managers, Product Owners, project steering group, Scrum Masters.
Due to the novelty of the method in the case company in the first
Release Iteration Planning event, the descriptions of the first event
and the later events were coded separately with the following con-
cepts: Event 1 description, Event 2–5 description. The following two
codes were used to extract opinions towards the method: good in
the release planning method, problems in the release planning
method. During the analysis of the data, the following additional
concepts, that gave further insights into the data, were identified:
after the observation period, collaboration between the Product
Management and the R&D, dependencies, release planning in Pro-
ject b, why the method was adopted.

The backgrounds of the case organization and projects were
written based on publicly available data on the case organization,
based on observation notes and recordings from the presentations
in the Release Iteration Planning events, and based on the inter-
view data. The transcribed interviews and retrospectives together
with the field notes, feedback reports, survey results and the case
diary, were employed to create the description of Project a. After
we had constructed the general description of the case, we
reviewed the description and identified topics that were especially
interesting or confusing. The codes or combinations of codes were
used to extract passages related to those topics and the passages
were reread to elaborate the topic in the case descriptions. When
necessary, the voice recordings from the Release Iteration Planning
events were listened to in order to extract details which were not
available in the other data sources.

Since the observation period ended in December 2010, the
descriptions of what had happened afterward are solely based on
the quotations on ‘‘after the observation period’’ from the inter-
views. The description of Project b was based solely on the full
transcriptions of the three interviews.

The benefits of the method and challenges in the adoption of
the method were identified based on the quotations on ‘‘good in
the release planning method’’ and ‘‘problems in the release plan-
ning method’’ from the transcribed interviews and retrospectives,
and based on the field notes, survey results, feedback reports and
the case diary. Quotations related to benefits and challenges were
extracted from all transcribed interviews and retrospective record-
ings and read in their entirety. Triangulation [46–48] was done by
comparing the data collected from different sources, by different
researchers and with different methods in order to identify any
divergence between the data sources, researchers and methods.
Any divergent points of data were then analyzed further to find
out what the cause of the divergent data points was and if it
affected the validity and reliability of our results.

Fig. 1. Timeline of the research in Project a.

V.T. Heikkilä et al. / Information and Software Technology 57 (2015) 116–140 121
4. The case organization and project backgrounds

In this section, we describe the case organization, followed by a
more detailed background of the two projects we studied.
4.1. Case organization background

F-Secure Corporation was established in 1988 under the name
Data Fellows. The company published its first computer security
program in 1991. In 1999, Data Fellows changed its name to F-
Secure Corporation and was listed on the Helsinki Stock Exchange.
In 2009, the corporation employed over 800 employees and had
subsidiaries around the world. In addition to traditional PC com-
puter security software, the offerings included mobile security
and data security software.

The adoption of the Scrum development method begun in 2006.
The goal was to improve the efficiency and decrease the lead-time
of software development. When Project a begun in 2009, the dif-
ferent parts of the organization were still in different stages of
adopting Scrum. Some parts had employed Scrum for several years
and some parts were still working using traditional, plan-driven
processes.
4.2. Project a background

The first version of the software product developed in Project a
was published in 2003. A new version of the product had been pub-
lished yearly since then. Previously to Project a, the development
organization of the software product had been divided into the
three following areas: the front-end, the back-end and the engine.
This division existed because of the different technologies
employed in the different parts of the product and due to legacy
reasons. The developer level communication between the different
areas had been minimal and dependencies had been managed
using well-defined APIs. In the front-end area the developers had
been organized into 6–7 member Scrum teams. Each team had a
high abstraction level component area which they were the most
familiar with (for example automatic updates or user notifica-
tions). The engine and back-end development had been organized
as line-organizations with continuous incremental development
processes. The front-end part of the software had been rewritten
in the previous project.

While the overall goal of Project a was the development of the
new version of the software, one of the subgoals was to rewrite the
back-end using a new architecture. To accommodate the simulta-
neous rewrite of the back-end and improvement of the front-end,
teams from both parts were included in the project organization,
while the engine part was kept separate. The existing teams were
kept mostly intact at the beginning of the project. The develop-
ment organization of the project consisted of approximately 140
stakeholders, including 10 software development teams of six to
seven members each. One of the teams was from an off-shore site
located in Malaysia. During the project three more off-shore teams
from the Malaysian site were added as well as one contracted team
from Poland.

4.3. Project b background

The Release Iteration Planning method was also employed in an
other project of the case company, Project b. At the time of our
interviews in August 2012, Project b had successfully applied the
method twelve times starting in the summer of 2010. Projects a
and b did not share any resources. In Project b, four development
teams and two Product Owners were located in Russia, while
two Product Managers and the main architect were located in Fin-
land and visited the Russian site once a month. In this project, the
Release Iteration Planning events were conducted every other
month as face-to-face meetings at the Russian site with all mem-
bers (the Product Managers, Product Owners and development
teams) physically present.

5. Release planning in Project a

In this section, we provide a detailed description of the release
planning in Project a. We first provide an overview of the project.
Then, we describe the first Release Iteration Planning event (Event
1) in detail. In the subsequent section, we describe the notable
changes made to the Release Iteration Planning method over the
following events (Events 2–5). After the event descriptions, we
describe our feedback reports to the case organization and finally
we describe what happened in the project after Event 5.

5.1. Motivation for adopting the Release Iteration Planning method

The motivation for adopting the Release Iteration Planning
method was tied to the issues the case organization experienced
in the development project previous to Project a (hereafter
referred to as Project x) and also related to the size and complexity
of Project a, which had the largest project organization the case
company had ever had in a single project. A retrospective of Project
x was held in June 2009 (Retrospective Rx). The two main issues
related to the planning and monitoring of Project x identified in
Retrospective Rx are described below.

The first issue was that the developers were unavailable to sup-
port project planning. At the beginning of Project x, the develop-
ment teams were still finalizing the project preceding Project x
and had no time to assist the Product Owners and Product Manag-
ers in the planning of the project. However, the estimates provided
by developers were considered crucial for performing the cost/ben-
efit analysis for the candidate requirements of Project x.

The second issue was the difficulty of monitoring the progress
of software development during the project. While the goal of
the managers had been to organize the development in an agile
way, the requirements management was still quite waterfall-like.
The whole project had been planned on feature level before the
development begun. Features had been assigned to the develop-
ment teams by managers. After a six month development period,

122 V.T. Heikkilä et al. / Information and Software Technology 57 (2015) 116–140
a two-month period to improve quality and finalize the project had
been scheduled. The Product Managers expressed that they could
get no information on the progress during the first six months
and could not inform marketing and sales about upcoming features
and improvements, which was considered a problem:

And now that we are at the last two months we know what we are
getting. We can start making our sales material, we are confident
on what we get. But the first six months of the project, I would
not dare to talk to any partner or whoever about [Project x],
because we had basically zero confidence on what would be the
end product. That only comes when we are really close to the
release . . . but through the project the visibility and the confidence
is extremely low on what you will be getting.

[Product Manager, Retrospective Rx]
The case organization had hired an external agile development
consultant to assist in their release planning. The external consul-
tant suggested conducting planning events which he called ‘‘joint
release planning events’’, and we refer to as the Release Iteration
Planning events. According to the consultant, he had previously
facilitated such events in several companies, but the Project a orga-
nization was the largest organization he knew that had tried the
method. The benefits the organization expected to gain from the
Release Iteration Planning method were the following:

1. Better communication between the development organization
and Product Management.

2. Better transparency of development progress for Product
Management.

3. Better coordination between the development teams, especially
between the front-end and back-end teams.

4. Reduced planning overhead and faster planning.

5.2. Overview of the project

The project was initially distributed to two sites: Finland, which
was the main site, and Malaysia. During the project, the number of
development teams in Finland and Malaysia varied and one addi-
tional contracted Polish team was added. Table 2 shows the overall
number of development teams at each site during the studied
Release Iteration Planning events. The Product Owners and Scrum
Masters had responsibilities as prescribed in the Scrum method
[39]. However, in the beginning of the project, the Product Owners
were not dedicated to the teams. During all planning events, most
members of the Finnish development teams were present. The
Malaysian and Polish teams were typically represented in the plan-
ning events by each team’s Scrum Master and the rest of the teams
participated remotely via a videoconferencing system. In addition,
several other stakeholders participated in the planning events.
They will be described in detail in the following sections.

The development project was divided into release iterations and
each release iteration was divided into development sprints. Pro-
ject a was originally expected to last approximately six months,
Table 2
Number of development teams at each location during each event in Project a.

Event Teams per location

Finland Malaysia Polanda

Event 1 9 1 –
Event 2 10 3 –
Event 3 9 2 1
Event 4 8 2 1
Event 5 7 4 1

a Contracted team, not a company site.
until the end of Release Iteration 2, when the new version of the
software was expected to be published. Both release iterations
were planned to begin with a Release Iteration Planning event.
Before Event 1, the external consultant suggested that an addi-
tional Release Iteration Planning event should be conducted in
the middle of the first release iteration to adjust the plan. Thus,
an additional Release Iteration Planning event (Event 2) was sched-
uled to be held in the middle of Release Iteration 1.

Release Iteration 1 was expected to end in a test release. Release
Iteration 2 was planned to end in a public release of a feature com-
plete version of the software. During Release Iteration 2 the project
was first extended by one release iteration and during Release Iter-
ation 3, the project was extended by one more release iteration.
Fig. 1 illustrates the overall timeline of Project a and Fig. 2 shows
an overview of the schedules of the Release Iteration Planning
events in Project a.

Each release iteration consisted of two-week development
sprints. The number of sprints in each release iteration varied
based on the length of the release iteration. Release Iteration 1 con-
sisted of eight sprints, Release Iteration 2 of four sprints, Release
Iteration 3 of six sprints, and Release Iteration 4 of eight sprints.
The length of the release iterations varied as the case organization
tried to find the optimal number of sprints for a release iteration.

5.3. Requirements management

The organization had defined a four-level hierarchical model of
requirements management in the project. In the organization’s
model, epics formed the high-level goals of the product for the
multi-release time horizon. Epics were split into more concrete
features which described the requirements for the whole release
project. Features were expected to encompass functionality that
would create concrete value for the customer or user. There was
no limit to the size of features except a working definition of ‘‘a fea-
ture is something that can be implemented in a single release iter-
ation’’. At the beginning of the project, there were 135 features
proposed for implementation. Features in turn were split into user
stories to be developed in sprints. User stories were expected to
describe a small portion of functionality from a user’s point of
view. The fourth level was tasks which described in technical terms
what needed to be done to realize the user stories.

At the beginning of the project, the Product Management team
was responsible for creating the features and epics and prioritizing
them. They were supported by the product architecture team, the
user experience team and the engine development team represen-
tatives. Together, these stakeholders represented the customers
and users of the software in the Release Iteration Planning events.
Since one of the goals of the project was to create a new version of
the product using the new back-end architecture, many features
were required to replicate the functionality of the previous version
of the software on the new architecture. Initially, the product man-
agement did not see value in prioritizing features until the func-
tionality of the previous version was completed, as they
considered that the product could not be released before the com-
pletion of those features.

The development teams together with their Product Owners
were responsible for creating user stories based on the features
and for planning the contents of the development sprints. The
implementation order of the user stories was typically based on
the dependencies between user stories.

Non-functional requirements, such as usability, reliability, per-
formance and supportability, were included in the feature defini-
tion when the nature of the feature required it. Performance
standards concerning the memory and processor load created by
the software were explicitly defined for the whole system. The user
experience team representative provided graphical layouts and

Fig. 2. Schedules of the Release Iteration Planning events.

V.T. Heikkilä et al. / Information and Software Technology 57 (2015) 116–140 123
usability guidance in the planning events. Non-functional require-
ments were also elaborated in the events by informal discussion
between the participants when required.

Initially, each release iteration was expected to end in a release
of a test version of the software, or in the case of the last release
iteration, in the release of the public, feature-complete version of
the software. The purpose of the test releases was to be a milestone
for the project, to practice and test the release process, and to
gather feedback from test users. The test users belonged to the
company’s customer feedback program. The test releases were to
be the main method of validating if the right requirements were
implemented and if the features were implemented in a satisfac-
tory way. The features included in the test release were planned
to be complete and of publishable quality.

5.4. Release Iteration Planning Event 1

In this section we first provide an overview of the Release Iter-
ation Planning Event 1. Then, we describe the different segments of
the event: introductory presentations, team planning breakouts,
draft plan reviews and the final plan review. Finally, we describe
the feedback report we gave to the case organization after the
event.

5.4.1. Overview of the event
Project a officially begun with Event 1, although materials such

as feature and architecture descriptions and user interface guid-
ance had been prepared beforehand by the responsible stakehold-
ers. The overall goal was to create an initial plan for the first release
iteration on the feature and user story level. A three-hour training
session was conducted a day before Event 1. The purpose of the
training session was to give an overview of the agile practices
which were to be used in the project. Event 1 was originally sched-
uled to take two days. After the first day, the external consultant
(who also facilitated the event) and the Release Project Manager
decided that the planning needed to be extended into third day,
as the planning was not close to completion.

