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A b s t r a c t - - I n  this paper, we consider practical stability of impulsive functional differential equa- 
tions in terms of two measurements. Some sufficient conditions of uniform practical stability for 
functional differential equation with impulses are obtained by using piecewise continuous Lyapunov 
functions and Razumikhin techniques. An example illustrates the effectiveness of the proposed result. 
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I. INTRODUCTION 

In many cases, some well-designed, asymptotically stable control schemes cannot work as ex- 

pected. One reason is that the domain of attraction is too small. A way to overcome this 

problem is to use practical stability. The practical stability only needs to stabilize a system into 

a region of phase space. So it has a significant practice. In recent years, the qualitative proper- 

ties in the mathematical theory on impulsive differential system have been very important, are 

interested and developed by a large number of mathematicians, see [I-13]. In [2,3,9,14,15], the 

authors have obtained some results for practical stability of differential equations or impulsive 

systems, but there are rare results for impulsive functional differential equations. 

In [i0], the authors have gotten some results for the uniform stability of impulsive delay 

differential equations. However, in the present paper, we consider more general stability for 

impulsive functional differential equations--practical stability. By means of piecewise continuous 

Lyapunov functions and Razumikhin techniques, we establish some criteria for uniform practical 

stability of impulsive functional differential equations in terms of two measurements. Since in [I0], 

there is only one measurement, and it considers only stability not practical stability, our result 

is more general. 
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The rest of this paper is organized as follows. In Section 2, we present some notations and 

definitions. In Section 3, some sufficient conditions of uniform practical stability for functional 

differential equation with impulses are obtained; an example is also discussed in this section to 

illustrate the theorem. Finally, conclusion remarks are given in Section 4. 

2. P R E L I M I N A R I E S  

Consider the impulsive functional differential problem 

:i: = f ( t ,  x t ) ,  for t > to, t =fi tk, (2.1) 

x(tk) = x ( t ; )  + Ik (x (t~-)), for k E N, (2.2) 

x(t  + to) = p(t) ,  for t e [ -7 ,  01, (2.3) 

in which x E R ~, f : [0, ec) x D ~ R n, D is an open set in PC([-~- ,0] ,Rn) ,  where W > 0 
and P C ( [ - 7 ,  0], R ~) = {4 :  [-7,  0] -~ R n, ¢(t) is continuous everywhere except a finite number 
of points { at which ¢(t+) and ¢ ( t - )  exist and ¢({+) = ¢(t~}, Ik C C ( R  n, R ~) for k e Z +, 
tl  < t2 < " .  < tk < tk+l < " ' ,  where tk --~ c~, for t -* c% to >_ 0, 7 = const. > 0, xt E D is 
defined by xt(s)  = x( t  + s), --T < S < 0. For ¢ in P C ( I - %  0], Rn), the norm of ¢ is defined by 
I¢1 = sup{lt¢(0)ll: - 7  < 0 < 0}, where I1" I] is a norm in R ". Let  R + = [ -%c~) .  

Throughout  this paper, we introduce the following conditions. 

(a) For t E [to - 7, to], the solution x(t; to, ~) coincides with the function ~(t  - to). 
(b) f ( t ,  ¢) is Lipschitzian in ¢ in each compact set in P C ( [ - 7 ,  0], R~). 
(c) Functions Ik : R ~ --* R ~, k = 1, 2 , . . . ,  are such that  the inequality ]Ix + Ik(x)[[ < H holds 

if [[x[[ < H and Ik(x)  # O, where H = coast. > 0. 
(d) f ( t ,  O) ==- O, Ik(O) = O. 

Under the upper conditions, we can see that  there is a unique solution of problem (2.1)-(2.3) 
through (to, ~). 

We denote the solution of impulsive functional differential problem (2.1)-(2.3) by x(t; to, ~) 
and J(to, ~ ) - - t h e  maximal interval of the type [to - 7,/3) in which x(t; to, 7~) is defined. 

