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SUMMARY

Glial progenitor cells (GPCs) are a potential source of
malignant gliomas. We used A2B5-based sorting to
extract tumorigenic GPCs from human gliomas
spanning World Health Organization grades II–IV.
Messenger RNA profiling identified a cohort of genes
that distinguished A2B5+ glioma tumor progenitor
cells (TPCs) from A2B5+ GPCs isolated from normal
white matter. A core set of genes and pathways
was substantially dysregulated in A2B5+ TPCs,
which included the transcription factor SIX1 and its
principal cofactors, EYA1 and DACH2. Small hairpin
RNAi silencing of SIX1 inhibited the expansion of gli-
oma TPCs in vitro and in vivo, suggesting a critical
and unrecognized role of the SIX1-EYA1-DACH2 sys-
tem in glioma genesis or progression. By comparing
the expression patterns of glioma TPCs with those of
normal GPCs, we have identified a discrete set of
pathways by which glial tumorigenesis may be better
understood and more specifically targeted.
INTRODUCTION

Gliomas are themost common primary intracranial neoplasms in

humans, accounting for 80% of all malignant brain tumors. Cur-

rent treatment strategies, including surgery, radiotherapy, and

chemotherapy, only modestly improve patient survival (Stupp

et al., 2005). The limited efficacy of these approaches is a conse-

quence of both the rapid invasion of brain tissue by glioma cells

and the rapid appearance of both chemo- and radioresistant lin-

eages within treated tumors.
C

Gliomas may arise from transformed somatic stem and

progenitor cells. Indeed, cells derived from many types of

primary CNS malignancies, including periventricular tumors

(Sim et al., 2006), medulloblastomas, and gliomas (Hemmati

et al., 2003; Ignatova et al., 2002), exhibit multipotentiality and

self-renewal in vitro, suggesting their derivation from, or regener-

ation of, a stem cell phenotype. In glioma, a discrete cohort of

CD133+ cells was first reported to be wholly responsible for

the initiation of new gliomas in immunodeficient recipients (Bao

et al., 2006; Singh et al., 2004). However, a number of recent

studies have expanded this picture by revealing that CD133-

negative glioma cells are also tumorigenic, whereas not all

CD133+ cells are (Nishide et al., 2009). These observations sug-

gest the coexistence of multiple tumor-initiating phenotypes in

gliomas, most especially in high-grade (HG) tumors.

The antigenic heterogeneity of tumor-initiating cells in gliomas

may in part reflect the variety of potential cell types of origin of

glioma. Several studies have reported that in rodents, gliomas

may arise from neural stem cells of the ventricular subependyma

(Alcantara Llaguno et al., 2009; Jackson et al., 2006). Yet,

although humans resemble rodents in harboring persistent

subependymal neural progenitors (Pincus et al., 1998; Sanai

et al., 2004), adult humans retain much larger populations of

multipotential glial progenitor cells (GPCs) in the subcortical

white matter (WM), in numbers that dwarf those of the adult

subependyma. They can be distinguished from other brain

phenotypes by their expression of gangliosides recognized by

monoclonal antibody (mAb) A2B5 (Nunes et al., 2003), as well

as by NG2/CSPG4 and platelet-derived growth factor-a receptor

(PDGFaR) expression (Nishiyama et al., 2009; Sim et al., 2011).

Interestingly, these prototypic GPC markers are overexpressed

in glioma (Ogden et al., 2008; Shih and Holland, 2006). Further-

more, in rodents, parenchymal GPCs can form tumors that

mimic the genomic and histological profiles of human oligoden-

droglioma (OLG) (Lindberg et al., 2009; Persson et al., 2010) and
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glioblastoma multiforme (GBM) (Assanah et al., 2006; Liu et al.,

2011). Together, these data suggest that a proportion of human

gliomas may arise from parenchymal GPCs. On that basis, we

asked whether a subtractive genomics strategy comparing

normal adult human GPCs with their identically sorted counter-

parts derived from adult gliomas would identify pathways

specifically associated with human glial oncogenesis.

RESULTS

A2B5+ Cells Are Abundant in Glioma and Manifest a
Stem Cell Phenotype In Vitro
To assess the incidence of A2B5+ cells in adult gliomas, we used

both magnetic activated cell sorting (MACS) and flow cytometry.

By MACS, A2B5+ cells were significantly more abundant in

gliomas (14.4% ± 1.3%, n = 29) than in noncancerous adult

WM or cortex (3.6% ± 0.3%; n = 54; Figure 1A; Table S1). Flow

cytometry, with less false-negatives than MACS, confirmed

that A2B5+ cells were significantly more abundant in tumors

(28.8% ± 3.2%; n = 35) than in nonneoplastic WM (2.9% ±

0.4%; n = 3; Figure 1B; Table S1). Although only a small fraction

of these A2B5+ glioma cells coexpressed CD133 (4.6% ± 1.5%),

almost half (45% ± 5.4%) coexpressed the oligodendroglial

protein OLIG2 (Ligon et al., 2007), and most (74% ± 4.2%) also

expressed the tumor marker Survivin (BIRC5). The A2B5+ glioma

cells were highly mitotic: 31% ± 7.9%coexpressed Ki67 (Figures

1C and S1A). Of note, although CD133 was an uncommon

phenotype in fresh tumors, most CD133+ cells (74% ± 6.7%)

coexpressed A2B5, as did most OLIG2+, Ki67+, and SURVIVIN+

cells (R75%; Figures 1D and S1A). To validate these cytometric

data in situ, we identified glioma tumor progenitor cells (TPCs) in

sections of GBMs by their nuclear coexpression of OLIG2 and

Ki67 (Ligon et al., 2007). Whereas only a minority of OLIG2+ cells

expressed Ki67 (34% ± 5.2%; n = 4), most Ki67+ cells expressed

OLIG2 (78% ± 3.8%; Figures S1B and S1C). Similarly, whereas

only 45% ± 5.4% of GBM-derived A2B5+ cells expressed

OLIG2 in vitro (Figure 1C), 82% ± 8.1% of OLIG2+ cells were

A2B5+ (Figures 1D and S1A). These data suggest that the A2B5

immunophenotype comprises a discrete fraction of glioma cells,

which includes most CD133+ and OLIG2+/Ki67+/Survivin+ cells.