Fig. 3 illustrates the project organization, the stakeholders and
the work items in Event 1. Most developers from the nine local
development teams were present during the event. One developer
or tester from each team took on the role of team Scrum Master,
with approximately 50% of the working time allocated to the
Scrum Master work. The Malaysian team did not have a Product
Owner. Instead, the team was jointly managed by an architect,
the Product Managers and the team’s Scrum Master. One developer
and the team’s Scrum Master were present from the Malaysian
team. There were three Product Owners participating in the event.
One Product Owner was guiding the front-end teams and two
Product Owners were guiding the back-end teams.

The project had several other external stakeholders with advi-
sory or supporting roles: a user experience team representative,
a representative from the engine development organization, a
product management team that consisted of Product Managers
and a Release Project Manager, and a product architecture team
consisting of a lead architect and product architects. A Software
Process Improvement (SPI) team also participated in the events.
The team’s purpose was the continuous improvement of the soft-
ware development processes and tools in the company.

The external consultant, as an event facilitator, had an impor-
tant role in the planning event. The facilitator made sure that the

Fig. 3. Project a organization and stakeholders in Event 1.

124 V.T. Heikkilä et al. / Information and Software Technology 57 (2015) 116–140
event was proceeding as planned and within schedule, and solved
conflicts and impediments that rose during the event.

The training day and Event 1 were conducted in an external
space rented by the case organization. Fig. 4 shows an approximate
floorplan of the space. The space had a separate area for presenta-
tions. Each team had a dedicated planning table. The tables were
separated by movable walls which acted as planning boards and
dampened noise, but did not hinder access between the teams.

5.4.2. Introduction, vision and planning guidance presentations
Event 1 began with several introduction and guidance presenta-

tions given by the Release Project Manager, a Product Manager,
and different stakeholders. These presentations gave an overview
of the goals and the schedule of Project a, more detailed informa-
tion on the features intended to be implemented in the first release
iteration, and instructions for architecture and user interface
development. In addition, the facilitator gave a presentation on
the practicalities and schedule of the planning event and gave
planning instructions for the development teams. These included
instructions for writing user stories, for writing high level objec-
tives for the whole release iteration (i.e. release iteration objec-
tives), and instructions for using different color sticky notes for
Fig. 4. Approximate floorplan of the event space in Event 1.
recording user stories, dependencies, objectives, and risks. Finally,
the teams were instructed to start the planning by discussing the
product vision and features with their Product Owner.

5.4.3. Team planning breakouts
After the presentations ended, the development teams started

planning the first release iteration. First, the teams gathered
around their Product Owner. The Product Owners and the teams
then discussed how the features should be assigned to the teams.
After each team had been given at least one feature, the teams
broke out to their own designated planning tables, hence this seg-
ment was called the (first) team planning breakout.

Eventually, with guidance from their Product Owner and,
when required, from the Product Managers and other stakehold-
ers, the teams split their features into user stories. The teams
then scheduled the user stories into the sprints of the release
iteration based on the estimated development capacity of the
team. Fig. 5 shows several teams planning during a team plan-
ning breakout.

In Event 1, most of the teams did not write user stories from a
user’s point of view. Instead, they split the features into large tech-
nical tasks. During the event, they were repeatedly instructed by
the facilitator to use the user story format, but we observed no
changes in their conduct. We also observed that many teams strug-
gled formulating their release iteration objectives.
Fig. 5. Teams planning during a team planning breakout.

V.T. Heikkilä et al. / Information and Software Technology 57 (2015) 116–140 125
5.4.4. Draft plan reviews
The planning was coordinated using intermediate plan reviews.

An intermediate plan review was conducted at the end of both the
first and second day. In the intermediate plan reviews, all event
participants gathered in the presentation area. A representative
from each development team, which usually was the Scrum Mas-
ter, shortly reported how their planning had progressed and how
much time was still needed, what their unsolved issues were,
and what dependencies, if any, they had discovered. Each team
was given 4 min to give their presentation. The other participants
were encouraged to ask questions and comment on the
presentations.

Regardless of the short time given for each presentation, the
intermediate plan reviews took a considerable portion of the time
allocated for the event overall (see Fig. 2). From the approximate
20 h of effective working time, the intermediate plan reviews took
approximately 4 h in total. Observing the participants during the
plan reviews, we noticed that many developers seemed not to be
paying attention to the presentations of the other teams. We also
observed that most of the presentations were very technical; the
teams explained how they planned to implement some functional-
ity. This issue was also identified by the participants during Event 1:

The planning session felt too short, just when we started to get
some traction there was someone coming to say you need to start
wrapping up and writing those big pictures. . . . I think every day
felt really short. I feel that we spent too little time with our own
team and too much time listening to the other teams. . . . the expla-
nations were really vague and we could not really understand the
[other teams’] team internal speak.

[Developer, Event 1]
5.4.5. Final plan review
The final plan review was conducted at the end of the third day

in a similar fashion as the intermediate plan reviews. Each team
had 6 min of time to present the plan and objectives they had for
the first release iteration. Fig. 6 shows a picture of a team member
presenting the team’s plan to the other participants during the
final plan review. The teams had written risks on sticky notes dur-
ing the team breakout sessions. Each risk was discussed briefly and
assigned to a person or a team who would be handling the risk. The
review was followed by a vote of confidence by a show of hands.
First, all developers voted on how confident they were in their
team’s plan and then everyone present voted for confidence on
the whole plan. In Event 1, both votes showed a high overall con-
fidence level. The plan review was followed by a short discussion
Fig. 6. A team member presenting the team’s planning board during the final plan
review.
on how the event went. The facilitator asked the participants
to voice their opinions on what went well and what did not go
well.

5.4.6. Feedback by the researchers
After the event, the researchers wrote a feedback report with

the following improvement suggestions: each team should have
a dedicated Product Owner. Features should be tentatively pre-
assigned to teams before the planning event. Teams should split
features into user stories, instead of large technical tasks. Instead
of having the lengthy daily status checks, there should be an hourly
short status checks where only one representative from each team
participates. Most of these suggestions were followed in the later
events. Only writing user stories instead of large tasks continued
to be an issue in the later events.

5.5. Events 2–5

Overall, Events 2–5 were conducted quite similarly to Event 1.
The number of development teams varied slightly over the course
of the project. The Scrum Masters of the Malaysian teams were
physically present in the planning events, and the Malaysian teams
participated in the events remotely via a videoconferencing sys-
tem. Before Event 3, a contracted Polish team was added to the
project. The team was considered a part of the project, although
they were developing an independent small component. The Polish
team was represented in the event by their Scrum Master. The
notable changes that were made to the Release Iteration Planning
method over the course of Project a are summarized in Table 3 and
described in more detail below. We also describe the feedback
reports we sent to the case organization.

5.5.1. Feature prioritization and assignment
Starting from Event 2, the Product Owners and Product Manag-

ers prepared a prioritized list of features and preliminary assign-
ment of those features to the teams. The priority order and
assignments were tentative and could be changed during the plan-
ning event.

5.5.2. Table for stakeholders
Starting from Event 2, the Product Managers, architects and

other stakeholders present in the event had a reserved table in
the planning space where they could be found when they were
not working with the teams. According to the surveys (see
Fig. 9), the support the teams received from the stakeholders, the
Scrum Masters and the facilitator was much better in Event 2 com-
pared to Event 1.

5.5.3. Short status checks
The third change in Event 2 were short status meetings: two

meetings during the first day and four during the second day.
Besides the short status meetings, a draft plan review was still
arranged at the end of the first day. These status checks were par-
ticipated in by a single representative of each team and by the
Product Owners and the Product Managers. The goal was to
decrease the overhead created by the lengthy draft plan reviews
in Event 1, to provide better visibility to the progress of planning
and to assist in identifying and solving inter-team dependencies.
After Event 2, no draft plan reviews were conducted in the rest
of the events, since the frequent status checks had made the draft
plan reviews obsolete. Only the final plan review in the end of the
last planning day was kept.

5.5.4. Planning matrix
In the Event 4, a planning matrix wall was introduced. On the

matrix, each column represented one software development team

Table 3
Notable changes to the Release Iteration Planning method.

Event Change compared to the previous event(s)

Event 2 A prioritized list of features and preliminary assignment of the features to the teams
Short status checks during the planning breakouts
A table reserved for the Product Managers, architects and other stakeholders

Event 3 No draft plan review at the end of the first day

Event 4 Introduction of the planning matrix
Alternating planning status checks and architectural status checks

Event 5 Reorganization of the development teams, introduction of full-time Scrum Masters
A few teams planned with user stories instead of large technical tasks
Number of stories brought to the event was limited to estimated capacity plus 15%
Presentations were given the day before the event

126 V.T. Heikkilä et al. / Information and Software Technology 57 (2015) 116–140
and each row represented one sprint. Whenever a team finished
planning a feature, the wall was updated to show when the team
planned to start and when to finish the development of the feature.
Fig. 7 illustrates the planning matrix. The location of the feature
sticker indicates the beginning of the development and the tail
indicates the time span of the development. The purpose of the
planning matrix was to provide an overview of the feature devel-
opment schedule and of the progress of the planning. The planning
matrix appeared to help in the identification of risky or conflicting
feature development plans.

5.5.5. Architectural status checks
Starting from Event 4, there were two types of status check

meetings: planning status checks (explained above) and architec-
tural status checks. Both types were held in front of the planning
matrix. The status checks were held approximately once an hour,
alternating between the planning status checks and architectural
status checks. The architectural status checks were led by the lead
architect. The goal of the architectural status checks was to solve
architectural and technology related risks, dependencies and other
architecture-related issues. Typically architectural status checks
were quite short, but allowed effective identification and solving
of issues. Issues were raised during the status checks and smaller
groups of people suitable for solving the issues continued discus-
sions after the status checks.

5.5.6. Re-organization of the development teams
Between Events 4 and 5, a portion of the development organiza-

tion was laid off or moved to other projects due to an internal reor-
ganization of the company’s Finnish site. The lay-offs left many
development teams short-handed. A week before Event 5, the
Finnish development teams were rearranged. The teams were dis-
banded and new teams were formed from scratch. Each team was
also assigned a dedicated full-time Scrum Master. Seven Finnish
development teams were formed. Two of the teams were
Fig. 7. Illustration of th
end-to-end teams, one was a back-end team, and four were
front-end teams. Moreover, in Event 5, we observed that several
teams were using user stories instead of large technical tasks when
planning. This might be attributed to the introduction of the full-
time Scrum Masters, many of which had formal Scrum Master
training.

5.5.7. Limiting the number of features
According to an SPI team member, the number of features

brought to Event 5 was limited to the estimated total capacity of
the teams plus 15%. The goal was to reduce and focus the prepara-
tion work of the Product Managers and Product Owners. The smal-
ler amount of features allowed them to better elaborate and
prioritize the included features. In addition, the shorter feature list
reduced the development team’s pressure to over-estimate their
capacity. Since they did not see the whole backlog of features that
were proposed to be included in the product release, they planned
according to their real capacity instead of trying to fit the whole
backlog in the plan, which would have created an unrealistic plan.

5.5.8. Introductory presentations before the event
Instead of having the presentations the same day as the plan-

ning, the introductory and guidance presentations were given the
day before Event 5. Between the presentations and the first plan-
ning day, the managers and architects had time to improve mate-
rials and guidance based on questions raised during the
presentations. This also enabled the teams to start planning
straight away at the beginning of the first day.

5.5.9. Test version releases
The organization failed to publish a test release after the first

release iteration due to the incompleteness of the features and
due to quality issues. After the first release iteration, the manage-
ment decided to try to publish test release every two weeks. How-
ever, due to the similar incompleteness and quality reasons, only
e planning matrix.

V.T. Heikkilä et al. / Information and Software Technology 57 (2015) 116–140 127
approximately half of the test releases were successful between
Events 2–5. Two of the four test releases were successfully pub-
lished during Release Iteration 2, three of the six during Release
Iteration 3 and two of the four during Release Iteration 4. After
Release Iteration 4, most of the bi-weekly test releases were
successful.

5.5.10. Feedback reports
The researchers gave feedback to the case organization after

Event 2. The report contained the following observations and rec-
ommendations: the communication between the teams was much
improved from the first event, but there were some individuals
who seemed to have an attitude problem towards the Release Iter-
ation Planning method. Teams still planned using large technical
tasks instead of user stories. The new status checks seemed to
work well and we suggested that the draft plan reviews could be
dropped. The preparations for the event were lacking, and many
features were too vague to plan with.

The researchers wrote a feedback report also after Event 5 with
the following observations and recommendations for further
improvement of the method: the case organization should make
sure that the two new end-to-end teams are really working in a
cross-functional way, instead of working internally as separate
teams. While it looked like the planning was nearly completed
after the first planning day, in the beginning of the second day it
became apparent that the initial plan was unrealistic and there
were still many open issues. Two days seemed to be the minimum
timeframe for a Release Iteration Planning event in this kind of a
project, since the additional time between the days allows the
stakeholders to solve issues identified during the first day and to
create additional materials to guide the planning during the second
day.