We using the following notations: 

s(p) = {= e R ~ :  Ilxil < p}, 

= {h e c[R+ × Ro,R+] : vt R+,inf h(t, = o } ,  F"  

F~ = {h  e C [R + x R " , R  +] : V t  e R+,infh(t,x)~ = 0l.j. 

We introduce the following definitions. 

DEFINITION" 1. (See [2].) Function V : [0, oo) x S(p) --~ R + belongs to class vo K 

(A1) V is continuous on each of the sets [tk- l , tk)  X S(p) and for all x C S(p) and 

k E N ,  lim V(t ,  y) = V(t-~, x) exists; 
(t,y)-~(t~ ,2) 

(A2) V is locally Lipschitzian in x C S(p)  and for alI t >_ to, V(t ,  O) -- O. 

DEFINITION 2. (See [2].) Let V E vo for any (t, x) e [tk-1, tk) × S(p),  the right-hand derivative 
V'( t ,  x( t))  along the solution of problem (2.1)-(2.3) is defined by 

{ v ( t  + h, ~(t + h)) - V(t ,  ~(t))} 
V ' ( t , x ( t ) ) =  lira sup 

h~O+ h 
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DEFINITION 3. (See [3].) Suppose that ho E F~, xt E PC{f -% 0], R~}, for any t E R +, we de,he 

ho(t, z t ) =  sup ho(t +O, xt(O)). 
--r<O<O 

DEFINITION 4. (See [2].) Let ho E F'¢, h E F ~. Then, the impulsive functional differential 
problem (2.1)-(2.3) is said to be 

(81) (ho,h)-practically stable, if given (u,v) with 0 < u < v, we have ho(to, xto) < u implies 
h(t, x(t)) < v, t >_ to for some to E R+; 

($2) (/~0, h)-uniformly practically stable if ($1) holds for every to E -R +. 

3 .  M A I N  R E S U L T S  

We shall establish, in this section, theorems that  provide sufficient conditions for uniform 
practical stability of the impulsive functional differential problem (2.1)-(2.3). 

Let the sets K, K1 be defined as 

K = {w E C (R+ ,R+)  : strictly increasing and w(0) = 0},  

K1 = {~ E C (R+ ,R+)  : increasing and ~(s) < s for s > 0}.  

THEOREM 1. Let  the following conditions hold 

(i) 0 < u < v are given; 
(ii) ho E F~, h E F ~, h(t,x) <_ ¢(ho(t, xt)) with ¢ E K, whenever [to(t, xt) < u; 

(iii) there exdsts a function V E vo such that/~(h(t,x)) <_ V(t ,x)  <_ a(ho(t,x)) for (t,x) E 
[to - % oo) x S(p), where c~, fi E K,  ho E F~; 

(iv) V(t,x(t))  > sup{V(t + s,x(t  + s)) : s E f - r ,  0]}, implies that V'(t ,x(t))  < O; 
(v) V(tk,x( t~)  +Ik(x(t-~))) <_ (1 +ck)V(t~,x( t~)) ,  where ck >_ 0 and 2k°°__~ ck < 0o; 

(vi) ¢(u) < v and Ma(u) < fl(v), where 1-I~=l (1 + ck) = M. 

Then, the impulsive functional differential problem (2.1)-(2.3) with respect to (u, v) is (/~o, h)- 
uniformly practically stabIe. 

PROOF. From Section 2, we know that  for any to E R +, there is a unique solution of prob- 
lem (2.1)-(2.3) through (to, ~). We denote the solution of impulsive functional differential prob- 
lem (2.1)-(2.3) by x(t; to, ~). 

o o  Without  loss of generality, we can assume that  to < tl.  Since }-~k=l ck < 0o, it follows that  
I _ < M < o o .  

If (to, Xto) E R + x PC( f -% 0], R n) such that  h0(t0, Xto) < u. Then, by Conditions (ii) and (vi) 

We then prove tha t  

h(to,x(t0)) _< (ao(t0,X,o)) < . .  

