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Abstract

The mathematical modelling of a special modular catalytic reactor kit leads to a system of partial differential
equation in two space dimensions. As customary, this model contains uncertain physical parameters, which may be
adapted to fit experimental data. To solve this nonlinear least-squares problem we apply a damped Gauss–Newton
method. A method of lines approach is used to evaluate the associated model equations. By an a priori spatial
discretization, a largeDAE system is derived and integratedwith an adaptive, linearly implicit extrapolationmethod.
For sensitivity evaluation we apply an internal numerical differentiation technique, which reuses linear algebra
information from the model integration. In order not to interfere with the control of the Gauss–Newton iteration
these computations are done usually very accurately and, therefore, with substantial cost. To overcome this difficulty,
we discuss several accuracy adaptation strategies, e.g., a master–slave mode. Finally, we present some numerical
experiments.
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1. Introduction

Many chemical substances are produced by catalytic processes. For process development and optimiza-
tion, the simulation of associated mathematical models is a helpful tool. Usually, within these models
there are parameters whose exact values are not known. A common way of determining these values is
parameter identification with nonlinear least-squares techniques.
We consider a two-dimensional, time-dependent model for a cylindrical reactor module, which is part

of a special modular catalytic reactor kit[3]. This kit consists of standardised flange mounted reactor
modules with different geometrical and thermal properties. This allows a simple realisation of a spectrum
of reactor structures. A measurement module allows placing sensors at nearly any requested position
inside the catalyst section of the reaction module.
In order to carry out parameter estimation for differentmodels of themain reactormodule, we combine,

and slightly modify, efficient and robust algorithms for simulation[9,10] and sensitivity analysis[19]
with a sophisticated, affine-invariant Gauss–Newton (GN) algorithm, which has proven to work very
reliably in complex parameter identification problems, see, e.g.,[5,16]. For an overview on state of the
art techniques for parameter estimation in ordinary and partial differential equation models we refer, e.g.,
to the recent monograph[18] and references therein.
In the next section we first briefly describe our modelling of the basic reaction module. Then we

briefly explain our method of lines treatment which yields a large ODE model. In Section 3 we present
the numerical methods for the evaluation of the objective function of the GN-method (simulation), its
derivative (sensitivity) computation, and finally, the damped GN-method. In Section 4 we discuss the
problem of accuracy matching and propose a smoothness oriented matching strategy. In Section 5 some
numerical examples are presented. We end with a short conclusion and an outlook on future work.

2. Mathematical model

The mathematical model for the interior of the catalytic reaction module is based on the usual balance
equations for mass and energy using standard transport models. Mixing processes are included with a
dispersion model. As a heat balance equation for the interior temperatureT of the module we use
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The state equations for the wall model include axial heat conduction and convection and heat capacity of
the reactor jacket and the fluid. Interior temperature at the wall(TR) and temperature of the wall(TW)

are coupled by the transport equation

�r�TR/�r = �W(TR − TW). (3)
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Otherwise the usual boundary conditions are applied, i.e., atz = 0: T = TIn(t, r), gi = gi,In(t, r), and at
z=L, as well as atr =0, r =R, homogeneous Neumann conditions are prescribed. A detailed discussion
of Eqs. (1–2) and an overview of heterogeneous gas catalytic modelling can be found in[1,2].
In order to solve the model equations we apply a classical MOL approach. In a first step, all spatial

derivatives of the model are replaced by centred, 2nd-order finite difference approximations on appro-
priately chosen nonuniform tensor product grids. In order to avoid numerical oscillations for strongly
convective systems, we add an appropriately chosen artificial diffusion term to Eqs. (1–2). After spatial
discretization a very large system of differential-algebraic equations (DAE) arises, which may be written
in the form

B(y; p)ẏ = f (y; p), y(t0) = y0, (4)

wherey(t) denotes the solution vector of dimensionn at all spatial discretization points(zl, rk), andp is
the vector of dimensionq of parameters to be identified. Letnz andnr denote the number of grid points
used for the spatial discretization of the cylindrical coordinate system. LetnPDEdenote the dimension of
the system under consideration (temperature and mass fractions of the chemical species). The dimension
of our semi-discrete system (4) is then given byn=nz×nr ×nPDE.B is a possibly singular diagonalmatrix
andf a general nonlinear mapping. Both functions may depend also explicitly on the spatial coordinates
(z, r) and timet. For ease of presentation we drop the latter dependencies in our notation.