According to the post-project interviews, the observations and
recommendations in these feedback reports were agreed by the
SPI-team members who read them. No feedback reports were writ-
ten after Events 3 and 4, as the researchers did not observe any
new phenomena significant enough to report.

5.6. Finalizing Project a

Event 5, held in December 2010, was the last Release Iteration
Planning event in Project a. After the fifth release iteration, ending
in March 2011, the project was considered to be in the finalization
stage and it was decided that further Release Iteration Panning
events were not needed.

The first version of the product was publicly released in October
2011, with fewer features than was originally planned. Thus,
reaching the first public release took two years instead of the six
months the product management team had originally envisioned.
The project continued development after the first public release
with a smaller number of teams divided into front-end and back-
end sub-projects. New releases were made every quarter. An inter-
viewee summarized the project in the following way:

. . . initially this was supposed to be 10 km run which might take
40 min, in the end it was a marathon where we got to the goal
barely before the time limit, six hours. . . . even though we got to
the goal, . . . the thing we had at that point was really not what
we were supposed to have.

[Product Manager, Post-project interview]
The interviewees gave several reasons for the initial over-opti-
mism in the schedule and scope of the project in the post-project
interviews. First, building the new product architecture took con-
siderably more effort than what was initially expected. Second,
the product management team assumed that a certain large
component of the software was almost completed when the Pro-
ject a begun, when in reality what was available was more akin
to a prototype. Third, the developers tended to over-estimate their
capacity and under-estimate the effort required by the require-
ments they had planned to implement during a release iteration.
Fourth, the development organization expected that the adoption
of Scrum and the Release Iteration Planning method would
increase the speed of the development.

6. Release planning in Project b

Project b was distributed between Finland and Russia. The four
Russian development teams and the Russian Product Owners col-
laborated with the Finnish Product Managers and the lead
architect.

The Release Iteration Planning method had been taken into use
in Project b because the project organization was planning big
changes to the product they were developing and they had heard
good things about the Release Iteration Planning method from Pro-
ject a members. The Project b organization was especially looking
to improve requirements transparency so that the developers
would better understand what was expected of them and why.

The overall conduct in the Release Iteration Planning events was
similar to the ones in Project a. The events were scheduled to last
two days. Before each event, the Product Managers, the Product
Owners, and the lead architect prepared a prioritized list of fea-
tures. The planning events begun with a Scrum-style retrospective
where all members of the development project tried to solve issues
that had been identified during the previous release iteration. Next,
presentations on the current status of the project, on the goals for
the next release iteration, and on technical information were given.
This typically left a few hours for the team planning breakout dur-
ing the first day. The second day was mostly reserved for the team
planning breakout. Short status meetings were conducted every
other hour. The second day ended in a collective plan review. All
12 Release Iteration Planning events, conducted by the time of
the post-project interviews, had been led by a facilitator from the
SPI team. This was perceived as an important practice as the facil-
itator had brought an external point of view to the events.

Our interviewees emphasized that good preparations were
essential for the success of Project b. All features had to be priori-
tized and the backlog had to be in a good shape before the planning
events. They had accomplished this by arranging backlog grooming
sessions on two levels: the Product Managers, the Product Owners
and the lead architect met face-to-face in monthly grooming work-
shops, and the Product Owners arranged a grooming workshop
together with the teams before each Release Iteration Planning
event. However, our interviewees mentioned that they should
pay even more attention to backlog management in the future.

In the Release Iteration Planning events of Project b, the Product
Owners and Product Managers had recently tried to replace a por-
tion of the status check meetings with status visits to each team.
The benefit of the status visits was that the participants were able
to see each team’s planning wall and ask detailed questions about
it. However, our interviewees expected that this might decrease
the inter-team visibility which was created by the status check
meetings. In this small project, with only four teams, this was
not seen as a major challenge and they were planning to continue
with the status visit practice. Our interviewees mentioned that in
the future they aimed at shortening the planning events to one
day by putting even more effort into preparation. By the time of
the interviews, the shortest Release Iteration Planning event had
taken one day and a half.

Overall, the interviewees thought that the members of the Pro-
ject b organization were happy with the Release Iteration Planning
method. It had made the planning easier in this distributed project

128 V.T. Heikkilä et al. / Information and Software Technology 57 (2015) 116–140
and improved transparency between the sites and between the
Product Managers and the development teams. According to an
interviewee, the process was well received and perceived to be
useful:

. . .widely it [the Russian site] is considered the most successful of
the sites that have adopted the joint release planning method. . . .

And it would not be so impressive if it was only performed in [Rus-
sia], but because it is led solely from [Finland], which has a different
language and a different time zone . . .

[SPI manager, Post-project interview]
7. Benefits of the method

In this section, we present the benefits of the Release Iteration
Planning method experienced in the case organization. Overall,
the Release Iteration Planning method was regarded as successful
in both case projects. All the expected benefits were at least par-
tially realized and additional benefits were recognized. Even
though Project a cannot be seen as a total success, the Release Iter-
ation Planning method positively affected the ability of the project
to finally create a public release. In Project b, at the time of our
interviews, the Release Iteration Planning method had been
applied successfully twelve times, and our interviewees saw that
this method had brought impressive results.

All our data show an overall positive attitude towards the
Release Iteration Planning method. The members of the case orga-
nization saw the method as a clear improvement to the previous
projects. In the surveys conducted after the first two Release Iter-
ation Planning events of Project a (Survey 1 and Survey 2), the pro-
ject members rated both events positively. Survey 1 had a median
of 5.0 and Survey 2 had a median of 4.0 on a six point scale
(1 = Poor, 6 = Excellent). See Fig. 8 for details. Comments on the
method in the observed retrospectives were positive as well.

We were able to identify some good things that had happened so
far. Number one, clearly, was the new planning method. So people
liked this way of working, they think it does bring benefit.

[Manager, Retrospective Ra1]

Moreover, all the persons interviewed in 2012 regarded the
method as successful and were eager to take it into use in similar
future projects. In the case projects, we recognized ten benefits of
the Release Iteration Planning method, which we will discuss
below.
Fig. 8. Results from the survey question ‘‘Overall, how would you rate the whole
release planning event?’’.
7.1. Clear and unified goals for all stakeholders

As the Release Iteration Planning events gathered the whole
organization in the same space regularly, it was possible to create
clear and unified goals for all stakeholders, from Product Managers
to developers.

. . . there the whole group gets a common direction and sees who
actually belong to the project and can manage the dependencies
faster, already during the event.

[R&D Line Manager, Post-project interview]

It is really important that in two, three months interval, we gather
everybody in the same room, Product Owners, architects, Product
Managers, everybody sees each other’s faces, especially when we
are not at the same office, and we gain a common direction.

[Scrum Master, Post-project interview]

The results from the surveys in Project a also support this ben-
efit. The statements: ‘‘The necessary information was readily avail-
able thorough the event (e.g. agenda posted, handouts distributed,
etc.)’’, ‘‘I have a clear vision of what I am going to do for the next
business iteration’’ and ‘‘My team’s plan for creating the next
release is realistic’’ got medians of 5 (Agree) in both surveys. The
statement ‘‘I believe this project will create a successful solution’’
got median of 5 (Agree) in Survey 1 and median of 4.5 (between
Agree and Slightly agree) in Survey 2. See Fig. 9 for details of the
survey results.

7.2. Fast recognition of the size and challenges of the project

According to the post-project interviews, an important positive
aspect of the Release Iteration Planning method was that it helped
the project organization to realize the true magnitude of the work
in Project a. Otherwise, most probably, it would have been realized
much later. Moreover, many of the challenges of the project came
up and to the knowledge of all stakeholders during the Release
Iteration Planning events. Our interviewees presumed that even
though individual persons would have known the challenges or
thought that the project would require higher effort than expected,
this would not have became to the knowledge of a large group of
managers and other stakeholders as early as it came now.

Good was that we became aware of, already in the beginning . . .

that this project is massive . . . What we wanted complete during
this project is impossible. . . . After one and half months, when we
had the first re-planning, then at the latest we could see that this
is much more massive operation than we had realized. And without
that kind of events, I believe, we would have realized this many
months later.

[Scrum Master, Post-project interview]
7.3. Improved communication and transparency

The collaboration and visibility between the Product Managers,
Product Owners and the development teams had been a big chal-
lenge in the organization, as these groups had traditionally worked
quite apart from each other. Thus, the improved communication
and transparency between these groups was one of the benefits
that the organization hoped to gain from the method. This benefit
was clearly realized in both case projects, although this happened
gradually. Both the developers and the managers thought that the
communication and especially the transparency between the
groups had improved immensely.

The first time ever there has been this kind of visibility for the
developers to what the other teams are doing. It is better than ever
before. Previously, it has been that the project steering group

Fig. 9. Results from the surveys.

V.T. Heikkilä et al. / Information and Software Technology 57 (2015) 116–140 129
manages everything and developers don’t really know what is
happening in the other room.

[Developer, Event 1]

. . . the teams had much better visibility on what was coming, the
Product Owners had better visibility and the Product Managers
had better visibility on what they were getting, what was possible.
It just improves the communication at several levels.

[Scrum Master, Post-project interview]

In the Event 1 survey, 15 of the 19 answers to the open ended
question on ‘‘the best parts of the joint release planning event’’ sta-
ted collaboration and communication as the best parts. A few rep-
resentative excerpts follow.

It was easy to discuss with all the relevant people of different prob-
lems and synchronize work with other teams in case of dependen-
cies. Also visibility of other teams’ objectives was good.

[Anonymous respondent, Event 1 survey]

Having business people present all the time. Showing business how
realistic R&D think the targets are right at the beginning, and not
2 months before the release.

[Anonymous respondent, Event 1 survey]

Collaboration between all feature teams and [product] manage-
ment. All stakeholders are now focused on the same things, with
the same expectations.

[Anonymous respondent, Event 1 survey]

The Release Iteration Planning events gave the developers bet-
ter visibility on what was coming in the future and allowed them
to directly ask questions and clarifications from the product man-
agement and other stakeholders. The Product Managers saw how
the development teams worked, what was problematic, how com-
plex and demanding the developers considered the different fea-
tures and what the developers considered possible to implement
in the following release iteration. Thus, the predictability started
to improve after the first few planning events in both case projects.

I cannot think of any other way how we could accomplish the same
transparency and fast problem solving [in Project b]. I do believe in
this method, especially when I have seen how it works at Russia . . .

there business gets transparency to the practical work, especially
when in that case the business is located in a different country.

[SPI manager, Post-project interview]
7.4. Fast identification and management of dependencies

In the Release Iteration Planning events, the regular status
checks revealed dependencies between the teams and issues
regarding the dependencies.

. . . from the team perspective we had to learn that we cannot just
think that ’if we do this [our own tasks], then everything is fine’
. . . that if you get caught that ’Ops we had a dependency to there,
but we didn’t notice it.’ . . . so this kind of things were so much bet-
ter visible.

[Product Owner, Post-project interview]

As the dependencies were noticed quickly and all relevant
stakeholders were present, it was possible to discuss how to coor-
dinate the teams and solve the issues right away. Dealing immedi-
ately with the dependencies made it possible for teams to continue
their planning without the need to wait or to leave the issue
unsolved.

7.5. Enabling inter-team coordination

We observed that during the first few events of Project a, the
teams expected that the other stakeholders, like the Product Own-
ers and architects, would take care of the coordination and solve
inter-team dependencies. However, gradually the teams learned
to do this by themselves.

As all the teams were present in the events (at least by using a
telecommunications system in Project a), coordinating with the
other teams was straightforward. Moreover, during these events
the team members from different teams learned to know each
other and collaborate. Thus, the inter-team coordination became
easier also between the events, as the project organization mem-
bers knew each other and knew the assignments of the features.

130 V.T. Heikkilä et al. / Information and Software Technology 57 (2015) 116–140
7.6. Fast recognition and mitigation of impediments and risks

Recognizing impediments and risks was part of the daily sche-
dule during the Release Iteration Planning events. As the impedi-
ments and risks were recognized collaboratively, the collective
knowledge improved the coverage of the recognized risks. More-
over, one of the aims of the events was that the impediments
and risks were discussed and, if possible, mitigated already during
the events. As the impediments and risks were brought to every-
body’s knowledge, everybody could affect on mitigation of the
impediments and risks during their work.

. . . it was especially good that in the end of the events, we checked
the impediments, listed them from the whole project so that they
were clearly visible, . . . and we tried to resolve them as far as pos-
sible and assigned owners.

[R&D Line Manager, Post-project interview]
7.7. Fast decisions in the events

It was seen as very important that all stakeholders were present
or represented in the Release Iteration Planning events, as that
made it possible to get everybody needed together immediately
to discuss identified impediments and make decisions right away
on how to solve them. Previously that kind of decisions could take
up to several weeks.

Without a doubt a good thing was that everyone was in the same
space, it was the reason why it works, the reason why it was so use-
ful. Whatever question comes up, you have a person within 30
meter radius who can answer that question.