A2B5-Defined Tumor Progenitors Are Clonogenic, Self-
Renewing, and Multipotential In Vitro
We next asked whether A2B5+ glioma cells are clonogenic

in vitro. To that end, we isolated A2B5+ and A2B5� cells by fluo-
Figure 1. In Vitro and In Vivo Characterization of Glioma-Derived A2B5
(A and B) A2B5-based MACS (A) and flow cytometry analysis (B) of freshly dissoc

mean percentage of A2B5+ cells ± SEM. Triangles represent astrocytoma (AS

trocytoma (**p < 0.02, ***p < 0.001; Kruskal-Wallis test). NT, nontumor; ANA, ana

(C and D) Dual-flow cytometry (*) and immunocytochemical analysis of freshly iso

expressed as mean ± SEM.

(E) Immunostaining of GBM-derived A2B5+ cells cultured under differentiating c

terstained with DAPI (blue).

(F) Coronal sections through a mouse brain transplanted with GBM-derived A2B5

(green) Ki67 (b), Sox2 (c), Nestin (f), Olig2 (d), NG2 (g), Survivin (e), and GFAP (h)

(G and H) Hematoxylin and eosin (H&E)-stained sections of a patient’s tumor (H)

See also Figures S1, S2, S3, and S4 and Tables S1 and S10.

C

rescence-activated cell sorting (FACS) and raised each fraction

in low-density suspension culture in serum-free media (Nunes

et al., 2003). HG-glioma-derived A2B5+ cells robustly generated

neurospheres with substantially greater efficiency than did their

A2B5� homologs, as demonstrated by in vitro limiting dilution

analysis (Figures S2A–S2D). To assess the lineage potential of

A2B5-defined TPCs, we expanded isolated A2B5+ cells as

neurospheres and plated them in 1% serum to promote their

differentiation. Twelve days later, the resultant outgrowths

were immunostained for the astrocytic marker glial fibrillary

acidic protein (GFAP), the neuronal markers bIII-tubulin and

MAP2, and the early oligodendroglial markers OLIG2 and

20,30-cyclic nucleotide 30- phosphosdiesterase (CNP). Each of

these phenotypes was present within single spheres (Figure 1E),

suggesting that A2B5+ TPCs, like normal GPCs (Nunes et al.,

2003), retained multilineage competence in vitro.

Importantly, we found that A2B5 expression defined a prefer-

entially expanding pool of glioma TPCs, and that its expression

was sustained with propagation. We established stable lines

from World Health Organization (WHO) stage IV gliomas (n = 5)

and found that by the third passage, >98% of all cells were

A2B5+ (Figure S2E). These lines have now been passaged for

over a year, and each has retained A2B5 expression, with

concurrent expression of SOX2 (76% ± 16.8%) and Survivin

(57% ± 7.5%; Figures S1A and S2F). Interestingly, whereas

CD133 was only rarely expressed in freshly isolated glioma cells,

most A2B5+ glioma cells developed CD133 expression with

propagation (Figures S2G and S2H). Conversely, virtually all

SOX2+, Survivin+, OLIG2+, and Ki67+ cells in these cultures

(>97% for each), as well as most CD133+ cells (88% ± 6.7%),

coexpressed A2B5 (Figure S1A). In contrast to the sustained

self-renewal competence of A2B5+ TPCs sorted from HG

gliomas and GBMs, those derived from low-grade (LG) WHO II

gliomas were only able to generate spheres at early passages.

These cultures could not be maintained beyond 5 months,

reflecting the limited self-renewal competence of LG glioma

cells (Galli et al., 2004). These observations suggested that

human GBM cells rapidly select for an A2B5 phenotype with

repetitive passage in vitro, and that virtually all SOX2+ and

CD133+ glial TPCs coexpress A2B5 immunoreactivity.

A2B5-Defined Tumor Progenitors Express Telomerase
as a Function of Grade
To assess the basis for the differential self-renewal competence

of LG- and HG-glioma-derived A2B5+ cells, we asked whether
+ Cells
iated gliomas and nonneoplastic WM and cortex. Horizontal lines indicate the

T); squares represent oligodendroglioma (OLG); diamonds indicate oligoas-

plastic astrocytoma/oligoastrocytoma..

lated GBM cells stained for A2B5, CD133, Ki67, Olig2, and Survivin. Data are

onditions for CNPase, b3-tubulin, and GFAP markers (red). Nuclei were coun-

+ human cells, stained with the human-specific antigen antibody (red, a–h) and

. Cells were counterstained with DAPI (blue).

and its derived A2B5-sorted xenograft in an adult mouse (I).
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Figure 2. Differential Gene-Expression Profiles of A2B5+ Glioma Cells at All Stages of Gliomagenesis

(A and C) Venn diagram (A) and table (C) showing the number of genes up- or downregulated (>3 FC, 1% FDR) in A2B5+ TPCs versus both normal adult A2B5+

GPCs and CD11b+ microglial cells (MG) using Affymetrix gene expression microarrays.

(B) PCA. Green and purple, LG- and HG-derived A2B5+ cells; red, nontumor A2B5+ GPC; tangerine, unsorted normal cells; green cross, microglial cells.

See also Figures S5 and S6, and Tables S2, S3, S4, S5, S6, S7, S8, and S9.
these cells express telomerase enzymatic activity (Langford

et al., 1995), and if so, at what stages of anaplastic progression

they do so. Using the telomeric repeat amplification protocol

assay (TRAP), we detected a significant degree of telomerase

reverse transcriptase activity in five of six GBM-derived A2B5+

cell isolates. In contrast, no detectable telomerase activity was

detected in either LG-derived A2B5+ cells or those derived

from normal adult WM (Figure S3A). Together, these data sug-

gest that telomerase induction is associated with malignant pro-

gression rather than with initial gliomagenesis, and provide a ba-

sis for the limited self-renewal competence of LG-glioma-

derived A2B5+ TPCs.

