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1. Let f(t, x) be a continuous function on [0, T] x Rn with its 
range contained in Rn. In this paper, we give sufficient conditions in order 

that the differeniial system 

x’ =f(t, x) (1) 

has at least one periodic solution x(t), i.e., a solution x(t) such that 

x(0) = x(T). 
Let “<I’ denote the usual partial ordering of R” and also the linear ordering 

of R. We say thatf(t, x) is of type K (after Kamke [5]) in a set D C R” if for 
all x, y  E D, x = (x1 ,..., x,), y  = (yl ,..., y& with x < y  and xi = yc , it is 

true thatfi(t, x) <fi(t, y), wheref = (fi ,..., fn), i = l,..., n. 
We shall establish the following result. 

THEOREM 1. Let there exist continuous functions (Y, /3 : [0, T] + Rn such 

that a(t) < B(t), 0 < t < T, 40) < a(T), B(O) 3 P(T) and 

D-a(t) < f (4 4th D-P(t) 3 f (6 t’Wh O<t<T. (2) 

Let f be of type K on the set (x : a(t) < x < /3(t), 0 < t < T}. Then there exists 
a periodic solution x(t) of (1) with or(t) < x(t) < /3(t), 0 < t < T. By D- and 

D-, respectively, we mean the lower left and upper left Dini differential operators. 

A similar result has been established by Knobloch [6] who assumes f  to 

be Lipschitz continuous in x, but he does not assume f  to be of type K. On the 
other hand, the solutions of differential inequalities used in [6] satisfy a set of 
conditions different from ours. 

In proving Theorem 1, we proceed as follows: We first establish a special 
case where f  is assumed to be Lipschitz continuous with respect to x and the 
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inequalities in (2) are assumed to be strict. Then we use approximation 
arguments to obtain the more general result from the special one. 

In Section 3, we apply Theorem 1 to get periodic solutions of certain 
linear systems and then use these existence results together with multivalued 
fixed-point theory to obtain the existence of periodic solutions of certain 
quasilinear systems which are not necessarily of type K. Finally, in Section 4, 
we indicate how Theorem 1 may be extended to certain classes of functional 
differential equations-in particular, to differential-difference and integro- 
differential equations. 

2. Before proving Theorem 1, we consider the following special case. 

THEOREM 2. Letf : [0, T] x Rn --t Rn be continuous and satisfy a Lipschitx 
condition with respect to x on compact subsets of [0, T] x R”. Further, let there 
exist continuous functions 01, ,!? : [0, T] -+ R” such that a(t) < /l(t), a(O) < a(T), 

Is(O) 2 B(T) and 

D-4) < f (t, a(t)), ww > f (4 B(t)), O<t<T. 

If, in addition, f is of type K on {x : a(t) < x < p(t), 0 < t < T}, then there 
exists a periodic solution x(t) of (1) stlch that 

Proof. Let [CY, /3] = {(t, X) : a(t) < x </3(t), 0 < t < T). Then [01, fl] 
is a compact subset of [0, T] x R*. Since f satisfies a Lipschitz condition with 
respect to x on this set, the initial value problem 

x’ = f (t, x), x(0) = x0 

has a unique solution x(t; x,-J for every x0 with 01(o) < x0 < /3(O). It follows 
from Kamke [5] ( see also Walter [7]) that x(t; x,,) exists on [0, T] and that 

4) < x(4 x0) G B(t), O<t<T. 

Define the mapping 

s : {x0 : 40) < xo < B(O)> - ix : a(T) < .x < B(T)) C {xo : 40) < xo < B(O)> 

by 
S(x,) = x(T; x0). 

Then S is continuous. It follows from Brouwer’s Fixed Point Theorem that 
S has a fixed point, proving Theorem 2. 

409/40/I-12 
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Proof of Theorem I. Let a and /I be as in Theorem 1. Define the function 
F(t, X) in the following way. For each t E [0, T] and i = I,..., n, let 

Xi - PiCt) 

l+l.q ' 
if 

xi > A(t) 

if ai(t) < xi < l%(t) 
xi - q(t) 

1 +iw ’ 
if xi < %(Q 

where $ = (x, ,..., &) and 

f%(t), if xi > Pi(t) 

%(t) G xi d Bi(t) 

xi < q(t). 