[Scrum Master, Post-project interview]

Things happen really fast [during the event]. Things that would
take weeks to handle over e-mail and over telephone . . . in there
you gather those three or four people, drag them into a corner
and state that we have this kind of issue, what shall we do?

[SPI Manager, Post-project interview]
7.8. Meeting people face-to-face and creation of a project spirit

Both case projects were distributed and even the people on the
same site sat separately. Managers sat in their rooms or cubicles
and each team had a dedicated team room, which were located
on several office floors. Many team members did not know what
the other teams were doing. In the Release Iteration Planning
events the Product Managers met and discussed with the team
members. Previously, they had been somewhat isolated from the
development teams. In the predecessor project of Project a, Project
x, some of the teams had worked on the front-end and others on
the back-end. Consequently, the members of the different teams
did not initially know each other well. In the release planning
events the participants met each other face-to-face. The intensive
effort of working a few days in a row in the same space towards
a common goal helped create a project spirit.

. . . I didn’t know the teams and others beforehand, everyone was
there, and we saw that this is ’us’, this is our project, kind of ’us’
spirit was born. . . . I came to know the teams because otherwise
the teams are easily anonymous . . .

[Product Manager, Post-project interview]

[otherwise] I would have never seen all those people over such
time. . . . if I as a Product Owner saw a lot of people, others did
too and started to talk in a different way. . . . it was not anymore
that people would just be in their own team room and that nobody
would disturb them.

[Product Owner, Post-project interview]
7.9. Showing the importance of the project

Organizing the release planning events where all product manag-
ers were present conveyed the importance of Project a to the partic-
ipants. The CEO of the company visited the first planning event, which
was also an sign of the importance of the project. In Project b, sending
the Product Managers and the lead architect to the planning events in
the Russian site conveyed the development team that they were val-
ued and that the project was important for the company.

7.10. Enabling the successful finalization of the project

Even though Project a took much longer than expected at the
beginning, many of our interviewees mentioned that the Release
Iteration Planning method immensely impacted to the finalization
of the project. First, it revealed during the first few events that the
project was much bigger than expected. Without the events the size
of the project would probably have been realized much later. Sec-
ond, the events forced the Product Managers and Product Owners
to collaborate. They had to prioritize the features and to leave parts
of the originally envisioned functionality out. Third, the events
enhanced the inter-team coordination and enabled immediate
dependency management. Finally, our interviewees admitted they
could not think of a better way to perform release planning in such
a large project:

The first event, I have heard, was a quite painful experience to
everybody, but after that everybody has agreed that this is a good
way of working, much better than what we had previously.

[Scrum Master, Post-project interview]

I don’t believe we could have managed without [the release plan-
ning events]. Because then we had that amount of teams working
on exactly the same area. Who must share the understanding.
And several sites. . . . I have really hard time coming up with an
another way which we could have used instead of that kind of
large-scale release planning.

[Product Owner, Post-project interview]
8. Challenges in the application of the method

Even though the Release Iteration Planning method received
generally positive comments, there were several challenges in its
application in Project a. Many of them originated from the com-
pany’s previous ways of working, as their application of the Scrum
method and agile thinking was still somewhat lacking when they
started the project. In this section, we concentrate on the chal-
lenges the company had in applying the method, especially in Pro-
ject a, but also to some extent in Project b. We recognized nine
challenges the case organization had in the application of the
Release Iteration Planning method. These are discussed below.

8.1. Lack of preparation of the requirements before the events

The lack of preparation of the requirements was most notable in
Event 1 of Project a, but it continued to be a challenge also in other
events. At the beginning of the project, the Product Managers did
not understand the nature of the planning events and it seemed
that they tried to prepare all possible requirements beforehand.
This created confusion when the first planning breakout started
in Event 1. The different Product Managers had not synchronized
the requirements between each other and the requirements were
not described at a low enough abstraction level for the team mem-
bers to be able to plan effectively. In addition, the overall number
of requirements, which were not prioritized, was many times more
than what the teams could realistically implement during the next
three-month release iteration.

V.T. Heikkilä et al. / Information and Software Technology 57 (2015) 116–140 131
. . .Week before [Event 1] I saw those business requirements. It was
shocking 75 pages of Power Point. No synchronization, you could
see that one person had filled in one part and another person
had filled in another part, and third person had filled in yet another
part. They had never looked crosswise together whether these
requirements are even synchronized, and they were not.

[Product Owner, Post-project interviews]

. . . the preparation [for Event 1] was really weakly attended to by
us. Everything what came up there was new to the team members,
. . . they didn’t know what to expect, so for the most part the time
went into fumbling around, clarifying basic things that should have
been clear already in the planning.

[Product Owner, Post-project interview]

The same problem could be seen from the answers to the Event
1 survey. For example, the answers to the question ‘‘In my opinion,
the biggest problems in this release planning event were’’ con-
tained the following answer.

Insufficient preparations for the team breakout materials: too
many pages with duplicates in features under different titles, tech
& business materials separated (from teams’ perspective) - how
probable it is that anyone would have the time to go through such
amount of material with good enough of understanding on the
entity as the presentations never got to that level (epics/vision &
features were not in par for the teams to operate efficiently)?

[Anonymous respondent, Event 1 survey]

The preparation improved in over time in the consecutive
events as the managers and Product Owners learned to better pre-
pare. However, during the whole study period we observed that
communication between the development organization and Prod-
uct Management was an issue. The development teams requested
more guidance on the prioritization and implementation of fea-
tures and clearer feature information materials.

At the time of the post-project interviews, preparation was not
identified as an issue in Project b. Compared with Project a, the
preparation was more systematic in Project b. The backlog groom-
ing performed on the two levels made it easier for the teams to
start the planning right away in the planning events. In addition,
the backlog items were always prioritized before the planning
events.
8.2. Lacking feature prioritization and allocation

The list of 135 features that the Product Managers brought to
Event 1 in Project a was not in any priority order, nor were the fea-
tures pre-assigned to the teams. Three Product Owners and ten
development teams participated in Event 1. Everything was new
to the development teams, from the planning method to the prod-
uct architecture and features. The developers seemed to have diffi-
culties in getting enough support from the Product Owners and
other stakeholders. It took at least one hour for most teams to even
select their first feature. The feature list was much better prepared
for Event 2. The Product Managers and Product Owners had pre-
pared a prioritized list of features which contained pre-assign-
ments features to the development teams.

. . . in the following [release] iterations we then somewhat pre-des-
ignated them [features] based on competency and other things. And
then we made sure that the thing that was fifth on the list, this is a
thing no-one wants to do because this is kind of boring and difficult
and no end in sight, this must be assigned to someone because the
teams don’t always want to take such things that are challenging
and difficult, because they are afraid of failing and such things
are taken fast that are impressive end-user features.

[Product Manager, Post-project interview]
According to our observations, the prioritization and pre-
assignments seemed to help the teams to start the actual planning
much faster compared with Event 1. We also observed that new
information uncovered during Event 2 caused several changes to
the feature assignments during the event, which suggests that
the participants understood that the pre-assignments were only
tentative.

According to the post-project interviews, Product Manage-
ment’s role in the feature prioritization in Project a was not clear.
This issue existed from the beginning of the project until the re-
organization preceding Event 5. The Product Management was offi-
cially responsible for prioritizing the features. However, according
to the interviewed Product Manager, Product Management was
unwilling to give the features a priority order, since there was a
set of features mandatory to create a product which could be sold.
Thus, from the business point of view, it would have made no sense
to prioritize the features before the mandatory set was imple-
mented. According to him, the prioritization of features should
have been made by the Product Owners based on the most efficient
implementation order of the mandatory features:

. . .we used an airplane [metaphor] then, that we cannot prioritize
which is more important, an engine or a wing, because the air
plane won’t fly anyway and we cannot enter the market if we have
an air plane that doesn’t fly, that doesn’t have seats.. . . [It is a mat-
ter of] implementation order because we . . . don’t know which is
more sensible so we don’t want to make that decision, because
[there are] those who know and can, so let them make it, Product
Owners and architects. Because naturally we want a plane that flies
and where you can fit 200 passengers, so whether you make a wing
or an engine first . . . does not matter.

[Product Manager, Post-project interview]

According to an interviewee, before the reorganization of the
development teams prior to Event 5 of Project a, the feature back-
log was too unorganized and unprioritized to be of much use. The
Product Owners were not allowed to touch the feature backlog.
There were conflicting and misleading features, and different Prod-
uct Managers had wildly different ways of describing features.
After the reorganization preceding Event 5, the Product Owners
took the ownership of the feature backlog, which allowed them
to prioritize features and write them in a format they could under-
stand. During Event 5, the concept of a minimum marketable fea-
ture, which is the minimal set of functionality that is requisite for
the publication of a feature, was also discussed, but was not con-
cretely adopted at that time. After the reorganization, the manage-
ment and prioritization of features was performed in weekly
meetings between the Product Owners, Product Managers, archi-
tects and other relevant stakeholders. According to an interviewee,
this was identified as one of the main learnings from Project a:

. . .backlog ownership cannot be in a place where they don’t under-
stand what the actual implementation work is. Or [don’t under-
stand] how to write a feature in a way that the people who are
implementing it, for example, can only understand it in a singular
way.

[Product Owner, Post-project interview]
8.3. Lacking understanding of the creation of end-to-end features and
feature teams

According to the large-scale agile model Project a initially fol-
lowed, all features should be end-to-end features and provide
functionality visible to end users, and all teams should be cross-
functional and able to implement any feature. The goal was to cre-
ate features that could be implemented during a single release iter-

132 V.T. Heikkilä et al. / Information and Software Technology 57 (2015) 116–140
ation and included in a release at the end of the release iteration to
gather immediate user feedback.

Due to the history of the case organization, this was not possible
in the beginning of Project a. The development teams had knowl-
edge of either the back-end or front-end of the product. Therefore,
end-to-end features required involvement from the front-end and
the back-end teams. In addition, the Product Management had not
previously written end-user oriented end-to-end features. They did
not know how to write them and instead wrote new features
according to their previous technical and component oriented
way, but still managed to create features which often required
development in the back-end and in the front-end.

As a result there were lots of dependencies between the front-
end and back-end teams, which required keeping the front-end
and back-end development synchronized. The teams should have
taken care of this network of dependencies, but they lacked the
skills to handle the situation. Moreover, dependencies between
features caused even more complexities.

. . .we didn’t know those dependencies beforehand. In the planning,
we looked at them, and there were quite many [such] that the fea-
tures were not sensibly created in a way that you could implement
them alone, in a team. Instead, it was easily so that ’okay, we will
take this, but we must get that from them [another team] before we
can create it, but then those [yet another team] are waiting for this
thing from us’ . . . and then there is a network when you have dozen
teams and each team is contributing to a couple of features per
iteration over three months’ time. It became very complex.

[Product Owner, Post-project interview]

The Finnish site development re-organization preceding Event 5
did not solve the issues, as the newly formed end-to-end teams
seemed to have challenges in planning their work in an end-to-
end fashion. First, the features brought to Event 5 by the Product
Management were still component-oriented. We observed that
the newly formed end-to-end teams had difficulties in creating
end-to-end user stories based on the features. Second, we observed
that these teams split into two sub-teams during the planning. One
sub-team planned the front-end functionality of the features and
the other sub-team planned the back-end functionality. According
to the post-project interviews, the end-to-end teams did not per-
form well, and were disbanded soon after Event 5.

We tried this [end-to-end teams], but we didn’t have in the backlog
cross-functional work to give them. . . . it is a very technical back-
log, it is written in a way that would make Ken Schwaber turn in
his grave if he was dead. We did not have a back-end-front-end
thing to give that would produce customer value.

[SPI Manager, Post-project interview]

It [end-to-end teams] did not work, unfortunately. The main rea-
son, or one of the reasons, was that, at least in the beginning, we
did not have end-to-end features to give to the teams. Thus, the
teams kept receiving front-end features and back-end features,
which means that those end-to-end teams split internally into
two small teams.

[Scrum Master, Post-project interview]

In Project b, the teams were divided into front-end and back-
end teams. However, most features were written as end-to-end
features, which required collaboration between the teams and
had caused some minor coordination challenges.

8.4. Challenges in learning inter-team coordination

During Event 1, the team members did not seem to realize that
they needed to, in addition to planning the team’s work, take
care of the inter-team coordination. Instead, they expected that
somebody else, such as the Product Owners and architects, would
take care of that. The Product Owners and Product Managers
became information bottlenecks, as they had to convey informa-
tion between the teams in addition to guiding the planning
process. On multiple occasions during Event 1, the Product Owners
discovered that no team was planning to implement an important
part of some feature. This was especially evident regarding
dependencies between the front-end and back-end teams. The
inter-team coordination issue was raised during Event 1:

To some extent the Product Owners were bottlenecks, they were
not present all the time they were needed. And also when you were
solving dependencies with other team, [and] they needed to ask
something from their Product Owner and [he was] not there avail-
able to answer our questions.