V(t,x(t))  <_ Mc~(u), Vt >_ to. (3.1) 

For any t E (to - % to], there exists a 0 E ( - %  0], such that  t = to + 0, then from Definition 3 
and Condition (iii), we know that  for t E (to - % to] 

ho(t,x(t)) = ho(to + O,x(to + 0)) = ho(to + O, xto(O)) <__ ho(to,z(to)) < u, 
V(t ,x(t))  <_ c~(ho(t,x)) <_ a(u). (3.2) 

Next, we prove that  

v ( t ,  z( t ))  <_ to < t < tl.  

If (3.3) does not hold, then there exists a { ~ [t0,tl) such that  V({,x(O) > c~(u). 
inf{t ] V(t,x(t))  > o~(u), t e [t0, tl)}. 

(3.3) 

Let { = 
It is obvious that  V({,x(t-)) = a(u), V'(t,x(t-)) >__ O, and 
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from (3.2) V ( t  + s , x ( t  + s)) <<_ a(u) = V(E,x(t-)) for s E [ -% 0]. By Condition (iv), we have 
V'(t, z(t-)) < 0, a contradiction so (3.3) holds. 

By Condition (v), we have 

V (tl,x (tl)) : V (tl,m (t[)  + Ik (2: ( t [ ) ) )  _< (1 + cl)V ( t l , x  (t[)) <_ (1 + Cl)a(~). 

Next, we prove that  
V(t ,x( t ) )  <_ (1 + cJa(u) ,  h <__ t < t2. (3.4) 

If (3.4) does not hold, then there exists a ~1 E [h, t2) such that  V(£, x(£)) > (1 + cJa(u) .  Let 
= inf{t i V(t ,x ( t ) )  > (1 + Cl)a(u), t E [h,t~)}. It is obvious that  V ( G x ( g ) )  = (1 + cl)a(u), 

V'(G x(~)) _> 0, and from (3.2),(3.3) V(~t+s,x(~+s))  < ( l + q ) a ( u )  = V(~z,x(~t)) for s E [-%0]. 
By Condition (iv), we have V ' (e ,x (~) )  < 0, a contradiction so (3.4) holds. 

By Condition (v), we have 

V(t2, x(t2)) : V (t2, x ( t[)  + tk (x ( t [ ) ) )  _< (1 + c2) V (t~-, x ( t~))  _< (1 + cl) (1 + c2) a(u). 

By similar arguments as before, we can prove that  for k = 1, 2 , . . .  

v(t ,  2:(t)) <_ (1 + q)(1  + ~ ) . . .  (1 + ~k)a(~), 

which together with (3.3), we have that 

V(t, x(t)) < Ma(u) ,  t > to. 

tk < _ t < t k + l ,  (3.5) 

(3.6) 

By Condition (vi), we have 

V(t, x(t)) < Ma(u)  < fl(v), t >_to. 

So, from Condition (iii), we get 

h(t ,x(t))  <_fl- l(V(t ,x( t)))  < fl- l( f l(v))  =v ,  t >_to. 

Thus, the impulsive functional differential problem (2.1)-(2.3) with respect to (u, v) is (h0, h)- 
uniformly practically stable. The proof of Theorem 1 is complete. 

THEOREM 2. Assume the following conditions hold 

(i) 0 < u < v are given; 
(ii) ho ~ r~, h ~ r n, h(t,x) _< ¢(h0(t, xt)) with ¢ c K, whenever ~0(t, xt) < ~. 

(iii) There exists a function V e ~o such that Z(h(t, x)) < V(t, x) < ~(h0(t, ~)) for 

(t, x) C [to - ~-, oc) x S(p), where a,  fl E K, h0 E F~. 

(iv) There exists a function ~ e K1 such that for any solution x(t) of problem (2.I)-(2.3), 
~ - l ( V ( t , x ( t ) ) )  > sup{V(t  + s ,x( t  + s)) : s e [-T, 0]}, implies that V ' ( t ,x( t ) )  << g(t) 
w(V(t ,  x(t))), where g, w : [to - % c~) ~ R +, locally integrable. Also, for all k 6 Z + and 
2: ~ s(p), 

V (tk,2:(t~) +I~ ( x ( t ~ ) ) )  < ¢ ( V  ( t -~ , x ( t k ) ) ) .  