The function F(t, x), so defined, is continuous and bounded on [0, T] x R” 
and furthermore is of type K everywhere. Also a function x(t), 

a(t) < x(t) < B(t), O<t<T, 

is a solution of (1) if and only if it is a solution of 

x’ = F(t, x). (3) 

Let E = (q ,..., G,) be a constant vector with ci > 0, i = l,..., n. Let 
A(t) = a(t) - E, B(t) = /3(t) + E. Then 

F& 40) =fi(t, 49 + 1 + ;>,(t), > fi(t, a(t)), 
t 

and hence 

Similarly, 

D-A(t) = D-a(t) <f (t, a(t)) < F(t, A(t)). 

D-B(t) > F(t, B(t)). 

Consider now the function F(t, cc) on the set 

d = {(t, x) : A(t) < x < B(t), 0 < t < T} 

and let 6 > 0 be such that 

D-A,(t) - F,(t, A(t)) < - S < 0 < S < D-&(t) - F(t, B(t)), i = l,..., n. 

Using an approximation argument (see, e.g., Hartman [4, pp. 6, 7]), we 
may find a function G(t, X) which satisfies a Lipschitz condition with respect 
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to X, is of type K and is such that 1 Gi(t, .z) - F,(t, x)1 < S/2, i = l,..., n for 
all (t, X) E ~2. This in turn implies that 

D-A(t) < G(t, A(t)) and D-B(t) > G(t, B(t)). 

Hence by Theorem 2, the equation x’ = G(t, X) has a periodic solution 
x(t) such that A(t) < x(t) < B(t). Using the Ascoli-Arzela Theorem (i.e., 
pick a monotone decreasing sequence of S’s converging to 0, etc.) we conclude 
that Eq. (3) has a periodic solution x(t) such that A(t) < x(t) < B(t). This in 
turn is true for every positive vector E. Using Ascoli-Arzela once more, we 
conclude that there exists a periodic solution x(t) of (3) such that 
ar(t) < x(t) < p(t). By the remark at the beginning of the proof we conclude 
that x(t) is a periodic solution of (1). 

When trying to apply Theorem 1, one would, of course, investigate first 
whether a and /3 may be chosen to be constants; if this is the case, Theorem 1 
takes the following form: 

COROLLARY 3. Let there exist constant vectors 01, p with 01 < fi such that 

f(4 B) < 0 < f(t, 4 (0 = (0, o,..., 0)) 

and let f be of type K on the set (x : 01 < x < p}. Then there exists a periodic 
solution x(t) of (1) with 01 < x(t) < /I. 

To illustrate Corollary 3, we consider the following example: 
Let h and g be continuous functions on R such that h(O), g(0) > 1 and 

h(l), g( 1) < -2. Let p and Q be positive real numbers and consider the two- 
dimensional system 

x’ = h(x) + yp + sin t 

y’ = XQ + g(y) + cos t. 
(4) 

The hypotheses on h and g imply that 01 = (0,O) and /3 = (1, 1) satisfy the 
desired differential inequalities; further, since p and 4 are positive, the right 
side of (4) is of type K for 0 < X, y < 1. Hence (4) has a 277 periodic solution 
(x(t), y(t)) such that 0 < x(t), y(t) < 1. 

3. In this section, we give an application of Theorem 1 to quasilinear 
systems of the form 

x’ = A(t) x + g(t, x), (5) 

where g is not necessarily of type K, but where A(t) is a continuous 11 x n 
matrix defined on [0, T] and A(t) is of type K, i.e., if A(t) = (aij(t)), then 
aii(t) 2 0, i #j, i = l,..., n, j = l,..., n. Thus when A(t) is a matrix of 
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type K, then for any function g, : [0, T] + R”, the function A(t) x’ mr I 
is of type K, as defined in Section 1. 

THEOREM 4. Let A(t) be a continuous n x n matrix of type K which is such 
that 

i = l,...) .n. (6) 

Then for any continuous function p : [0, T] + R”, there exists a solution x(t) of 

x’ = A(t) x + Q(t) (7) 

such that x(0) = x(T). 