A2B5-Sorted Cells Initiated New Gliomas in
Immunodeficient Recipients upon Orthotopic Graft
To determine whether A2B5+ TPCs could independently initiate

gliomas in naive hosts, we sorted freshly dissociated cells from

six WHO stage II–IV gliomas using MACS or FACS into A2B5+

and A2B5� fractions, and then transplanted them over a range

of 5,000–100,000 cells/graft into the corpus callosa of immuno-

deficient mice. The resultant xenografts were analyzed

6–15 weeks later (Figure S4A). Seventeen of 18 mice implanted

with A2B5+ cells developed invasive gliomas by 6 weeks,

whereas 13 of 16 mice transplanted with A2B5� cells from the

same tumors did so. No significant differences were noted in

the distribution, volume, or Ki67 index of tumors derived from

MACS-sorted A2B5+ and A2B5� cells (Figures S4B–S4E).
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Interestingly, the three mice that failed to develop tumors from

A2B5� grafts were those given the lowest dose (5,000 cells),

which was invariably tumorigenic when A2B5+ cells were used.

Thus, both A2B5+ and A2B5� TPCs were tumorigenic upon

xenograft, although in vivo limiting dilution analysis suggested

preferential tumorigenesis by the A2B5+ fraction, as reported

previously (Ogden et al., 2008; Tchoghandjian et al., 2010). The

A2B5+ xenografts were both highly migratory (Figure 1Fa) and

highly proliferative, with a Ki67 index of 27.1% ± 2% (n = 11;

Figure 1Fb). Like the tumors from which they derived, the grafts

expressed Survivin, SOX, nestin, OLIG2, NG2, and GFAP pro-

teins (Figure 1F, c–h), and assumed the histological appearance

of native GBMs (Figures 1G and 1H).

Expression Profiling Revealed an A2B5+ TPC Gene-
Expression Signature
We next sought to identify the molecular concomitants to the

transformation of A2B5+ TPCs using Affymetrix U133+2microar-

rays. A2B5+ tumor cells derived from both LG (WHO grade II, n =

10) and HG (WHO grade III-IV, n = 10) gliomas (Table S2) were

compared with their A2B5+ counterparts derived from normal

adultWM (n = 4) and cortex (n = 4). In addition, becausemicroglia

may be recognized by both A2B5 and NG2 antibodies (Pouly

et al., 1999), we also profiled CD11b+ human microglia sorted

from adult epileptic resections (n = 4) so as to establish a filter

that would exclude microglial transcripts from our TPC gene

sets (Figure 2A). Principal-component analysis (PCA) confirmed



that A2B5+ cells isolated from both LG and HG gliomas showed

overall expression profiles that were readily distinguished from

those of normal adult GPCs, unsorted tumor cells, and microglia

(Figure 2B).

To define those genes whose expression distinguishes A2B5+

TPCs (n = 20) from nonneoplastic GPCs (n = 8), we performed

differential gene-expression analysis using relatively stringent

cutoffs (>3-fold change [FC], 1% false discovery rate [FDR])

and identified a total of 355 dysregulated genes (226 up, 113

down; Figure 2C; Tables S3 and S4). To further identify grade-

associated changes in A2B5 expression signature, we sepa-

rately compared the profiles of A2B5+ cells derived from LG

and HG gliomas with those of A2B5+ GPCs, as well as with

one another, so as to identify genes associated with anaplastic

progression (Figure 2C; Tables S3 and S4). We then separately

compared the expression patterns of OLG and astrocytoma

(AST) A2B5+ cells (WHO grade II) with one another, as well as

with normal A2B5+ GPCs (Figures 2C and S5; Tables S3 and

S4), so as to distinguish between gene sets associated with early

stages of glioma progression and those involved in fate

determination.

Among the genes dysregulated in glioma-derived TPCs, we

focused initially on those genes with the highest expression ra-

tios in all A2B5+ tumor cells relative to normal GPCs (Figure 3A

and Table 1). We found only eight genes that were R10-fold

overexpressed in TPCs at all levels of anaplastic progression

(Figure 3A), among which CD24, GAP43, MMP3, and IGFBP3

have been previously associated with invasive glioma. In addi-

tion, this analysis revealed a set of genes that were not previously

known to be involved in gliomagenesis, including SIX1, EYA1,

SATB2, and CSRP2. Interestingly, the transcription factor SIX1

and its coactivating binding partner, EYA1, have been shown

to participate in the oncogenesis of humanmammary carcinoma

cells (Christensen et al., 2008; Pandey et al., 2010). Similarly,

SATB2 and CSRP2 have been related to disease progression

in carcinoma (Midorikawa et al., 2002; Patani et al., 2009).

Several other oncogenes were also highly overexpressed, albeit

by <10-fold; these included epidermal growth factor receptor

(EGFR), MYC, and the inhibitor of differentiation genes ID1 and

ID4 (Table S3). In addition, a number of genes were downregu-

lated by A2B5+ TPCs at all stages of progression (n = 113; Table

S4), six by >10-fold (Figure 3B). Several of these genes have

been described as tumor suppressors, including MTUS1 (Di

Benedetto et al., 2006) and SPOCK3 (Earl et al., 2006). Quantita-

tive PCR (qPCR) confirmed the dysregulation of selected genes

(Figure 3C; Table S9). By defining those gene sets that were dys-

regulated in A2B5+ TPCs relative to their normal adult homologs

in both LG and HG gliomas, we identified a discrete cohort of

genes associated with both the initial appearance and the

anaplastic progression of glioma.

A2B5+ Glioma Cells Overexpressed Transforming
Growth Factor b, Bone Morphogenetic Protein, and Wnt
Pathway Components
To identify which pathways were the most selectively dysregu-

lated in A2B5+ glioma TPCs relative to their normal homologs,

we applied a set of functional (Gene Ontology [GO] and Kyoto

Encyclopedia of Genes and Genomes [KEGG]) and pathway
C

(Molecular Signatures Database [mSigDB] and ingenuity

pathway analysis [IPA]) databases to the list of differentially ex-

pressed genes (by >3 FC, 1% FDR). Our analysis revealed a

strong enrichment for genes associated with cancer, cell prolif-

eration, cell migration, and motility in both LG- and HG-derived

A2B5+ cells, suggesting that neoplastic A2B5+ cells have greater

proliferative and migration competence than their homologs

derived from normal brain (Figure S6B; Table S5). Among spe-

cific gene sets that were overrepresented in A2B5+ TPCs, GO re-

vealed a significant enrichment of genes involved in both Wnt/

b-catenin and bone morphogenetic protein (BMP) signaling,

whereas KEGGanalysis highlighted the transforming growth fac-

tor b (TGF-b) signaling pathway as being the most significantly

overrepresented (Table S5). IPA confirmed the predominant as-

sociation of both TGF-b pathway and Wnt/b-catenin-associated

genes with glioma TPCs (Figures 3D and 3E; Tables S5 and S8).