(v) There exists a constant A > 0 such that f**k g(s) ds < A, k C Z +. Also, for any 

f ¢-~(~) ds 
t~ > 0, w(s----) >- A is valid; 

abe 

(~i) ¢(~) < ~ ~d ~(~) < ~(~(v)). 
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Then, the impulsive functional differential problem (2.1)-(2.3) with respect to (u, v) is ([to, h)- 
uniformly practically stable. 

PROOF. From Section 2, we know that  for any to E R +, there is a unique solution of prob- 
lem (2.1)-(2.3) through (to, ~). We denote the solution of impulsive functional differential prob- 
lem (2.1)-(2.3) by z(t; to, ~). 

If (to, Xto) E R + x PC([-r ,  0], R ~) such that/~0(to, Xto) < U. Then, by Conditions (ii) and (vi) 

h(to,z(to)) < ¢ ([zo(to,Xto)) < ¢(u) < v. 

We then prove that  
V(t,x(t)) <__ ~b-l(a(u)), Vt ___ to. (3.7) 

For any t E (to - r, to], there exists a 0 E (--r, 0], such tha t  t = to + 0, then from Definition 3, 
we know that  for t E (to - % to] 

ho(t,x(t)) = ho(to + O,x(to + 0)) = ho(to + O, xto(O)) <_ ho(to,x(to) ) < u 

since ~b E KI,  from Condition (iii), we have for t E (to - r, to] 

V(t,z(t))  <_ a(ho(t,z)) <_ a (ho(to,z(to))) < a(u) < ~)--l(c~(tt)). (3.8) 

Next, we prove that 

V(t,z(t))  <_ ~O-l(a(u)), to < t < tt .  (3.9) 

If (3.9) does not hold, then there exists a g E [to, t l)  such that  

V(~,z(~)) > ~-l(a(u))  > a(u) > V(to,z(to)). 

Let a = in f{ t  i V(t, z(t)) > ~-1 (a(u)), t E [to, t l)},  then V(a, z(g)) = ~)-l(oz(u)), since V(to, z(to)) 
< a(u) ,  we have ~ > to, and for g < t <_ g, V(t,m(t)) > ~p-l(a(u)) .  From (3.8) and the 
definition of a, we also have for to - r  < t < a, V(t,z(t))  < ~ - l ( a ( u ) ) .  Since a(u)  < ¢ -~ (a (u ) ) ,  
V(to, z(to)) < a(u) ,  V(~, z(~)) = ~p-l(a(u)),  and V(t, z(t)) is continuous in [to, t l) ,  it follows that  
there exists a Sl E [to,g), such that  V(sl ,z(Sl))  = a(u)  and for sl <_ t < ~, V(t,z(t))  >_ a(u).  

Since for to - r < t < ~, V(t,m(t)) <_ ~b-l(a(u)),  for sl <_ t < a, V(t,z(t))  >_ a(u)  and 
s1 E [~o, s), then for t E [sl, g] and s E I - r ,  0], we have 

V(t Jr- 8, X(t Jr- 8)) ~ ~-l(o~(~t)) ~ ¢ - l ( v ( t ,  x ( t ) ) ) .  

In view of Condition (iv), we have for t E [st, g], 

V'(t, x(t)) <_ g(t)w(V(t, x(t))) (3.1o) 

an integration of (3.10) over (sl, ~), by Condition (v), we have 

f d__Lx [ £ v ( ~ # ( ~ ) )  < g(t) dt < g(t) dt < A. 
Jv(sl,~(s~)) w(z) - ~ 

On the other hand, 

I v  V(g'~(~)) dz _ / ~ - 1 ( ~ ( ~ ) )  dz 
(,1,z(sl)) w(x) za(~) w(x---) > A 

a contradiction so (3.9) holds. 
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By Condition (iv) and (3.9), we have 

v(t~,~(t~)) = v (t~,~ (tF) + z~ (~ (t[)))  _< ¢ (v  ( tr ,~  (tr)))  _< ~(~). 