Proof. By (6), we can find constants a, /3, 01 < 0 < /3, such that 

The constant vectors (a ,..., a) and (j3 ,..., /I) th en satisfy the desired differential 
inequalities and we conclude that there exists a solution X(Z) of (7) with 
x(O) = x(T) and 01 < xi(t) < fi, i = l,..., n, 0 < t < T. 

Remark. In case A is a constant n x n matrix, Theorem 4, of course, 
follows immediately from the Floquet theory, because the conditions 

guarantee that all eigenvalues of A must have negative real parts (all eigen- 
values of A must be in the union of the discs ] h - aii j < G+i aij). Hence 
the unperturbed equation x’ = Ax has as its only periodic solution the trivial 
one which in turn implies the existence of a unique periodic solution of (7) 
for every 9). 

However, in order to be able to apply the Floquet theory when A(t) is not a 
constant n x n matrix, we must compute the fundamental matrix solution 
X(t) of x’ = A(t) x and check whether or not X(T) has 1 as an eigenvalue. 
Or alternatively, check whether A(t) is an asymptotically stable matrix (here 
we consider A(t) to be defined on (-co, co) having period T), for if A(t) 
is an asymptotically stable matrix, then the unperturbed system has as its 
only periodic solution the trivial one. Again it is true that all eigenvalues of 
A(t) have negative real parts and since A(t) is periodic, the real parts of the 
eigenvalues are bounded away from zero. It is well-known (see, e.g., Hahn [3, 
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p. 3071) that this is not sufficient to guarantee that A(t) is a stable matrix, and 
thus the uniqueness of a periodic solution of x’ = A(t) x can, in general, 
not be deduced. If on the other hand, the matrix M(t) = 4 (AT(t) + A(t)) 
has all its eigenvalues with negative real parts, then the trivial solution 
of x’ = A(t) x is asymptotically stable (the function z, = 1 x I2 serves as a 
Lyapunov function) and hence in this case, we again can deduce the existence 
and uniqueness of a periodic solution of (7) for every v, by other means. 

If A(t) is such that for every y, the system (7) has a unique periodic solution 
x(t, 91) with 1 x(t, IJJ)~ < k 1 v(t)1 , where K is a constant depending on A(t) 
only, then the existence of a periodic solution of the quasilinear system (5) 
can easily be established by means of the Schauder Fixed Point Theorem 
(provided it satisfies a certain growth condition with respect to x). 

In the absence of uniqueness, this approach is, of course, no longer feasible. 
Using Theorem 4, we, nevertheless, can obtain the existence of a periodic 
solution of (5) without a priori knowledge of uniqueness. 

THEOREM 5. Let the hypotheses of Theorem 4 hold. Let g(t, x) be continuous 
on [0, T] x R” into Ii”. Further ussume that j g(t, x)[ < 6 I x I for all / x I 

su$kiently large, where 6 > 0 is such that 

I51 aii(t) -G - 6 < 0, i = I,..., n. 

Then there exists a periodic solution of (5). 

Proof. Choose r > 0 large enough so that If (t, x)1 < 6 1 x I , for I x I > r. 

Let M = max{l f  (t, x)1 : I x / < r, t E [0, T]}. Choose p > r such that 
Sb 2 M and let 01 = -/3. Let P = (p’ : [0, T] -+ Rn : p(O) = v(T), 

II P II = n-4 &)I : t E LO, TI) < B>. Then P is a closed convex subset of the 
Banach space C([O, T], R”). 

For every 9 E P, consider the linear equation 

x’ = A(t) $2 + g(t, v(t)). 

One may easily show that 

(8) 

Hence by Theorem 4, there exists at least one periodic solution x(t) of (8) 
with /I x II < p. Denote by S(v) the set of all such solutions of (8). Then the 
mapping S, so defined, is a multivalued mapping on P satisfying the following 
properties: 
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(i) For each v F P, S(F) is a convex subset of P. 