Similarly, gene set enrichment analysis (GSEA) revealed an over-

representation in A2B5+ TPCs of MYC target genes (Table S5).

A2B5+ Cells Derived from LG Glioma Expressed a
Proneural Signature
Having defined the genes that were differentially expressed in

A2B5+ TPCs at all stages of progression, we next focused on

the genes that accompanied early tumorigenesis. We compared

the expression profiles of LG-derived A2B5+ cells with those of

their normal A2B5+ homologs and identified a set of 161 differen-

tially expressed genes (Figure 2C). Among these were a small

cohort of >10-fold overexpressed genes, including tumor-asso-

ciated transcripts such as CD24, EYA1, and SIX1, as well as neu-

rogenesis-associated genes such as NEUROD1, INA, SATB2,

and ELAVL2, all of which are suggestive of a proneural (PN)

phenotype (Figure 4A; Table S6). In contrast, among those genes

that were significantly downregulated in LG A2B5+ cells, we

identified several tumor suppressors not previously associated

with gliomagenesis, including MTUS1, GPNMB, and RGN, as

well as several markers of mature oligodendrocytes, including

MOBP, OPALIN, and ASPA (Figure 4B; Table S6). In addition,

GO- and KEGG-based analyses revealed a significant upregula-

tion of genes associated with the BMP and TGF-b signaling

pathways, and mSigDB similarly revealed enrichment of MYC-

induced and associated genes (Table S6). IPA revealed an over-

representation of genes related to Wnt/b-catenin and AMP-acti-

vated protein kinase signaling pathways (Tables S6 and S8).

LG and HG A2B5+ TPCs Exhibit Expression Profiles of
Known Molecular Subclasses of GBM
We next used GSEA to evaluate the relationships between the

A2B5+ TPC signature and previously established tissue-based

data sets describing the major molecular subclasses of human

GBM, and GBM-derived CD133+ TPC gene sets (Figure 5A).

We first compared the profiles of neoplastic A2B5+ cells with

those of unsorted nontumor cells, and observed a preferential

enrichment of the PN signature in LG tumors, whereas HG-

derived A2B5+ TPCs were enriched for gene sets that typify

the epithelial-mesenchymal transition (EMT), as well as the pro-

liferative (PROLIF) and classical (CL) subtypes of GBM (Phillips

et al., 2006; Verhaak et al., 2010; Figures 5C, S7, and S8A–

S8C). As such, LG A2B5+ TPCs were enriched in gene sets
ell Reports 3, 2127–2141, June 27, 2013 ª2013 The Authors 2131



Figure 3. Specific Genes and Pathways Dysregulated in A2B5+ Glioma Cells at All Stages of Gliomagenesis
(A and B) Heatmap representation of the top upregulated (A) and downregulated (B) genes (>10 FC) in A2B5+ TPCs, as assessed by microarray analysis and

compared with normal A2B5+ GPCs derived from adult human WM, cortex (CTX), or CD11b+ microglia (MG).

(C) Real-time PCR validation of selected genes deregulated in A2B5+ TPCs relative to normal A2B5+ GPCs. Real-time PCR was performed using a 96-gene

TaqMan low-density array (TLDA) or individual prevalidated Taqman assays (as indicated by *). Gene expression was normalized to glyceraldehyde 3-phosphate

dehydrogenase (GADPH).

(D and E) Heatmap representation of GO- and KEGG-based pathways analysis of the TGF-b (D) and Wnt (E) pathways in A2B5+ TPCs relative to their non-

neoplastic counterparts isolated from the adult humanWM and CX, and CD11b+ MG. MG: microglia; UNS: unsorted cells; CTX: A2B5+ cells from normal cortex;

WM: A2B5+ cells from normal white matter; AST: astrocytoma; AAST: anaplastic astrocytoma; GBM sc: small cell GBM; GSC: gliosarcoma.

See also Table S9.
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associated with relatively prolonged patient survival, whereas

the outcomes associated with the gene sets of HG A2B5+

TPCs are less favorable (Freije et al., 2004). Importantly, both

LG- and HG-derived A2B5+ cells exhibited a significant enrich-

ment of the CD133-UP signature, suggesting significant molec-

ular homology between these tumor-initiating phenotypes

(Figure 5C).

Interestingly, glioma-derived A2B5+ cells also exhibited

enrichment of the PN signature relative to their A2B5� counter-

parts, especially in LG tumors (Figures 5D and S8C). In contrast,

the PN signature was depleted in neoplastic A2B5+ cells relative

to nonneoplastic GPCs, whereas MES/EMT-related gene sets

were relatively enriched (Figures 5E, S7, and S8B). Together,

these results indicate that LG- and HG-glioma-derived A2B5+

cells respectively share features of PN and MES subclass

GBMs, as well as GBM-derived CD133+ TPCs, and that both

may be distinguished from nonneoplastic GPCs by their selec-

tive overrepresentation of MES/EMT-related genes, which be-

comes more pronounced with anaplastic progression.

Anaplastic Progression of A2B5+ TPCs Reflected an
EMT
To more precisely define the grade-associated evolution in gene

expression by A2B5+ TPCs, we next compared the expression

profiles of A2B5+ cells derived from HG versus LG gliomas (>3

FC, 1% FDR), and identified a total of 683 dysregulated genes

(Figure 2C; Table S7). Among these, 17 were overexpressed

by >10-fold in HG-derived A2B5+ cells; not surprisingly, these

transcripts were related to transformation, invasion, angiogen-

esis, and a mesenchymal differentiation (Figure 4C). GSEA

confirmed that many of these progression-associated genes

were associated with the mesenchymal phenotype and EMT

(Figure S7B; Table S7).