Next, we prove that  
v(t, x(t)) < ¢-~(~(~)),  tl < t < t 2 .  (3.11) 

If (3.11) does not hold, then there exists a ~ E [tl,t2) such that  

V(?,x(~)) > ¢ - l ( a ( u ) )  > a(u) k V(t l ,x( t l ) ) .  

Let r l  = inf{t t V( t , x ( t ) )>  ¢-z(a(u)),  t e [tl,t2)} then V(rl ,x(r l ) )  = ~-l(a(u)) ,  since 
V(t l ,x( t l ) )  < a(u) < ¢- l (a(u)) ,  we have r l  > tz, and for r l  < t < P, Y(t ,z( t ) )  > ¢ - i ( a ( u ) ) .  
From inequalities (3.8),(3.9) and the definition of rz, we have for to -~r < t < rl, V(t,x(t)) <__ 
~b-l(a(u)). Since a(u) < ~-l(a(u)) ,  V( t l ,x( t l ) )  < a(u), V(r l ,x(r l ) )  = ~- l (a(u)) ,  and 
V(t, x(t)) is continuous in [tl, t2), it follows that  there exists a r2 E [tl, r l ) ,  such that  V(r2, x(r2)) 

= a(u) and for r2 < t < rz, Y(t,  x(t)) >_ a(u). 
Since for to - 7  < t < rl, V(t,x(t)) <_ ¢--I(o:(U)), for r2 <_ t < rl, V(t ,x(t))  > a(u) and 

r2 E It1, r t ) ,  then for t e It2, rl] and s E [ -% 0], we have 

v(t  + ~, ~(t + ~)) <_ ¢-~(~(~)) _< #,-~(v(t, ~(t))). 

In view of Condition (iv), we have for t e Iv2, rl],  

V'(t, x(t)) <_ g(t)w(V(t, x(t))) 

an integration of (3.12) over (r2, rz), by Condition (v), we have 

f rl f t2 /V(r,,x(~l)) d___~x < g(t) dt < g(t) dt < A. 
Jv(~,~(r~)) w ( z ) -  ~ - 

On the other hand, 

v(r, ,x(. l))  dx _ f ¢ - l ( . ( ~ ) )  dx (r~,~(~)) ~(~) J~(~) ~(~) ___ A. 

A contradiction so (3.11) holds. 
By Condition (iv), we have 

v (t2, x (t~)) = v (t~, ~ (t~-) + zk (x (t~-))) _ w (v  (t~-, z (t~-))) < ~(~). 

By similar arguments as before, we can prove that  for k = 1, 2 , . . .  

V(t,x(t))  <_ ~2-1(a(u)), tk- i  <_ t < tk 

and 
v(t~, x(tk)) <_ ~(u). 

Since a(u)  < O - t ( a ( u ) ) ,  it follows by Conditions (vi) and (iii) tha t  

V(t,x(t))  <_ ¢ - l ( a ( u ) )  < fl(v), 

h(t,x(t)) <_ ~- l (V( t ,x ( t ) ) )  < fl-l(j3(v)) < v, t > t o .  

The proof of Theorem 2 is complete. 

(3.12) 
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EXAMPLE. Consider practical stability of following equation similar to tha t  given in [10] in terms 
of two measurements 

= -a( t )x ( t )  + b(t)x(t - T), for t _> 0, t # tk, 
(3.13) 

x(tk) = cx ( t ; ) ,  for k E N 

in which x c R n, 0 < c < 1, 7 > 0, a(t),b(t) • C[R +,R+], a(t) > a, b(t) < b, (1 ÷ 1 / c 2 ) b -  2a 
> 0. Denote x • R n b y x  = ( x l , x 2 , . . . , x ~ ) .  