[Developer, Event 1]

During the project the teams started to learn which team was
doing what and with which other teams they had dependencies.
Getting to know the team members from the other teams seemed
to help, as well. Thus, the teams were able to perform more of the
inter-team coordination themselves.

8.5. Challenges in allocating architecture planning

Another organizational issue, which existed over the whole
study period in Project a, was the planning and implementation
of the new product architecture. The project was supposed to
implement fundamental changes to the product architecture.
However, the planning of the new architecture was not very far
at the time of Event 1 and some of the participants were concerned
about this already after the first event:

Since we are doing so large architectural changes, the planning
work should have already been started before the [release] plan-
ning. Now we were trying to figure out some architectural prob-
lems in the middle of [the] planning [event].

[Anonymous respondent, Event 1 survey]

It was not clear whether only the architects or also the teams
should be involved in architecture planning and how should the
dependencies rising from architectural issues be coordinated
between the teams. Many groups identified challenges related to
the architecture and dependencies in Retrospective Ra2, one exam-
ple follows:

. . .which levels the architecture should be given to the teams, and
what is the role of the lead architect or the lead software engineer.
Those are the areas that require clarification and the definition of
responsibilities.

[Anonymous participant, Retrospective Ra2]
8.6. No unified understanding of the planning mindset

According to our observations, and according to the post-project
interviews, there was also an overall uncertainty regarding the goal
of the release planning in Project a. During Event 1, many partici-
pants assumed that the goal of the event was to create a plan which
should be precisely followed during the next, three month release
iteration. However, according to the facilitator, the goal was to cre-
ate the best possible plan given the time available and then adjust
the plan based on new information which was uncovered during
the release iteration. This also meant, that the stakeholders had to
keep on talking to each other during the release iterations.

However, it was evident from the first planning event that the
participants did not have a ‘‘unified understanding of the planning
mindset’’. Instead, many of the participants expected that the

V.T. Heikkilä et al. / Information and Software Technology 57 (2015) 116–140 133
planned work would be exactly completed after the following
release iteration. They were surprised when this did not happen:

Now [after Event 1] we had a plan . . . Well, I expected that now we
have planned it, the teams have planned it, that this is it what
will come out. And then it took three months and then we looked
what we got, and only half of it [what was planned] had been
realized.

[Product Manager, Post-project interview]

Actually, I feel that it is still difficult for people to understand the
purpose of the [release] planning. Because an engineer usually
thinks that when you do some work, the goal is the end result.
And in this case it is not so, the purpose of the work is the process
which creates the end result, and the plan which comes out is sec-
ondary. And this is terribly difficult to explain.

[SPI Manager, Post-project interview]

This issue alleviated over time, but according to our observa-
tions the planning mindset was not completely unified in Project
a during our study period. In Project b, after the twelve planning
events, the planning process and activities were well established
and the goal of planning better understood.

8.7. Leaving no slack in the plans

At the beginning of Project a, the company had limited experi-
ence with the use of agile methods in large projects. They had chal-
lenges both in making realistic estimates as well as in leaving slack
in the plans. This led to unrealistic plans, and as plans did not come
together exactly, it was easy to blame the new method.

. . . this is a quite common issue, that we plan too optimistically . . .

and then we have noticed that we do not know enough about these
things, which has made the planning even more difficult.

[Product Manager, Post-project interview]

The development teams continued to over-estimate their
capacity during the whole study period and most teams included
a little or no slack in their plans. On the other hand, Product Man-
agement had considerably underestimated the overall amount of
work required to complete the project.

We though that yes, we can in three or six months get these things
done, but they were regardless so large . . . [that] perhaps more
realistic would have been [to estimate] . . . that this is really a
two year project.

[R&D Line Manager, Post-project interviews]

Later on in Project a, the managers learned that they constantly
could expect to get only about half of what was planned. This dou-
bled the length of the project in the eyes of the management,
which caused some additional challenges with the development
budget and marketing of the product.

The first release planning event, I don’t know how accurately it [the
plan] was realized. After that the degree of success was approxi-
mately 65%. I.e. two thirds of what was planned was realized.
And at some point we realized that this is how it is . . . we asked
the teams for commitment, and took half of it, and called it a high
confidence plan.

[Scrum Master, Post-project interview]

Taking in and planning too many features was not efficient and
made the events longer in Project a. In Project b, the organization
had learned from this. They did not take in so many new features,
the planning horizon (or release iteration) was only two months,
instead of three months, and the teams got familiar with the
upcoming features in the backlog grooming workshops.
8.8. Effort invested in the planning events

The Release Iteration Planning events were a big investment for
the case organization. In Project a, the whole project organization
spend two to three days every two to three months in the planning
events. The managers interviewed in the post-project interviews
raised the perceived low efficiency and large man-hour investment
as an issue:

We performed this [Release Iteration Planning] for two [or] three
quarters and noticed that it is a monstrous investment. [External
process consultant] is present for three days, all teams, and the plan
is in that sense poor that it doesn’t reflect the end result.

[Product Manager, Post-project interview]

The interviewees had different opinions on whether this invest-
ment was worth it. On the other hand, the interviewees also stated
that given the novelty of Project a and the size of the development
organization, they could not think of a better way to perform
release planning:

. . .we calculated that these are the meetings that would be needed
[without the Release Iteration Planning events] . . . it would take
three weeks only for the meetings where they talk and agree on
things. . . . I don’t see it [the effort put into release planning] as a
downside . . . on the contrary, if it is performed correctly, it saves
time later on, as everyone has the same goal in mind, as everyone
hopefully has dependencies in control. From this offset I believe it is
absolutely worthwhile.

[R&D Line Manager, Post-project interview]

Several of the post-project interviewees expressed that one of
the improvement goals regarding the method was to shorten the
length of events to one day. In Project b, the Release Iteration Plan-
ning events had already been shorter in duration than in Project a.
They lasted for from one day and a half to two days. The inter-
viewed manager, who had facilitated several of release iterations
planning events in Project b, believed that with proper preparation
they could shorten the length even more:

It is two days currently, but it could be squeezed to one day only, by
arraigning the retrospective separately . . . and putting even more
effort on grooming before the events.

[Project b facilitator, Post-project interview]

Project b was much smaller than Project a, employing only four
development teams. Moreover, the Project b organization was
already quite experienced with the Release Iteration Planning
method, as they had been using it for two years. According to
our interviewees, one day planning events might well be possible
in a project like Project b. For a large project containing several
new elements, such as Project a, one day would most probably
not be enough.

. . .However, if the [preparatory] work is unfinished . . . then you just
have to use the three days. I would not shorten it by force, if it is just
not possible, if the organization is not ready for it. . . . Especially if a
totally new thing starts, a new project, . . . then you take a bit more
massive event, that you sit two days and try to create a common
understanding on what is going to happen, what is possible.

[Project b facilitator, Post-project interview]
8.9. Over-optimism towards the new method

A lot of expectations were placed on the new method. In the
case company it was expected that the application of the new
method with the help from an experienced facilitator would make
Project a a success, even though there was much new for the com-

134 V.T. Heikkilä et al. / Information and Software Technology 57 (2015) 116–140
pany and lots of challenges; The project was the biggest one in the
company’s history thus far, it employed more teams and involved
more geographically distributed sites than ever before, and it
strived to build a new architecture for the existing product while
keeping the normal yearly release rhythm. The initial expectations
towards the increased development speed brought by Scrum and
the Release Iteration Planning method were clearly overly
optimistic.

. . . there were gigantic problems. First, we wanted a normal yearly
release, . . . at the same time we had to do a totally new architec-
ture and at the same time implement new business models, that
nobody actually knows what they are . . . So, a lot of unrealistic
expectations from everywhere, everyone of these would be too
much as such, and then we try to do all that at once and then
we add subcontracting . . .

[SPI Manager, Post-project interview]

. . . the whole autumn was promoted [to us] that with this [release
planning method] we can get this whole thing done . . . and there
had been discussions how much this agile and Scrum makes it fas-
ter. So they [business] saw that this allows them to put there just
any amount [of new features].

[Product Owner, Post-project interview]
9. Discussion

In this section, we first answer the three research questions and
discuss the implications of the results. We also discuss the implica-
tions of our findings to the software engineering theory, our contri-
butions to software engineering practitioners, the threats to the
validity and limitations of our results. Finally, we discuss future
work on the topic.

9.1. RQ1: How did the case projects adopt the Release Iteration
Planning method in practice?

Overall, the adoption of the Release Iteration Planning method
was considered a success, although Project a took considerably
more time than the managers of the project originally expected.
The method was also successfully adopted in the considerably
smaller Project b. The method was considered very helpful in Pro-
ject b.

Although several changes were made to the preparations and to
the communications practices over the study period, the conduct
in all the events in both projects was quite similar. First, the
participants were informed about the current status of the project.
Second, the participants were given information on what they
were expected to contribute in the following release iteration.
Third, the participants planned the following release iteration.
Fourth, the plans and the associated risks and issues were
reviewed.

The Release Iteration Planning method was based on both infor-
mal and formal communication between the software developers
and other stakeholders who were gathered to the same space.
The informal communication became more and more prevalent
during the Release Iteration Planning events in Project a. This sug-
gest that the informal face-to-face communication between the
participants was considered more efficient than the formal com-
munication in the form of presentations and status reviews
although the more formal, regular short status meetings were
required to synchronize the work of the teams and to solve issues.
This finding is in line with the agile software development princi-
ple of direct and informal communication. Our results suggest that
the principle holds also during Release Iteration Planning in a large,
multi-team development organization.
Fogelström et al. [1] claim that agile software development
methods are inherently misaligned with the needs of market-dri-
ven software product development. Possible problems they claim
to be caused by agile methods in market-driven software product
development include short-term thinking, architectural deteriora-
tion, integration problems, limited understanding about the value
and cost of requirements and the increased difficulty of change
management [1]. Our results suggest, that with some alterations,
agile principles can be successfully applied also in marked-driven
software product development. Although some of the problems
listed above were observed in Project a, our analysis suggests that
the observed problems were created by the transition period from
a plan-driven to an agile development method and the problems
alleviated when the organization become more mature in their
agile adoption. The challenges are discussed in detail in Section 9.3.

Table 4 shows how the Release Iteration Planning method
addresses several characteristics of the release planning problem
on both operational and strategic level. However, it does not solve
all issues related to it. Gut feeling, lobbying, politics, sell-in and
strong individuals [28] may affect the decision making in the
Release Iteration Planning events, although the presence and avail-
ability of the whole project organization may mitigate the negative
effects. The product management still has the responsibility for
analyzing the complex and competitive market and making strate-
gic decisions. The Release Iteration Planning method is not focused
on assisting the product management in their market-facing
responsibilities, but the relatively rapid, partial test releases do
allow them to gather feedback during the project, which provides
them accurate information about the market and the reception of
the released features.

While the Release Iteration Planning method adopted in the
case organization was based on the method described by Leffing-
well [21], the Project a organization made several alterations to
the method over the study period. Leffingwell [21] suggests that
the last development sprint of each release iteration should be a
so-called hardening sprint which is reserved for fixing any remain-
ing bugs and for general quality assurance activities. However,
hardening sprints were not scheduled in the release iterations of
Project a. Instead, after Event 5 the project was shifted to a finaliza-
tion phase where the last features were completed, and integration
testing, verification, documentation and localization work was
finalized.

Leffingwell [21] suggests that a draft plan review should be con-
ducted at the end of the first day of a release planning event. In
Project a, draft plan reviews were not conducted after Event 2.
The draft plan reviews were abandoned because they were per-
ceived to take too much time and also provide little value to the
participants. Instead, short status check meetings were arranged
regularly during the planning. Although the problem might have
been that the development team members did not have enough
experience of communicating their plans for other teams to find
the best level of detail, we did not observe any issues caused by
the lack of draft plan reviews. The informal communication
between the participants and the frequent status checks conducted
starting from Event 2 seemed to be enough to convey planning
progress information between the participants. The communica-
tion of planning progress was further enhanced by the introduction
of the planning matrix during Event 4.

Originally, the schedules of the Release Iteration Planning
events in Project a did not explicitly include time for solving prob-
lems at the end of the first planning day. However, such a practice
emerged. After the development teams had left for the day, the
managers, Product Owners and Scrum Masters stayed behind to
discuss and solve problems. The solutions and possible changes
to plans were then presented to the development teams at the
beginning of the second day. This practice is explicitly suggested

Table 4
Comparison of the characteristics of the release planning problem and the properties of the Release Iteration Planning method.

Release Planning Characteristic Release Iteration Planning method

Shared understanding of requirements arises during the
development and may be weak first [9]

(Iterative process that takes into account new understanding from the previous iteration(s)

The values of the requirements selection criteria are time
dependent [9]

(Iterative process that allows reprioritization of requirements during the project

Great majority of requirements have complex dependencies
between each other [9,26]

(The whole project organization is present and can identify and solve dependencies efficiently

Decision makers have difficulties expressing how
requirements should be prioritized [27]

(The final plan is based on face-to-face discussions instead of a simple authoritative list of priorities

Feature development is implicitly prioritized higher than
system improvement and innovation [27–29]

(The prioritization between feature development and system improvement and innovation is
explicit and forces the decision makers to justify their prioritization decisions

V.T. Heikkilä et al. / Information and Software Technology 57 (2015) 116–140 135
by Leffingwell [21] and, according to our study, is an effective way
to solve problems during a Release Iteration Planning event.