Among those genes that were downregulated in HG-derived

A2B5+ TPCs relative to their LG counterparts (n = 225; Figure 4D;

Table S7), we identified the tumor suppressors SSTR1 (Patel,

1999) and SPOCK3 (Earl et al., 2006), the SIX1 repressor

DACH2 (Christensen et al., 2008), and SHISA2, a regulator of

the Wnt-b/catenin and fibroblast growth factor (FGF) signaling

pathways (Hedge and Mason, 2008). KEGG-based functional

analysis and IPA confirmed the relative dysregulation in HG

A2B5+ TPCs of Wnt/b-catenin signaling and IGF1-, p53-,

Notch-, PI3/AKT-, and JAK-STAT-dependent pathways (Table

S7). GSEA also demonstrated the differential overrepresentation

of genes involved in cell motility, the TGF-b signaling pathway,

and MYC target genes (Table S7). Together, these data indicate

that the anaplastic progression of the A2B5+ phenotype is asso-

ciated with dysregulated gene expression within the Wnt/

b-catenin and TGF-b pathways concurrently with an EMT, which

is itself attended by both the increased expression of genes

associated with motility and parenchymal invasion, and the

downregulation of a discrete set of known tumor suppressors.

LG- and HG-Derived A2B5+ Cells Share Common Gene-
Expression Patterns with Human Embryonic Stem Cells
and GPCs
To further explore the differentiated state of A2B5+ glioma cells,

we used GSEA to compare the gene-expression patterns of
C

A2B5+ TPCs with those of human embryonic stem cells (hESCs)

and CD140a+ (PDGFRa) GPCs, using published data sets

(Figures 5B and 5F–5H). Interestingly, the hESC signature was

enriched in both LG- and HG-derived A2B5+ cells (Figures 5F–

5H). In addition, when compared with unsorted nontumor brain

cells as well as A2B5� glioma cells, both LG- and HG-derived

A2B5+ cells were strongly enriched for the CD140a+ signature

(Figures 5F and 5G). Accordingly, both microarray and qPCR

analysis of marker genes revealed the selective enrichment in

A2B5+ TPCs of both GPC and NSC marker genes (Figures

S9A–S9J). Interestingly, glioma-derived A2B5+ cells could be

readily distinguished from their nontumor homologs by the

expression of the stem and mesenchymal marker CD44 (Figures

S9D, S9E, and S9H), reflecting the selective expression by

A2B5+ glioma TPCs of theMES signature relative to normal, non-

neoplastic GPCs.

SIX1 Inhibition Prevented the Growth, Proliferation, and
Survival of GBM-Derived TPCs
The homeobox transcription factor SIX1 and its cofactor EYA1

were among the highest differentially expressed tumor tran-

scripts in A2B5+ TPCs relative to their nonneoplastic homologs

(Figure 3C; Table 1; Table S9). qPCR confirmed that SIX1

messenger RNA (mRNA) was highly overexpressed by A2B5+

cells isolated from both LG (231 ± 128 FC, n = 4; p < 0.001)

and HG (76 ± 25 FC, n = 8; p < 0.001) gliomas relative to their

nontumor A2B5+ counterparts (n = 4), as well as in GBM-

derived TPC lines (88 ± 51 FC, n = 5; p = 0.016; Figures 3C

and S10A). Western immunoblots similarly revealed the high-

level expression of SIX1 protein by primary gliomas and glioma

cell lines, and its absence from the adult human brain

(Figure S10B).

The robust overexpression of SIX1 in A2B5-defined TPCs,

paired with its essential absence from the normal adult brain,

prompted us to examine its contribution to gliomagenesis. To

determine whether glioma TPCs were dependent on SIX1 pro-

tein-dependent signaling, we first tested the effects of lentivi-

ral-induced knockdown (KD) of SIX1 (Figures S10C and S10D)

on the growth of glioma TPCs in vitro. Lentiviral small hairpin

RNAi (shRNAi) silencing of SIX1 (SIX1 KD) significantly reduced

the number of GBM-derived TPCs relative to both scrambled

(SCR) shRNAi-transduced and nontransduced control (CT)

cells, 6 days posttransduction (p = 0.0005; Figures 6A and 6B).

On that basis, we next investigated the effects of SIX1 KD on

cell proliferation, cell-cycle progression, and cell survival. We

found that SIX1 KD significantly reduced the mitotic fraction of

bromodeoxyuridine (BrdU)-incorporating TPCs (24.3% ± 4.5%)

relative to both SCR (32% ± 3.8%) and CT cells (36.3% ±

3.4%; p = 0.006; Figure 6C). We next addressed the role of

SIX1 in cell-cycle progression by analyzing 5-ethynyl-20-deoxy-
uridine (EdU) incorporation in association with propidium iodide

staining. TPCs subjected to SIX1 KD manifested fewer cells in

S phase (5.2% ± 1.1%) relative to SCR (8.8% ± 1.5%) and CT

cells (9% ± 1.2%; p = 0.018; Figure 6D). We next asked whether

SIX1 suppression might be associated with increased cell

death, and found that SIX1 KD TPCs exhibited a significantly

increased incidence of Annexin V-defined apoptotic death

(33.9% ± 7.8%) compared with both SCR (24.7% ± 8.9%) and
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Table 1. Significantly Dysregulated Genes in Glioma-Derived A2B5+ Cells Relative to Normal A2B5+ GPCs

Gene Symbol Description Fold Change q Value

Transcription Factors

SIX1 SIX homeobox 1 16.41 7.23 3 10�10

SATB2 SATB homeobox 2 10.41 7.03 3 10�12

FOXD1 forkhead box D1 8.27 1.41 3 10�8

LOC100287917 hypothetical protein LOC100287917 8.22 6.57 3 10�7

MYC v-myc/c-myc 8.05 1.47 3 10�8

SMARCA2 SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin �6.40 9.13 3 10�9

ST18 suppression of tumorigenicity 18 (breast carcinoma; zinc finger protein) �3.06 6.32 3 10�3

Ligands

IL33 interleukin 33 6.91 6.71 3 10�6

TNC tenascin C 6.24 3.28 3 10�5

INHbA activin beta A 5.98 2.38 3 10�6

STC2 stanniocalcin 2 5.97 7.82 3 10�9

MIF macrophage migration inhibitory factor (glycosylation-inhibiting factor) 5.68 2.39 3 10�8

GREM1 Gremlin �6.26 1.83 3 10�4

GPNMB glycoprotein (transmembrane) nmb �6.00 2.23 3 10�7

Receptors

EGFR epidermal growth factor receptor 9.04 3.86 3 10�7

IL13RA2 interleukin 13 receptor, alpha 2 8.04 4.38 3 10�4

CNR1 cannabinoid receptor 1 (brain) 5.21 2.66 3 10�7

F2R coagulation factor II (thrombin) receptor 4.59 2.84 3 10�7

ADRA2A adrenergic, alpha-2A-, receptor 3.97 2.02 3 10�4

GPR37 G-protein-coupled receptor 37 (endothelin receptor type B-like) �7.87 1.43 3 10�5