3. Numerical treatment

3.1. Simulation

System (4) is nonlinear, stiff and block structured. For integration, we apply the linearly implicit
extrapolation code LIMEX[9,10]. It uses as an elementary step the discretization

(B(y0) − hA)(yk+1 − yk) = hf (yk) − (B(yk) − B(y0))(yk − yk−1), (5)

whereA ≈ (�/�y)(f − Bẏ)|t=t0 is the (approximate) Jacobian of the residual of (4) evaluated at a time
point t0� tk.
Combined with extrapolation this one-step method permits an adaptive stepsize and order control; for

details see[6]. Applied to the discretized PDE-problem 4 the main amount of work for one step is the
solution of the corresponding linear equations. The associated matrix(B − hA) is very large, but sparse
matrix techniques, direct or iterative, can be used for the solution of the linear system.

3.2. Sensitivity computation

Our parameter identification procedure requires the computation of the sensitivity matrixS(t) :=
dy(t)/dp. There are several well established ways to approximateS(t), see, e.g.,[14]. One approach is
the differentiation of theDAE (4) with respect top, yielding theqsensitivity equations forS=[s1| . . . |sq],

B(y; p)ṡi = d

dp
f (y; p) − d

dp
B(y; p)ẏ

= fy(y; p)si + fp(y; p) − (By(y; p)si + Bp(y; p))ẏ. (6)
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These equations are then solved simultaneously with the original equation. Applying LIMEX to this
coupled system yields an associated Jacobian matrixA, which turns out to be

A =




A

A1 A
...

. . .

Aq A


 , (7)

whereA ≈ (�/�y)(f − Bẏ)|t=t0, andAi ≈ (�/�y)[fysi + fp − (Bysi + Bp)ẏ]|t=t0. An integration of
the coupled system using the matrixA would be rather expensive. However, replacingA by its block
diagonal part, i.e.,A → Â = diag(A, . . . , A) would speed up linear algebra computation dramatically.
Therefore, this simplification is widely used, see, e.g.,[15,19].
The major drawback of this approach is the need for explicitly given functionsfy(t, y) andfp(t, y)

in the case of constantB, and, additionally,By(t, y) andBp(t, y) in the general case.
To overcome this problem, we replace, in part, the differentiation d/dp in Eq. (6) by a finite difference

approximation and get as sensitivity equations

B(y; p)ṡi = 1

�p
{f (y + �p si; p + �p) − f (y; p) − (B(y + �p si; p + �p) − B(y; p))ẏ}. (8)

Choosing�p = √
epmach (epmach= relative machine precision) and integrating with a prescribed

tolerance tol, the precision of the sensitivity matrixS(t) will be of order tol+√
epmach, cf.[14]. For a

wide range of problems this sensitivity computation turns out to be very efficient and robust[17].