Let h(t ,x)  = Ilxlll = ~n=l Ixil, ho(t,x) = Ilxll~ = maxl<~<n Ix~[. For the definition of ho, we 

know that  h0(t, xt) = sup_r<o< 0 ho(t ÷ O,x(t ÷ 0)) = suP_r_<O_< 0 IIx(t ÷ 0)11~ = ]xt]~. 
For given (u,v),  with 0 < u < (1/nv/'~)cv , if the following assumptions hold: 

(HI) tk - t k - 1  < --21nc/(--2a + (1 + (1/c2))b). 
(H2) ]xt[~ < u implies tha t  for any s • [ -%0],  [[x(t)[[e < (1/c)llx(t + s)[[a holds. 

Then, equation (3.13) with respect to (u, v ) i s  (h0, h)-uniformly practically stable. 

PROOF. We choose the functions in Theorem 2 as follows: V(t ,x ( t ) )  = xT(t)x(t) ,  ¢(t)  = c2t, 
fl(x) = (1/n2)x 2, a(x) = nx  2, w(t) = t, g(t) = - 2 a  + (1 + 1/c2)b, ¢(t) = (n/c)t. 

(1) If h0(t, xt) < u, we have for any s • [-T, 0], 

1 n n ( )) 
h( t ,  x )  = HXlll < - H x ( t  + s ) l l l  _< - Ilx(t + s)ll~ <_ - I x , [~  = ¢ ho (t, x t  , 

C C C 

Condition (ii) in Theorem 2 is satisfied. 
(2) Since (1/n~DIIxll~ <_ I1~11~ -< nll~ll~, then/3  (h(t ,x)) <__ V( t , x )  <_ a(ho(t ,x))  holds. 
(3) For any solution x(t) of (3.13) such tha t  

sup{V(t  + s, x( t  + s)) : s • [-~-, 0]} < ¢ - l ( V ( t ,  x(t))) 

we have clearly tha t  

Thus, 

sup {xT( t  + s)x(t + s) :  s • [--~-, 0]} < -~xT(t)x( t ) .  

V'(t ,  x(t)) = (--a(t)xT(t) + b(t)xT(t -- T)) x(t) + xT(t)(--a(t)x(t)  + b(t)x(t - 7)) 

= --2a(t)xT(t)z(t)  + 2b(t)xr(t  - T)x(t) 

<_ --2a(t)xT(t)x(t)  + b(t) (xT(t  -- ~')x(t -- T) + xT(t)x( t))  

<_ [ - 2 a +  ( 1 +  ~-~2)b] xT ( t ) x ( t )=g( t )w(V( t , x ( t ) ) ) .  

It is also holds tha t  

V ( tk ,x  (t~) + a (x ( t ; ) ) )  = V (tk,cx ( t ; ) )  = c~x ~ ( t ; )  x ( t ; )  = ~ (V ( t ; , x  ( t ; ) ) ) .  

So Condition (iv) in Theorem 2 is satisfied. 
(4) From the choice of function g(t) and w(t), we obtain tha t  

it: [ g ( s ) d s =  - 2 a +  1 + ~  b ( t k - - t k - 1 ) < - - 2 1 n c  
--1 

and 

f ¢ - l ( q )  ds _ fq/C~ ds _ 
. q  W(8 )  aq S 

let A = - 2  in c > 0, then Condition (v) in Theorem 2 is satisfied. 
(5) Since 0 < u < v, u < (1 /nv~)cv  , it is obvious tha t  ¢(u) = (n/c)u < (1/v/-n)v <_ v, 

a(u) = nu 2 < n(1/n3)c2v 2 = (1/n2)c2v 2 = ¢(]~(v)) Condition (vi) of Theorem 2 is satisfied. 
From (1)-(5), we know that  all conditions in Theorem 2 are satisfied. So for given (u, v), with 

0 < u < ( 1 / n v ~ ) c v  , equation (3.13) with respect to (u, v) is (ho, h)-uniformly practically stable. 
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4. C O N C L U S I O N  

In this paper, by using piecewise continuous Lyapunov functions and Razumikhin techniques~ 
we have got some criterions of uniform practical stability for impulsive functional differential 
equations in terms of two measurements. We also use an example to illustrate the theorem. We 
can see that  impulses do contribute to the system's practical stability property. 
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