TEK TIE2 �6.28 6.31 3 10�6

GRM3 glutamate receptor, metabotropic 3 �5.63 9.65 3 10�7

LRP2 low-density lipoprotein-related protein 2 �5.48 1.21 3 10�4

P2RY12 purinergic receptor P2Y �3.80 4.50 3 10�3

Other

CD24 CD24 antigen (small cell lung carcinoma cluster 4 antigen) 34.53 1.33 3 10�11

LOC100288551 hypothetical protein LOC100288551 19.31 6.17 3 10�11

GAP43 growth-associated protein 43 15.00 8.99 3 10�10

IGFBP3 insulin-like growth factor binding protein 3 11.77 2.41 3 10�5

CSRP2 cysteine- and glycine-rich protein 2 9.91 3.49 3 10�9

ANKRD43 ankyrin repeat domain 43 �20.75 1.29 3 10�10

C21orf131 chromosome 21 open reading frame 131 �16.10 5.39 3 10�9

MOBP myelin-associated oligodendrocyte basic protein �14.74 3.29 3 10�10

OPALIN oligodendrocytic myelin paranodal and inner loop protein �11.98 2.81 3 10�9

MTUS1 microtubule-associated tumor suppressor 1 �10.08 1.61 3 10�11

Enzymes/Catalytic

MMP3 matrix metalloproteinase 3 (stromelysin 1, progelatinase) 19.75 1.12 3 10�6

EYA1 eyes absent homolog 1 (Drosophila) 12.67 3.82 3 10�9

MGST1 microsomal glutathione S-transferase 1 9.48 4.83 3 10�7

METT 7B methyltransferase-like 7B 9.09 6.89 3 10�7

EGFR epidermal growth factor receptor 9.04 3.86 3 10�7

ENPP2 ectonucleotide pyrophosphatase/phosphodiesterase 2 (autotaxin) �9.02 2.07 3 10�8

C5orf4 chromosome 5 open reading frame 4 �8.39 2.143 10�7

PDK4 pyruvate dehydrogenase kinase, isozyme 4 �7.97 4.49 3 10�8

ACACB acetyl-coenzyme A carboxylase beta �6.99 1.75 3 10�7

(Continued on next page)
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Table 1. Continued

Gene Symbol Description Fold Change q Value

GATM glycine amidinotransferase (L-arginine:glycine amidinotransferase) �6.57 5.44 3 10�7

ECM/Cell Adhesion

MMP3 matrix metalloproteinase 3 (stromelysin 1, progelatinase) 19.75 1.12 3 10�6

LAMB1 laminin, beta 1 8.24 2.32 3 10�4

TNC tenascin C 6.24 3.28 3 10�5

CCDC80 coiled-coil domain containing 80 5.67 1.35 3 10�7

SPOCK3 sparc/osteonectin, cwcv, and kazal-like domains proteoglycan (testican) 3 �18.27 1.42 3 10�8

Significantly dysregulated genes (>3 FC, 5% FDR) were annotated into functionally relevant categories. The top five from each category are shown in

the table.
CT cells (20.3% ± 7.2%; p = 0.004; all comparisons by repeated-

measures ANOVA; Figure 6E).

On the basis of these in vitro data, we examined the effects of

SIX1 inhibition on the tumorigenic competence of A2B5+ TPCs

in vivo. TPC lines established from A2B5+ cells derived from an

anaplastic OLG and a GBM were transplanted into the brains

of immunodeficient mice (6–8 3 104 cells/animal, n = 3 ani-

mals/group) 6 days after lentiviral transduction. SIX1 silencing in-

hibited the tumorigenicity of glioma TPCs, as demonstrated by a

significant decrease in the number of hNA+ cells at 6 weeks post-

transplantation relative to SCR and CT cells (p = 0.01; Figures 6F

and S10E). These observations indicate that SIX1 KD potently in-

hibits the growth, proliferation, and survival of A2B5-defined gli-

oma TPCs both in vitro and in vivo, and suggest that SIX1 plays a

critical role in the initiation and/or the proliferative expansion of

malignant glioma.

DISCUSSION

In this study, we identified a core set of genes and pathways that

are dysregulated throughout the anaplastic progression of gli-

oma. We did so by comparing the gene-expression patterns of

A2B5-sorted GPCs derived from the normal adult human brain

with the expression patterns of their presumedhomologs derived

from gliomas at various stages of progression ranging fromWHO

II LG gliomas to grade IV GBM.We first validated both the robust

self-renewal competence of A2B5+ glioma TPCs and their diffuse

invasion and efficient gliomagenesis when transplanted to immu-

nodeficient hosts. We next assessed those genes and pathways

that were differentially expressed by A2B5+ TPCs relative to their

normal homologs, and identified tumor-specific A2B5 transcript

signatures as a function of both tumor stage and phenotype.

Both LG- andHG-glioma-derivedA2B5 signatures shared salient

features of the transcription patterns of known GBM subtypes,

GBM-derived CD133+ TPCs, and hESCs. In particular, we iden-

tified the TGF-b and Wnt/b-catenin signaling pathways, as well

asMYC, asbeing potently dysregulated in neoplastic A2B5+ cells

at every stage of tumor progression. These observations are in

line with previous reports (Ikushima et al., 2009; Pulvirenti et al.,

2011; Wang et al., 2008) and suggest that TGF-b, Wnt/b-catenin,

and MYC signals all contribute to the initial transformation of

GPCs, as well as to the subsequent maintenance and progres-

sion of malignant phenotype. Since both the TGF-b and Wnt/!
b-catenin pathways have been associated with the turnover of
C

normal neural stem cells and GPCs (Feigenson et al., 2009; Mis-

hra et al., 2005), our identification of their tumor-progenitor-

selective components may provide an especially compelling

set of therapeutic targets.