According to Leffingwell [21], each development team should
create release objectives which depict their overall goal for the
next release iteration. In Project a, during Events 1 and 2, the teams
were instructed to create release objectives. Forming meaningful
release objectives seemed to be a very difficult task and the value
of creating release objectives, in addition to user stories and fea-
tures, was unclear. In the subsequent events the teams were not
instructed to create release objectives. We did not observe any det-
rimental effects from leaving out the release objectives.
9.2. RQ2: What kind of benefits did the case projects gain from
adopting the Release Iteration Planning method?

Table 5 summarizes the benefits we identified in the cases.
Most of the benefits were related to the way the Release Iteration
Planning method facilitated decision making. During the Release
Iteration Planning events the participants could communicate
directly which improved communication and transparency, enabled
inter-team coordination, and allowed fast decisions in the events, fast
identification and management of dependencies and meeting people
face-to-face and created project spirit. The collaborative and interac-
tive decision making can be considered to be the main benefit of
the Release Iteration Planning method.

Since the most members of the project organization and most
stakeholders were present in the same space, the managers could
present clear and unified goals for all stakeholders and show the
importance of the project. Such information sharing was clearly a
major benefit of the method. In the Release Iteration Planning
events, the managers were present and available during all plan-
ning events, which implicitly showed the importance of the project
and allowed them to directly answer any questions regarding the
goals of the project. This was clearly an improvement over simple
project kick-off or project status update presentations often
employed in traditional, plan-driven projects.
Table 5
Benefits and challenges in the application of the method.

Benefits

Clear and unified goals for all stakeholders
Fast recognition of the size and challenges of the project
Improved communication and transparency
Fast identification and management of dependencies
Enabling inter-team coordination
Fast recognition and mitigation of impediments and risks
Fast decisions in the events
Meeting people face-to-face and creation of project spirit
Showing the importance of the project
Enabling the successful finalization of the project
In addition to the communication-related benefits, the rela-
tively rapid iterative nature of the Release Iteration Planning
method allowed fast recognition of the size and challenges of the pro-
ject and enabled the successful finalization of the project. These were
clearly benefits over traditional, plan driven projects where the
realization of the lateness of the project often comes late in the
project. The rapid feedback from real users following each release
is one of the proposed strengths of the agile software development
methods [10]. Although only approximately half of the planned
test releases were successfully completed during the case study
period in Project a, these releases provided the Product Manage-
ment feedback about the features and revealed the progress of
the development in a very concrete way. This was clear improve-
ment over the previous projects where the Product Management
had little information on the development progress during the first
six months of a development project.
9.3. RQ3: What kind of challenges did the case projects face in
adopting the Release Iteration Planning method?

Table 5 summarizes the challenges we identified in the cases.
We recognized only two challenges that were clearly caused by
the way the method was used. At the beginning of Project a the
external consultant and the managers expected that the features
would be elaborated, prioritized and allocated during the events.
However, it quickly became apparent that lacking of preparation
of the requirements before the events and lacking feature prioritiza-
tion and allocation were major causes of confusion and slow pro-
gress during the early planning events. The informal elaboration,
prioritization and allocation of features are good examples of agile
practices that have been claimed to work well in the bespoke, sin-
gle team, single customer representative Scrum sweet spot [8], but
created challenges in Project a due to the size and complexity of
the project.

The pre-assignment of features to teams and the improved fea-
ture descriptions clearly reduced the overburden of managers and
Challenges

Lack of preparation of the requirements before the events
Lacking feature prioritization and allocation
Lacking understanding of the creation of end-to-end features
Challenges in learning inter-team coordination
Challenges in allocating architecture planning
No unified understanding of the planning mindset
Leaving no slack in the plans
Effort invested in the planning events
Over-optimism towards the new method

136 V.T. Heikkilä et al. / Information and Software Technology 57 (2015) 116–140
sped up the planning events. We also observed that the pre-assign-
ments were, indeed, considered tentative and the assignments of
features to teams changed during the events when new informa-
tion affecting the assignments came up. Initially, the prioritization
of features was a challenge, as the Product Managers considered
most of the features mandatory and equally valuable. Eventually,
the product management started to produce prioritized lists of fea-
tures, but explicit criteria for requirements prioritization or value
was not given during any of the events. Thus, the user stories were
split from the features and prioritized based on dependencies and
on informal discussions between the teams, the Product Owners
and the Product Managers, which required lots of time and created
bottlenecks. Previous research has found that decision makers
often have difficulties providing explicit criteria for requirements
prioritization [27] and our results affirm those findings.

One solution proposed to the problem of splitting and prioritiz-
ing requirements in the agile software development literature is to
employ the concept of the minimum marketable feature (MMF)
[21]. For each feature, the minimum set of essential functionality
that is valuable to the customers (i.e. the MMF) is first imple-
mented. The rest of functionality is postponed until feedback from
customers using the MMF can be employed to improve and prior-
itize the rest of the feature. Often customers are satisfied with the
MMF and the development resources can be employed to imple-
ment other, more exiting features instead of extending the MMF.
This solution was also considered in Project a, but not adopted dur-
ing the study period.

Over-optimistic schedules are a well known problem in soft-
ware projects [49]. This problem manifested in leaving no slack in
plans and over-optimism towards the new method in Project a. In
this case, leaving no slack in the plans was caused by the inexperi-
ence of the developers and by the pressure created by the manag-
ers who, in turn, had unrealistic expectations about the scope and
schedule of the project. The Release Iteration Planning method was
expected to reduce the planning overhead and thus speed up the
project. However, the initial expectations were clearly over-opti-
mistic. The true scope of the project was at least four times larger
than what was expected in the beginning of the project. It is clear
that finishing the project according to the original schedule and
scope was not possible regardless of the release planning, or devel-
opment, method used.

The case organization was clearly still in progress of transform-
ing from a plan-driven line organization to an agile project organi-
zation. The front-end teams had been arranged as Scrum teams in
the project previous to Project a, but it was the first Scrum project
for the back-end teams. Many of the challenges we identified in
Project a were caused by the immature adoption of the large-scale
agile model and agile mindset.

The immature agile transformation caused lacking understand-
ing of the creation of end-to-end features and feature teams and chal-
lenges in learning inter-team coordination. At the beginning of
Project a, the Product Managers did not have enough experience
creating end-to-end features that the teams could easily under-
stand and implement, and the development teams did not under-
stand that they were responsible for inter-team coordination of
feature development. Both of these challenges alleviated during
the project as the teams and Product Managers got more experi-
ence in the new agile development process and in the Release Iter-
ation Planning method.

The transformation from a plan-driven process to an agile
method requires a change of mindset of both developers and man-
agers. The most obvious challenge caused by the traditional, plan-
driven mindset was that the project organization had no unified
understanding of the planning mindset. Although the introductory
presentations in the planning events emphasized that the release
plan should only be thought as a tentative starting point for further
adjustments during the following release iteration, many manag-
ers and developers expected that the plan should be exactly exe-
cuted during the following release iteration.

The role of software architecture and software architects in
large-scale agile development is still an issue which does not have
a clear solution [41]. In Project a the project organization had chal-
lenges in allocating architecture planning between the development
teams and the software architects. This challenge alleviated over
time as the architecture of the system stabilized and the teams
became more experienced in developing the system. The teams
would have benefited from more detailed architectural guidance
at the beginning of the project.

Whether the effort invested in the planning events was a problem
or not in Project a depended on the perspective it was viewed
from. The whole development organization spent two or three
days without developing any software, which can be viewed as
waste of effort. On the other hand, the requirements, schedules
and plans would have needed to be created and communicated
in the project organization anyway. Effort spent on those activities
was previously included in the daily work of the project organiza-
tion and the release iteration method made the effort visible and
calculable. Only true experiments could reveal if there is any sig-
nificant difference between the effort spent on those activities in
plan-driven and agile projects.

When the Release Iteration Planning method was introduced to
Project b, the organization was already more mature regarding the
agile transformation. Moreover, Project b was also much smaller
than Project a. In Project b the Release Iteration Planning method
seemed to function successfully without any major challenges.

9.4. Implications for theory

Although there have been claims to the contrary [29], a release
planning method based on agile software development principles
can be successfully applied in market driven product development
and in large-scale projects. Release planning is not an unsolvable
issue when agile software development methods are scaled up to
large, multi-team projects. However, to accommodate the size of
the project and to make the planning more efficient, the prepara-
tions to the release planning events must be more rigorous than
in small, single-team agile development projects. Although release
planning is a difficult problem [3,4,13], many of its problematic
characteristics can be ameliorated by applying a planning method
that is iterative and based on face-to-face discussions (see Table 4).
Most of the previous research on software release planning has
concentrated on authoritative, deterministic and plan-driven
methods and tools [5,13]. Our results support the previous findings
[4,9,12–14] that such tools have limited applicability, especially in
agile software development projects.

According to the traditional project success criteria, that is, the
deviations from the originally planned budget, schedule and scope
are within acceptable range [23], Project a would be no doubt con-
sidered deeply challenged. One of the proposed benefits of the
Scrum development method are the short sprints that enable all
stakeholders to see the development progress at the end of each
sprint in the sprint demo [8,50]. Our findings in Project a suggest
that the Release Iteration Planning method enabled the project
organization to quickly realize how unrealistic the original plan
for Project a was. Our results suggest that an iterative and incre-
mental release model combined with the Release Iteration Plan-
ning method may help project organizations to identify
unrealistic project plans quicker than they could identify using
the traditional, single release model.

van Waardenburg and van Vliet [11] identified challenges cre-
ated by increased IT landscape complexity and by lack of business
involvement when agile development methods were employed in

V.T. Heikkilä et al. / Information and Software Technology 57 (2015) 116–140 137
traditional, plan-driven context. The context of our study was
somewhat similar to theirs. In Project a, especially the business-
oriented stakeholders in the case organization were still in transi-
tion from a plan-driven mindset to the agile mindset. The Release
Iteration Planning method implements many strategies that Waar-
denburg and Vliet identified for mitigating the challenges. We
found that the Release Iteration Planning method enabled the
meeting people face-to-face and creation of project spirit, provided
the stakeholders with clear and unified goals and enabled inter-
team coordination. These benefits match with the mitigation strat-
egies of stimulating a common sense of purpose, end-to-end repre-
sentation in team and intensive stakeholder communication. The
Release Iteration Planning method also helped to show the stake-
holders the importance of the project, improved communication
and transparency and enabled fast decision making in the events.
These benefits match with the mitigation strategies of changing
business’ mindset, channelling business knowledge and managing
business-level alignment. This comparison suggests that the
Release Iteration Planning method might be a powerful tool for
mitigating challenges that rise when an agile development organi-
zation works with a plan-driven business organization.

9.5. Contributions to practitioners

We have described how a software development organization
adopted the Release Iteration Planning method. Although our goal
was not to provide a prescriptive guide for the Release Iteration
Planning method, companies that are in comparable situation
can employ our results as a starting point for creating their own
release planning method. The benefits and challenges we have
detailed help practitioners to identify whether this kind of method
is suitable for their situation and to avoid or mitigate the chal-
lenges our case organization faced. We have also provided a sum-
mary of why release planning, in general, is difficult, and a
description of characteristics that should be taken into account
when a release planning method is considered.

9.6. Limitations and threats to validity

We employed both quantitative and qualitative methods for
data collection and analysis. In the discussion of the validity and
reliability of our results and analysis, we rely on the definitions
proposed by Yin [46] and by Shadish et al. [51]. We discuss the
validity of our research from four different aspects which are the
internal validity, the construct validity, the external validity and
the reliability [46]. The fourth type of validity, the statistical con-
clusion validity, is not relevant to this study as we do not employ
statistical analyses to infer causal relationships [51].

Internal validity concerns the validity of the causal relationships
observed in the case [46]. On several occasions we have suggested a
causal relationship between a change made to the Release Iteration
Planning method and a perceived improvement to the efficiency of
conduct in the following planning events. Due to the limited scope
of this research, we cannot completely rule out the possibility that
the perceived improvements were caused by a confounding factor
or by the maturation of the organization [51]. This is especially true
in this case where no existing theory explains the causal relation-
ships and no similar studies in other organizations exist.

In case study research, construct validity concerns how well the
description of the cases represents the reality [46]. The post-
project interviews were conducted approximately two years after
the Release Iteration Planning events in Project a. In the post-
project interviews, we asked the interviewees to recall what had
happened during the project two years earlier. This may have
decreased the validity of the interview data concerning the Release
Iteration Planning events in Project a. However, we triangulated
the interview data with data that was collected during the project.
The construct validity of a case study can be increased by the trian-
gulation of data sources, investigators, theories and methods [46–
48]. Of these, we employed the investigator, method and data
source triangulation. Three different investigators collected and
analyzed the data. We employed three different research methods:
observations, interviews and surveys. Our data sources included
observation notes and recordings from the Release Iteration Plan-
ning events, interview recordings and quantitative and qualitative
survey responses. Moreover, this manuscript was reviewed by two
employees of the case organization who agreed that this manu-
script presents a fair account of the two case projects.