(ii) b,>, VA C P, II p”n - p 11 ---f 0, /I Yn - Yll ---f 0, lu, E S(F~),,), implies 

y E S(v). 
(iii) S(P) is compact. 

These properties follow easily from the linearity of (8) and the Ascoli- 
Arzela Theorem. We may now apply the Eilenberg-Montgomery Fixed 
Point Theorem [I] (a generalization of the Schauder Theorem to set-valued 
mappings) to conclude that S has a fixed point in P, i.e., there exists v E P 
such that v E S(v). Fixed points of S, however, are periodic solutions of (5’). 

4. In this section, we indicate how some of the previous results may 
be generalized to functional differential equations. 

Let h(t) be a continuous nonnegative function defined on [0, T], let 
7 = max{h(t) : 0 < t < T}. If x(t) is a continuous R”-valued function defined 
on [-T, T], then for every t E [0, T], we define the function xt by 

x@> = x(t + 01, --h(t) < e < 0. 

By Ct, we shall mean the set of continuous R”-valued functions on 
[--h(t), 01. Consider the functional differential equation 

x’(t) = f(t9 x(t), xt), O<t<T, (9) 

where for each t, f(t, ., .) : R" x Ct ---f R". We say that f(t, *, .) is of type K 
ifforeveryx,yER”with~~~y~,i#j,x~=y~,j=l,...,nandforeach 
U, v E C, with u < e, (i.e., u(0) < v(e), --h(t) < 0 < 0) 

Let Ct be endowed with the supnorm I/ * IIt and assume that f satisfies a 
Lipschitz condition of the type 

It is then well known (see, e.g., Driver [2]) that for every 9 E C, , the initial 
value problem 

x’(t) = f (t, x(t), 4 
(10) 

x0 = ‘p 

has a unique solution whenever f is continuous in the sense that if x(t) is a 
continuous function on [-T, T], then f  (t, x(t), xt) is a continuous function 
of t. 
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LEMMA 6. Let there exist continuous functions 01, p : [-r, T] + Rn with 
al(t) <,9(t), --7 < t < T, such that 

~-40 < f(t, 4, 49 mw > f(t* B(t), Bth O<t<T. 

Then,foreveryp,EC,,ol,<p,, 0, < /3 the initial value problem (I 0) has a unique 

solution x(p)) such that OI~ < x,(p)) < /3t , 0 < t < T. 

Using this lemma, we may now easily establish the following theorem. 

THEOREM 7. Let h(0) = h(T) and let LY and /I be US in Lemma 6 and satisfy 

in addition 01~ < 01 T, /IO 3 PT. Then there exists a solution x(t) of (9) such that 

x0 = xr and a(t) < x(t) < /3(t), t E [0, T]. 

Proof. Let ‘p E C,, be such that OL,, < q < /3s. Define the mapping S on 
C, into itself (note C, = Cr) by 

S(d = XT(V)- 

It is easy to see that S, so defined, satisfies the hypotheses of the Schauder 
Theorem and we conclude that S has a fixed point. 

Remark. Using approximation arguments as in Section 2, one may now 
verify that in the case of differential difference equations 

x’ = f (t, x(t), x(t - h)), 

the Lipschitz condition on f may be removed and the strict differential 
inequalities may be replaced by weak ones. 

Further, similar results may be established for equations without previous 
history, i.e., 0 < h(t) < t, without requiring that h(T) = h(O), where we seek 
solutions x(t) satisfying the condition x(O) = x(T). 

For purposes of illustration, we consider the following example. 
Let all functions considered be continuous. Let g : [0, T] x R + R, 

k : [0, T12 + R, k > 0, h : [0, T] x R + R, where h is nondecreasing in its 
second argument. 

Consider the integro-differential equation 

x’(t) = g(t, x(t)) + j-’ k(t, 4 &, 44) ds. 
0 

Assume that 

(11) 

g(t, B> + j-’ k(t, 4 h(s, B) ds < 0 < g(t, 4 + 1; k(t, 4 h(s, 4 ds 
0 

for some constants 01 and 8, 01 < 8. Then there exists a solution x(t) of (11) 
such that x(O) = x(T) and 01 < x(t) < & 0 < t < T. 
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