This comparison revealed a core set of genes that were dysre-

gulated during both the early and late stages of tumor progres-

sion. These transcripts included the selectin ligand CD24, the

SIX1 homeodomain transcription factor and its binding partner

EYA1, the dedifferentiation-associated gene SATB2, and the

growth- and invasion-associated transcripts MMP3, IGFBP3,

CSRP2, andGAP43. By virtue of their marked differential overex-

pression by TPCs at both early and late stages of glioma pro-

gression, these genes appear to comprise a promising set of

targets for therapeutic intervention. To define which gene sets

were preferentially associated with anaplastic progression and

invasiveness, we also compared the expression patterns of

A2B5+ TPCs derived from HG tumors with those derived from

lower-grade ASTs and OLGs. We found that with anaplastic pro-

gression, the A2B5+ TPCs upregulated genes associated with

the acquisition of mesenchymal phenotype, confirming prior

studies using resected glioma tissues (Phillips et al., 2006; Ver-

haak et al., 2010). Importantly, the enrichment of EMT-associ-

ated genes, with a concurrent enrichment of genes involved in

motility, suggests that the A2B5-defined pool includes those

cells that are most associated with both malignant progression

and parenchymal invasion.

Our analysis also identified a discrete set of genes that were

highly differentially overexpressed during the initial and late

stages of glioma progression, and thus constitute an especially

attractive favorable set of therapeutic targets. These include

the glycoprotein CD24, a glycophosphatidylinositol-anchored

protein that has been associated with invasiveness and progres-

sion in a variety of solid tumors (Baumann et al., 2005). Our data

are in accord with previous reports showing that CD24 protein is

overexpressed in both LG and malignant gliomas, and is associ-

ated with poor prognosis and increased invasiveness (Deng

et al., 2012; Senner et al., 1999).

We also identified the transcription factor SIX1 (Sine oculis)

as the second-highest differentially expressed transcript by

A2B5+ TPCs derived from both LG and HG gliomas. Interest-

ingly, SIX1 overexpression has been described in a number of

solid tumors, including gliomas, and has been correlated with

worse clinical prognosis (Micalizzi et al., 2009), whereas its mis-

expression can result in the transformation of human mammary
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Figure 4. Expression Profiles of A2B5+ Cells during Early Tumorigenesis and Anaplastic Progression

(A and B) Heatmaps representing the top 26 upregulated (A; >10 FC, 1% FDR) and 16 downregulated genes (B; >5 FC, 1% FDR) frommicroarray analysis of LG-

glioma-derived A2B5+ TPCs relative to normal A2B5+ GPCs isolated from either adult WM or cortex (CTX), or compared to CD11b microglial cells (MG).

(C and D) Heatmaps representing the top upregulated (C) and downregulated genes (D; >10 FC, 1% FDR) from microarray analysis of A2B5+ cells isolated from

HG (WHO III-IV) tumors relative to their LG (WHO II) counterparts.

See also Table S9.
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Figure 5. Molecular Homologies among A2B5+ TPCs, CD133+ TPCs, Gliomas, hESCs, and Normal GPCs

(A–H) Enrichment patterns of the A2B5+ glioma expression signature across previously established human glioma expression profiles, CD133+ TPCs, hESCs, and

fetal human brain CD140a+ GPCs using parametric GSEA (PGSEA).

(A) List of gene sets associated with molecular subclasses of human gliomas and CD133-defined TPCs.

(B) Gene sets associated with hESCs, pluripotentiality-associated transcripts, and CD140a+ GPCs.

(C–H) PGSEA analysis of neoplastic A2B5+ cells compared with normal unsorted cells (C and F), neoplastic A2B5� cells (D and G), and normal A2B5+ cells (E and

H). To identify significant enrichment/depletion, a linear model approach was used and p values for each comparison were corrected for multiple testing using the

FDR (q values). Significance indicated as follows: *q < 0.05, **q < 0.01, ***q < 0.001. Data are expressed as average ± SEM.

See also Figures S7, S8, and S9.
epithelial cells. In addition, induced Six1 overexpression pro-

motes the proliferation and metastatic dissemination of breast

cancer cells and potentiates TGF-b signaling while inducing an
C

EMT (Micalizzi et al., 2009). Extending these data, we found

that SIX1 silencing inhibits the growth, proliferation, and survival

of A2B5+ TPCs in vitro and their tumorigenicity in vivo. The likely
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Figure 6. SIX1 KD Impairs the Expansion

and Survival of A2B5+ TPCs In Vitro and

In Vivo

(A–F) Effects of SIX1 KD on the in vitro growth (A

and B), proliferation (C and D), and survival (E), as

well as the in vivo tumorigenicity (F) of A2B5+ TPCs

at 6 days and 6 weeks, respectively, after trans-

duction with either SIX1-KD lentivirus, scrambled

shRNAi lentivirus, or nontransduced control. Six

different glioma-derived tumor progenitor lines

(TPC1-6) were used for this study, each specified

by the symbols noted at the bottom of the figure.

(A and B) Representative photomicrographs (A)

and graph (B) illustrating glioma cell numbers after

transduction of TPC glioma lines by SIX1 KD or

control vectors.

(C and D) Graphs illustrating the percentage of

BrdU immunolabeling (C) and EdU incorporation

(D) as a function of SIX1 KD.

(E and F) Effect of SIX KD on both apoptotic cell

death as determined by flow cytometric analysis of

Annexin V (E) and the number (F) of hNA+ cells

following transplantation of two distinct lines of

glioma-derived A2B5+ TPCs, each transduced

with either SIX KD or control shRNAi. For each

graph (B–F), horizontal lines indicate the mean

value ± SEM; p values were calculated using one-

way ANOVA with repeated measures followed by

Tukey post hoc comparisons with *p < 0.05, **p <

0.01, and ***p < 0.001.

See also Figure S10.
importance of SIX1 overexpression in A2B5+ glioma TPCs was

emphasized by the simultaneous overexpression of EYA1, a

principal coactivator of SIX1, at every stage of gliomagenesis,

and the subsequent downregulation of its repressor, DACH2,

during anaplastic progression (Christensen et al., 2008).

Together, these data suggest that the SIX-EYA-DACH transcrip-

tional complex plays a significant, hitherto unrecognized role in

glial tumorigenesis.