Theexternalvalidityofresearchconcernsthedomaintowhichthe
results of research are generalizable [46]. Both of the studied projects
were carried out by the same company, which makes it difficult to
identify the characteristics of a project or organization that are man-
datory for our results to hold in other contexts. To summarize the
main characteristics of the cases: the lifecycle-model was based on
Scrum, multiple teams were working on the same software system
and the development was market- and project-driven. The Release
Iteration Planning method and the benefits and issues identified in
this research are likely generalizable to projects that share the afore-
mentioned characteristics. However, more studies of multi-team
Scrum release planning in other organizations are required to truly
assess the generalizability of our results.

The reliability of a case study concerns whether different
researchers had produced the same results if they had studied
the same projects [46]. The main threat to the reliability is the var-
iability in the data collection. The observation notes written during
the Release Iteration Planning events were an account of the obser-
vations the researchers found noteworthy and different research-
ers might have noted other things. However, two researchers
wrote separate observation notes which increased the reliability
of the observations. Discussions and meetings during the events
were also recorded whenever it was possible. These recordings
provide an additional account of the Release Iteration Planning
events and increase the reliability of our results. The post-project
interviews provided third account of the Release Iteration Planning
events. This data source triangulation makes our results robust
against threats to reliability [46–48].

Most of the data we collected converged between the investiga-
tors, methods and data sources and revealed no notable threats to
the construct validity or reliability of our results. Triangulation
revealed one significant point of divergence between different data
sources, which was the cost-efficiency of the Release Iteration
Planning method. Further analysis revealed that the different
stakeholders had different opinions on the cost-efficiency of the
method. Additional quantitative financial and effort data would
have been required to analyze the cost-efficiency of the method.
Since such data was not collected by us or by the case organization,
we cannot reach a conclusion regarding the cost-efficiency of the
method, which is a clear limitation of our study.

Project a was unique in the case company as the scope of the
project and the size of the development organization were larger
than ever before in the case company. Without a point of compar-
ison, we cannot say what kinds of effects the Release Iteration
Planning method had to the success of the project or if the tradi-
tional, plan-driven project management approach would have
been better. Thus, the conclusions on the effects of the method
to the success of the project are limited to observed benefits from
the method we have disseminated in this article.

9.7. Future work

Our in-depth case descriptions allow other researchers of the
field to compare and contrast their findings to our results and anal-

138 V.T. Heikkilä et al. / Information and Software Technology 57 (2015) 116–140
ysis. Building evidence based and solid theories of agile software
development has been identified as an important goal for the
research field [41]. The long-term goal of the agile release planning
research should be the building of an overall theory of agile release
planning, and our study is a small step towards that goal.
10. Conclusion

We studied a case organization that had faced challenges with
release planning and consequently adopted a new release planning
method which we call the Release Iteration Planning method. The
method was based on the agile software development principles of
direct and efficient communication between the stakeholders of
the project and iterative and incremental development. This article
presents the first extensive scientific study of the Release Iteration
Planning method.

We studied two projects of the case organization that adopted
the Release Iteration Planning method. We described how the
method was applied and improved over a twelve-month time per-
iod, what kinds of benefits the method brought to the projects and
what kinds of challenges the projects faced when applying the
method. Although the first project faced several challenges at the
beginning, the method, adopted from Leffingwell [21] and subse-
quently altered to suit the large organization better, contributed
to the eventual success of both projects.

We identified the following ways the method ameliorates the
difficult characteristics of the release planning problem: the com-
munication between the development organization and the Prod-
uct Management enabled by the events allows both of them to
better understand the requirements from the business and the
technical points of view. The iterative and incremental releases
enable frequent feedback from the users and customers and allow
the reprioritization of the requirements if their value changes over
time. The face-to-face communication in the planning events
enables fast dependency identification and management. The
Product Management shares the responsibility for the final feature
prioritization with the development organization instead of pro-
viding a simple authoritative list of prioritized features. The prior-
itization between feature development and system improvement
and innovation is explicit and can be discussed in the planning
events, which prevents excessive focus on the short term feature
development tasks.

The market facing product management activities are impor-
tant in market driven software product development. However,
our final conclusion is that release planning in agile software
development organizations requires collaborative effort between
the market facing stakeholders and the development organization.

Acknowledgements

We would like to thank F-Secure Oyj for making this study pos-
sible and all the anonymous interviewees for providing valuable
contributions to this research.

This work was supported by TEKES as part of the Cloud Soft-
ware Finland and the Need for Speed research programs of DIGILE
(Finnish Strategic Centre for Science, Technology and Innovation in
the field of ICT and digital business).
Appendix A. 2012 Interview questions

A.1. Project a specific questions

� What was your role during Project a and before it?
� How did you find out about the Release Iteration Planning

method?
� Why did you decide to try the method?
� How did you try to perform the planning before adopting the

method?
� Were there some specific challenges you tried to solve with the

method?
� Did you have any training in the method?
� Did you have a specific process to improve the Release Iteration

Planning method?
� When did you start to adopt the Scrum model?
� What was the release cycle of the product?
� How did you prepare for the first Release Iteration Planning

event?
� How do you think the first event went in general?
� Do you think the later [compared to Event 1] events were

better?
� Who belonged to the project organization?
� How many teams there were at different times in Project a?
� What was the organization of the development teams?
� How was product management organized in Project a?
� Did every team have a dedicated Product Owner?
� Did every team have dedicated Scrum Master?
� Where did the Scrum Masters come from?
� Did the small number of Product Owners compared to the

teams cause any problems?
� Did the Malaysian teams have Product Owners?
� Is your organizational culture very hierarchical?
� What caused the friction between the product management and

the development organization?
� Was writing requirements in the feature format done before?
� How did you prioritize features in the beginning of Project a?
� Did features typically have dependencies between them?
� Did you measure how much effort went into the preparation for

the first Release Iteration Planning event?
� What kind of training you had before the first event?
� Did you have trouble getting approval for this method from the

upper management?
� Would you do things identically if you had similar project [to

Project a] starting now?
� Did you try to create cross-cutting features in the beginning [of

Project a]?
� Did each team have a certain component they knew best?
� Were the same teams involved in the previous project?
� How did you communicate the feature development plans to

the teams in the previous project?
� How did you monitor the progress of development in the previ-

ous project?
� Can you think of anything that was especially good in the

Release Iteration Planning method?
� Do you think the planning was successful?
� Do you have any improvement suggestions [to the method]?
� Can you think of any other downsides of the method?
� Do you think there is an upper size limit when the method stops

working well?
� Would you recommend this method to others?
� Did you see or read the feedback reports we sent to the

company?
� How many teams were from Poland and how many from

Malaysia after [Event 5]?
� How did you accommodate the distributed teams in the plan-

ning events?
� If you would now conduct this kind of planning event, would

you like to have all teams present or is it enough to have a
videoconference?
� Why do you think the management did not initially realize the

project would be impossible to complete in the given time?
� What happened in the project after [Event 5]?

V.T. Heikkilä et al. / Information and Software Technology 57 (2015) 116–140 139
� Why did the project stop having the Release Iteration Planning
events after [Event 5]? When did it happen? Why did it
happen?
� When did you complete everything that was planned for the

product?

A.2. Project b specific questions

� What was your role in Project b?
� What is your role in the organization?
� When was the Release Iteration Planning method adopted in

Project b?
� How did you, concretely, initiate the adoption of the method?
� In how many Release Iteration Planning events you have been

in?
� How many Release Iteration Planning events there has been in

Project b?
� Was the Russian site involved in the project from the

beginning?
� Did the Russian site develop the previous version of the

software?
� Why did you take the Release Iteration Planning method into

use?
� Where did you hear from about the Release Iteration Planning

method?
� What had you heard about the Release Iteration Planning

method?
� Before adopting the Release Iteration Planning method, how did

you try to show the developers the big picture?
� Did you have any forum where you [the PO and developers]

discussed?
� What was the typical schedule in the Release Iteration Planning

events?
� Who facilitated the Release Iteration Planning events?
� On what precision level you try to predict the feature develop-

ment schedule?
� How many POs there are in [Project b]?
� How do product managers collaborate with the Russian site?
� Why does the frontend backend division exist?
� Are the teams split between the frontend and backend?
� How many teams do you have [in Project b]?
� Do all teams work solely on [Project b]?
� How are features brought to the Release Iteration Planning

events?
� Is backlog grooming performed by each team individually?
� Are features specific to the frontend or the backend?
� How do you handle the coordination between the frontend and

backend when features are end-to-end?
� On what abstraction level are your backlog items?
� Is there an intermediate step between features and user stories?
� When are product demonstrations given?
� What is the typical length of the Release Iteration Planning

events?
� Is the goal to get features done over single release iteration? Has

it been successful?
� Is the backlog of the Russian teams electronic?
� Do you have status meetings during the Release Iteration Plan-

ning events?
� Does every team have their own Scrum Master?
� Is it typical that everyone gathers together at the end to review

the plan? Is this a good way to review the plan?
� Can you think of anything especially good in the Release Itera-

tion Planning method compared to the previous planning
method?
� Do you think that the developers have courage to speak about

issues when you and other managers are present in the events?
� Is the product architect from [Russia] or from [Finland].
� Do you have a team of architects that thinks about the

architecture?
� Do you have any dependencies to other products of the

company?
� How do you manage the dependencies?
� Have you noticed if the teams in the Release Iteration Planning

events talk to each other?
� Did you pre-assign backlog items to the teams?
� From your point of view, what are the things that could be

improved [in the Release Iteration Planning method]?
� Do you think the planning has been successful?
� Do you have any problems related to the Release Iteration Plan-

ning in Project b?
� Would you recommend this method to others?
� Do you know why the method is not used in other parts of the

company?

References

[1] N.D. Fogelström, T. Gorschek, M. Svahnberg, P. Olsson, The impact of agile
principles on market-driven software product development, J. Softw. Maint.
Evol.: Res. Practice 22 (1) (2010) 53–80.

[2] T. Chow, D.-B. Cao, A survey study of critical success factors in agile software
projects, J. Syst. Softw. 81 (6) (2008) 961–971.

[3] A. Ngo-The, G. Ruhe, A systematic approach for solving the wicked problem of
software release planning, Soft Comput. – Fusion Found., Methodol. Appl. 12
(1) (2008) 95–108.

[4] P. Carlshamre, Release planning in market-driven software product
development: provoking an understanding, Requirements Eng. 7 (3) (2002)
139–151.

[5] M. Svahnberg, T. Gorschek, R. Feldt, R. Torkar, S.B. Saleem, M.U. Shafique, A
systematic review on strategic release planning models, Inform. Softw.
Technol. 52 (3) (2010) 237–248.

[6] A. Al-Emran, D. Pfahl, Operational planning, re-planning and risk analysis for
software releases, in: J. Münch, P. Abrahamsson (Eds.), Proceedings of the 8th
International Conference on Product-Focused Software Process Improvement
(PROFES 2007), Lecture Notes in Computer Science, vol. 4589, Springer, Berlin
Heidelberg, 2007, pp. 315–329.

[7] G. Ruhe, J. Momoh, Strategic release planning and evaluation of operational
feasibility, in: Proceedings of the 38th Annual Hawaii International Conference
on System Sciences (HICSS ’05), 2005.

[8] K. Schwaber, M. Beedle, Agile Software Development with Scrum, Prentice-
Hall, Upper Saddle River, NJ, 2002.

[9] H.C. Benestad, J.E. Hannay, A comparison of model-based and judgment-based
release planning in incremental software projects, in: Proceeding of the 33rd
International Conference on Software Engineering (ICSE’11), ACM, New York,
NY, USA, 2011, pp. 766–775.

[10] A. Cockburn, Agile Software Development, Addison-Wesley, Boston, MA, 2002.
[11] G. van Waardenburg, H. van Vliet, When agile meets the enterprise, Inform.

Softw. Technol. 55 (12) (2013) 2154–2171.
[12] L. Cao, B. Ramesh, Agile requirements engineering practices: an empirical

study, Software 25 (1) (2008) 60–67.
[13] S. Jantunen, L. Lehtola, D.C. Gause, U.R. Dumdum, R.J. Barnes, The challenge of

release planning, in: Proceedings of the Fifth International Workshop on
Software Product Management (IWSPM 2011), IEEE, Piscataway, NJ, USA,
2011, pp. 36–45.

[14] B.W. Boehm, Requirements that handle IKIWISI, COTS, and rapid change,
Computer 33 (7) (2000) 99–102.

[15] VersionOne, Inc, 7th Annual State of Agile Development Survey, 2013. <http://
www.versionone.com/pdf/7th-Annual-State-of-Agile-Development-
Survey.pdf> (cited May 2013).

[16] S. Freudenberg, H. Sharp, The top 10 burning research questions from
practitioners, IEEE Softw. 27 (5) (2010) 8–9.