In this study, we focused on A2B5+ TPCs because A2B5

expression characterized a discrete population of progenitors

that could be identified in normal brain, and serially tracked

throughout disease progression. However, A2B5-defined TPCs

were by no means the sole tumor-initiating cells. A2B5-depleted

populations, particularly those derived from GBM, proved

tumorigenic as well. Rather, the A2B5 pool appeared to identify

an especially early-appearing and virulent phenotype. In

matched comparisons, the A2B5+ cells propagated new tumors

at lower cell doses than did A2B5-depleted cells, and typically

exhibited more rapid clonogenic expansion than did A2B5� cells

derived from the same tumors. Together, these data suggest

that multiple distinct tumor-initiating phenotypes, perhaps line-

ally related but nonetheless antigenically distinct, may coexist

in GBM. The A2B5-defined phenotype is notable for appearing

in the early stages of gliomagenesis and persisting during all
2138 Cell Reports 3, 2127–2141, June 27, 2013 ª2013 The Authors
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Its selective expression of EMT genes

with anaplastic progression suggests its

role in tumor virulence, supported by the
dominance of the A2B5 phenotype in sustained culture. Indeed,

the dominance of this cell type in vitro portends both its aggres-

siveness and chemoresistance in vivo, since A2B5+ glioma cells

are preferentially resistant to the nitrosourea CCNU (Balik et al.,

2009), one of the few approved chemotherapeutics for glioma.

More broadly, the A2B5-defined phenotype appears to

comprise only one of several antigenically distinct glioma-prop-

agating tumor progenitors each of which is independently

capable of initiating tumor in a naive host. In this regard, it joins

CD133 (Singh et al., 2004), CD15/SSEA1 (Son et al., 2009), and

integrin-a6 (Lathia et al., 2010) as one of a number of only

partially overlapping tumor-initiating phenotypes that together

contribute to much of the virulence of malignant gliomas.

Furthermore, the A2B5 phenotype itself may be heterogeneous,

so it remains to be seen whether the A2B5-defined tumor sig-

natures established in our study reflect the dysregulation of

specific genes by all A2B5+ TPCs, or instead reflect a specific

subpopulation thereof. Given the diversity of tumor-initiating

phenotypes within malignant glioma, our challenge is to identify

and characterize the smallest possible set of nonoverlapping

phenotypes that includes all cells capable of initiating tumors

independently, and to then eliminate each phenotype separately,

whether serially or concurrently, as a strategy for rational, pheno-

type-selective, and pathway-targeted tumor elimination.



EXPERIMENTAL PROCEDURES

Tissue Samples

Tumor samples were graded in accord with WHO guidelines as derived from

oligodendroglioma, OLG (LG n = 4; anaplastic n = 4); astrocytoma, AST (diffuse

n = 3; anaplastic n = 3); mixed oligoastrocytoma (LG n = 4; anaplastic n = 2);

GBM (n = 16); or ganglioglioma (n = 1). Normal epileptic tissue resections ob-

tained from 54 patients were used as controls. Among these, a set of matched

gray-matter- and WM-derived A2B5-sorted GPCs were isolated from four

patients (30–46 years old). All samples were obtained from patients who con-

sented to tissue use, under protocols approved by the institutional review

boards of both the University of Rochester and Johns Hopkins University.

Cell Preparation and Isolation

Tissues were dissociated using papain, cultured in cell suspension plates, in

serum-free media (SFM) defined as Dulbecco’s modified Eagle’s medium

(DMEM)/F12 media supplemented with N1, 20 ng/ml basic FGF (bFGF),

EGF, and PDGF-AA. Tumor-derived GPCs were then isolated by tissue disso-

ciation, followed by A2B5-based cell sorting (both MACS and FACS), using

previously described protocols (Nunes et al., 2003).

Orthotopic Transplantation and Analysis

To assess in vivo tumorigenicity, adult immunodeficient mice were injected

with TPCs of the sorted phenotypes noted, and killed at various time points

thereafter. All transplantation procedures were reviewed and approved by

the Rochester University Committee on Animal Resources. At the time of

sacrifice, xenografted brains were cut and donor cells identified by immu-

nolabeling for human nuclear antigen, human glial fibrillary acidic protein

(GFAP), or human nestin, as well as Ki67, survivin, and P53. The antibodies

used are listed in Table S10.

Differential Gene-Expression and Pathway Analysis

RNA isolated from A2B5-selected cells was labeled and hybridized to Affy-

metrix U133+2 arrays. All analyses were performed in R/Bioconductor. Micro-

array data were preprocessed using robust multichip analysis (RMA) and

informative probe sets were subsequently determined using factor analysis

for robustmicroarray summarization (FARMS). PCA and hierarchical clustering

were performed on normalized data. Differential gene-expression analysis was

performed using a linear model approach, employing an empirical Bayesian

method for calculation of statistical significance (Bioconductor, limma pack-

age). A 3-fold change threshold with significance at 1% FDR was generally

applied to define differential expression. Pathway analyses were performed

using IPA, as well as several open-source systems.

Clonogenicity, Multipotency, Cell Proliferation, and Cell Death

Assays

Clonogenicity was assessed 14 days after dissociation of gliomaspheres into

single cells and distributed to 96-well plates at 5–100 cells/well with 0.2 ml/well

of SFM. Multipotency was examined on individual spheres cultured in DMEM/

F12/N1 with 1% fetal bovine serum (FBS) for up to 12 days. The cells were then

fixed and immunostained for GFAP, Olig2, CNP, bIII-tubulin, or MAP-2AB, fol-

lowed by Alexa-Fluor conjugated secondary antibodies. Cell-proliferation and

cell-cycle analyses were performed using BrdU (30 mM) and EdU (10 mM)

administration followed by immunocytochemical analysis and Click-it-based

Edu flow cytometry analysis (Invitrogen), respectively, according to the manu-

facturer’s instructions. Cell apoptosis and cell death were assessed by flow

cytometry analysis of Annexin V (BD) and DAPI, respectively.

Generation, Validation, and Assessment of Six1 KD Lentivirus

A set of five lentiviral shRNAi vectors with distinct target sequences was pur-

chased from Open Biosystems. SIX1 silencing constructs were validated by

transfection of multiple glioma cell lines, with subsequent qPCR and western

immunoblot detection of SIX1 mRNA and protein expression. Viral production,

cell transduction, validation of KD, and assessment of effects thereof on gli-

oma cell proliferation and death are all described in the Extended Experimental

Procedures.
C

Statistical Analysis

Statistical analysis for all experiments including more than two groups was

performed using a one-way or two-way ANOVA followed by post hoc compar-

isons using the Tukey multiple-comparisons test. For experiments with two

groups, Student’s t test was used.
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