[17] M. Paasivaara, C. Lassenius, Scaling Scrum in a large distributed project, in:
Proceedings of the International Symposium of Empirical Software
Engineering and Measurement (ESEM 2011), 2011, pp. 363–367.

[18] D. Leffingwell, Scaling Software Agility: Best Practices for Large Enterprises,
Addison-Wesley Professional, Reading, MA, 2007.

[19] C. Larman, B. Vodde, Scaling Lean & Agile Development: Thinking and
Organizational Tools for Large-scale Scrum, Addison-Wesley, Upper Saddle
River, 2009.

[20] L. Lehtola, M. Kauppinen, S. Kujala, Requirements prioritization challenges in
practice, in: F. Bomarius, H. Iida (Eds.), Proceedings of the Product Focused
Software Process Improvement conference (PROFES 2004), Lecture Notes in
Computer Science, vol. 3009, Springer, Berlin Heidelberg, 2004, pp. 497–508.

[21] D. Leffingwell, Agile Software Requirements: Lean Requirements Practices for
Teams, Programs, and the Enterprise, Addison-Wesley, Upper Saddle River, NJ,
2011.

http://refhub.elsevier.com/S0950-5849(14)00204-3/h0005
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0005
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0005
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0010
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0010
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0015
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0015
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0015
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0020
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0020
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0020
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0025
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0025
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0025
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0030
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0030
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0030
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0030
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0030
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0030
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0030
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0030
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0040
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0040
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0040
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0045
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0045
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0045
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0045
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0045
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0050
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0050
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0055
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0055
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0060
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0060
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0065
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0065
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0065
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0065
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0065
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0070
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0070
http://www.versionone.com/pdf/7th-Annual-State-of-Agile-Development-Survey.pdf
http://www.versionone.com/pdf/7th-Annual-State-of-Agile-Development-Survey.pdf
http://www.versionone.com/pdf/7th-Annual-State-of-Agile-Development-Survey.pdf
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0080
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0080
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0090
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0090
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0090
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0095
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0095
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0095
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0095
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0100
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0100
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0100
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0100
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0100
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0100
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0100
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0105
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0105
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0105
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0105

140 V.T. Heikkilä et al. / Information and Software Technology 57 (2015) 116–140
[22] E. Ferrari, Product Management for Software, Mondo Strategies Press, 2008.
[23] H.-B. Kittlaus, P.N. Clough, Software Product Management and Pricing: Key

Success Factors for Software Organizations, Springer, Berlin, 2009.
[24] V. Heikkilä, K. Rautiainen, S. Jansen, A revelatory case study on scaling agile

release planning, in: Proceedings of the 36th Euromicro Conference on
Software Engineering and Advanced Applications (SEAA), IEEE Computer
Society, 2010, pp. 289–296.

[25] G. Gunyho, J.G. Plaza, Evolution of longer-term planning in a large scale agile
project – F-Secure’s experience, in: A. Sillitti, O. Hazzan, E. Bache, X.
Albaladejo, W. Aalst, J. Mylopoulos, M. Rosemann, M.J. Shaw, C. Szyperski
(Eds.), Agile Processes in Software Engineering and Extreme Programming,
Lecture Notes in Business Information Processing, vol. 77, Springer, Berlin
Heidelberg, 2011, pp. 306–315.

[26] P. Carlshamre, K. Sandahl, M. Lindvall, B. Regnell, J. Natt och Dag, An industrial
survey of requirements interdependencies in software product release
planning, in: Proceedings of the IEEE International Conference on
Requirements Engineering (RE ’01), IEEE Computer Society, Piscataway, NJ,
USA, 2001, pp. 84–91.

[27] S. Barney, A. Aurum, C. Wohlin, A product management challenge: creating
software product value through requirements selection, J. Syst. Architect. 54
(6) (2008) 576–593.

[28] M. Lindgren, C. Norström, A. Wall, R. Land, Importance of software architecture
during release planning, in: Proceedings of the 7th IEEE/IFIP Working
Conference on Software Architecture (WICSA 2008), 2008, pp. 253–256.

[29] N.D. Fogelström, M. Svahnberg, T. Gorschek, Investigating impact of business
risk on requirements selection decisions, in: Proceedings of the 35th
Euromicro Conference on Software Engineering and Advanced Applications
(SEAA ’09), IEEE Computer Society, Piscataway, NJ, USA, 2009, pp. 217–223.

[30] G. Ruhe, A. Ngo, Hybrid intelligence in software release planning, Int. J. Hybrid
Intell. Syst. 1 (1–2) (2004) 99–110.

[31] J. Momoh, G. Ruhe, Release planning process improvement – an industrial case
study, Softw. Process: Improv. Pract. 11 (3) (2006) 295–307.

[32] V. Heikkilä, A. Jadallah, K. Rautiainen, G. Ruhe, Rigorous support for flexible
planning of product releases – a stakeholder-centric approach and its initial
evaluation, in: Proceedings of the 43th Hawaii International Conference on
System Sciences (HICSS ’10), IEEE Computer Society, 2010.

[33] M.O. Saliu, G. Ruhe, Bi-objective release planning for evolving software
systems, in: Proceedings of the 6th Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on The Foundations
of Software Engineering (ESEC-FSE ’07), ACM, New York, NY, USA, 2007, pp.
105–114.

[34] K. Logue, K. McDaid, Agile release planning: dealing with uncertainty in
development time and business value, in: Proceedings of the 15th IEEE
International Conference and Workshops on the Engineering of Computer-
Based Systems, IEEE, Piscataway, NJ, USA, 2008, pp. 437–442.
[35] M. Li, M. Huang, F. Shu, J. Li, A risk-driven method for eXtreme programming
release planning, in: Proceedings of the 28th International Conference on
Software Engineering (ICSE ’06), ACM, New York, NY, USA, 2006, pp. 423–430.

[36] A. Al-Emran, K. Khosrovian, D. Pfahl, G. Ruhe, Simulation-based uncertainty
analysis for planning parameters in operational product management, in:
Proceedings of the 10th International Conference on Integrated Design and
Process Technology (IDPT-2007), Society for Design and Process Science, USA,
2007, pp. 191–201.

[37] S.A. Wheelan, Group size, group development, and group productivity, Small
Group Res. 40 (2) (2009) 247–262.

[38] D. Rodríguez, M.A. Sicilia, E. García, R. Harrison, Empirical findings on team
size and productivity in software development, J. Syst. Softw. 85 (3) (2012)
562–570.

[39] K. Schwaber, The Enterprise and Scrum, Microsoft Press, Redmond, WA, 2007.
[40] M. Cohn, Agile Estimating and Planning, Prentice Hall Professional Technical

Reference, Upper Saddle River, NJ, 2005.
[41] T. Dingsøyr, S. Nerur, V. Balijepally, N.B. Moe, A decade of agile methodologies:

towards explaining agile software development, J. Syst. Softw. 85 (6) (2012)
1213–1221.

[42] V.T. Heikkilä, M. Paasivaara, C. Lassenius, C. Engblom, Continuous release
planning in a large-scale Scrum development organization at Ericsson, in: H.
Baumeister, B. Weber (Eds.), Agile Processes in Software Engineering and
Extreme Programming, Lecture Notes in Business Information Processing, vol.
149, Springer, Berlin Heidelberg, 2013, pp. 195–209.

[43] K. Vlaanderen, S. Jansen, S. Brinkkemper, E. Jaspers, The agile requirements
refinery: applying SCRUM principles to software product management,
Inform. Softw. Technol. 53 (1) (2011) 58–70.

[44] C. Larman, B. Vodde, Practices for Scaling Lean & Agile Development: Large,
Multisite, and Offshore Product Development with Large-scale Scrum,
Addison-Wesley, Upper Saddle River, NJ, USA, 2010.

[45] J. Rothman, Manage it!: Your Guide to Modern, Pragmatic Project
Management, The Pragmatic Bookshelf, Raleigh, NC, 2007.

[46] R.K. Yin, Case Study Research: Design and Methods, fourth ed., Sage
Publications, Thousand Oaks, CA, 2009.

[47] T.D. Jick, Mixing qualitative and quantitative methods: triangulation in action,
Adm. Sci. Quart. 24 (4) (1979) 602–611.

[48] M.Q. Patton, Qualitative Research and Evaluation Methods, third ed., Sage
Publication, Inc., Thousand Oaks, CA, 2002.

[49] K.E. Emam, A.G. Koru, A replicated survey of IT software project failures, IEEE
Softw. 25 (5) (2008) 84–90.

[50] K.H. Pries, J.M. Quigley, Scrum Project Management, CRC Press, Boca Raton, FL,
USA, 2011.

[51] W.R. Shadish, T.D. Cook, D.T. Campbell, Experimental and Quasi-experimental
Designs for Generalized Causal Inference, Houghton Mifflin, Boston, MA, USA,
2001.

http://refhub.elsevier.com/S0950-5849(14)00204-3/h0110
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0110
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0115
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0115
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0115
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0120
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0120
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0120
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0120
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0120
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0125
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0125
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0125
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0125
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0125
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0125
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0125
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0125
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0125
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0125
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0125
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0125
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0125
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0125
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0125
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0125
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0130
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0130
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0130
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0130
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0130
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0130
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0135
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0135
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0135
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0145
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0145
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0145
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0145
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0145
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0150
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0150
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0155
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0155
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0160
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0160
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0160
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0160
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0160
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0165
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0165
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0165
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0165
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0165
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0165
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0170
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0170
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0170
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0170
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0170
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0175
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0175
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0175
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0175
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0185
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0185
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0190
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0190
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0190
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0195
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0195
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0200
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0200
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0200
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0205
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0205
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0205
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0210
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0210
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0210
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0210
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0210
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0210
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0210
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0210
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0215
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0215
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0215
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0220
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0220
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0220
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0220
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0225
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0225
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0225
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0230
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0230
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0230
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0235
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0235
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0240
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0240
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0240
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0245
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0245
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0250
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0250
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0250
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0255
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0255
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0255
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0255

	Operational release planning in large-scale Scrum with multiple stakeholders – A longitudinal case study at F-Secure Corporation
	1 Introduction
	2 Software release planning
	2.1 Characteristics of the release planning problem
	2.2 Model-based release planning
	2.3 Release planning in multi-team Scrum development organizations

	3 Research method
	3.1 Research objective and questions
	3.2 Case study method
	3.3 Project α data collection
	3.4 Project β data collection
	3.5 Data analysis

	4 The case organization and project backgrounds
	4.1 Case organization background
	4.2 Project α background
	4.3 Project β background

	5 Release planning in Project α
	5.1 Motivation for adopting the Release Iteration Planning method
	5.2 Overview of the project
	5.3 Requirements management
	5.4 Release Iteration Planning Event 1
	5.4.1 Overview of the event
	5.4.2 Introduction, vision and planning guidance presentations
	5.4.3 Team planning breakouts
	5.4.4 Draft plan reviews
	5.4.5 Final plan review
	5.4.6 Feedback by the researchers

	5.5 Events 2–5
	5.5.1 Feature prioritization and assignment
	5.5.2 Table for stakeholders
	5.5.3 Short status checks
	5.5.4 Planning matrix
	5.5.5 Architectural status checks
	5.5.6 Re-organization of the development teams
	5.5.7 Limiting the number of features
	5.5.8 Introductory presentations before the event
	5.5.9 Test version releases
	5.5.10 Feedback reports

	5.6 Finalizing Project α

	6 Release planning in Project β
	7 Benefits of the method
	7.1 Clear and unified goals for all stakeholders
	7.2 Fast recognition of the size and challenges of the project
	7.3 Improved communication and transparency
	7.4 Fast identification and management of dependencies
	7.5 Enabling inter-team coordination
	7.6 Fast recognition and mitigation of impediments and risks
	7.7 Fast decisions in the events
	7.8 Meeting people face-to-face and creation of a project spirit
	7.9 Showing the importance of the project
	7.10 Enabling the successful finalization of the project

	8 Challenges in the application of the method
	8.1 Lack of preparation of the requirements before the events
	8.2 Lacking feature prioritization and allocation
	8.3 Lacking understanding of the creation of end-to-end features and feature teams
	8.4 Challenges in learning inter-team coordination
	8.5 Challenges in allocating architecture planning
	8.6 No unified understanding of the planning mindset
	8.7 Leaving no slack in the plans
	8.8 Effort invested in the planning events
	8.9 Over-optimism towards the new method

	9 Discussion
	9.1 RQ1: How did the case projects adopt the Release Iteration Planning method in practice?
	9.2 RQ2: What kind of benefits did the case projects gain from adopting the Release Iteration Planning method?
	9.3 RQ3: What kind of challenges did the case projects face in adopting the Release Iteration Planning method?
	9.4 Implications for theory
	9.5 Contributions to practitioners
	9.6 Limitations and threats to validity
	9.7 Future work

	10 Conclusion
	Acknowledgements
	Appendix A 2012 Interview questions
	A.1 Project α specific questions
	A.2 Project β specific questions

	References