3.3. Parameter identification

Assume that for some components of the state vectory(z, r, t; p) measurements are available at some
spatial points(z�, r�), � = 1, . . . , ��, at timest�, � = 1, . . . , 	. We arrange them in a vectoryobs of
dimensionm. In order to allow an unconstrained adaptation of temporal and spatial stepsizes (either
automatically or by hand) the measurement points and times should be not necessarily part of their
computational counterparts. Therefore, we need a proper interpolation procedure to generate solution
approximations at the spatio-temporal measurement grid. For interpolation in time we use the global
solution representation of LIMEX. Spatial interpolation is done by means of a monotone piecewise cubic
hermite interpolation due to[12].
Having obtained with this procedure simulated counterpartsysim for all components of the vectoryobs

we can calculate a weighted residual vector

F (p) =
m∑

i=1

ysim
i − yobs

i

yw
i

. (9)

To determineq uncertain parametersp = (p1, . . . , pq)T of the model equations one may solve the
nonlinear least-squares problem

1/2‖F (p)‖22 = 1/2F TF = min . (10)

A well established scheme for solving nonlinear least-square problems is the Gauss–Newtonmethod. For
the so-called small residual problems, the method is known to converge superlinearly near the solution
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p∗. However, for bad initial guesses the methodmay diverge. To overcome this difficulty, several globali-
sation techniques exist, e.g., the popular Levenberg–Marquardt method.We use another way of enlarging
the convergence domain, which is due to[8]. This method realizes a damped GN iteration, where the
adaptive damping strategy and the convergence monitor are based on monitoring only GN corrections
and not—as usual—the residuals. For a detailed mathematical derivation, analysis and comparison with
other algorithms we refer to the upcoming textbook[7]. Omitting details, the main algorithmic flow of
the method is sketched in the following informal algorithm.

Damped Gauss.Newton algorithm
p0, �0 given
do k = 0, . . . , kmax

�pk = −J +(pk)F (pk)

(∗)pk+1 = pk + �k�pk

�pk+1 = −J +(pk)F (pk+1)

if ‖�pk+1‖ < ‖�pk‖ then

�k+1 = �
prio
k+1 = min

(
1,

‖�pk−1‖
‖�pk − �pk‖

�k

)
else

�k = �
post
k = min

(
1,

�2k‖�pk−1‖2
2‖�pk+1 − (1− �k)�pk‖�pk‖

)
goto (∗)

endif
if ‖�pk−1‖��GN break

enddo

(11)

Herein,J + denotes the Moore–Penrose pseudoinverse of the JacobianJ (p) = F ′(p), �pk is the so-

called simplified Gauss–Newton correction,�
prio
k and�

post
k are the a priori and a posteriori estimates for

the optimal damping factor. The required tolerance is�GN .
In order toperformone iteration step, themain computationalwork is theevaluationof theGN–Jacobian

Jk, which requires the computation of the sensitivitymatrixS. To calculate the corrections�pk and�pk+1
two linear least-square problems are solved by means of an QR-algorithm. If the monotonicity test

‖�pk+1‖ < ‖�pk‖ (12)

is passed for the first trial iteratepk+1 just one function evaluationF (pk+1) is required per step as
this information is reused in the next iteration step. If the monotonicity test fails, the damping factor
is reduced, and an additional function evaluationFk+1 for a new trial valuepk+1 is computed. If the
iteration converges to a solutionp∗ the usual linearized statistical analysis is done, see, e.g.,[5], in order
to get information on the statistical quality of the solution in terms of standard deviations and confidence
intervals.

3.4. Accuracy matching

A sophisticated least-squares solver like[10] requires a certain smoothness of the underlying problem.
In our case, the theoretical derivation requires thatF (p) is twice continuously differentiable. So, even
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if F is an explicitely given function, the finite machine precision destroys this property formally, but
for practical computations this roundoff error can be neglected. However, ifF is a discretized operator,
then rather large errors�F may show up. In general, as long as the temporal and spatial discretization
remains fixed, not only the true operator, sayF̂ (p), but also the error�F depends smoothly onp. Thus,
the discretized operatorF = F̂ +�F will vary smoothly withpalso. However, changing a temporal and/or
spatial stepsize while computing, e.g.,F (pk) andF (pk+1), will introduce a certain roughness intoF (p),
as the assumption�F (pk) ≈ �F (pk+1) is no longer valid. As a first consequence, the monotonicity test
(12) may give wrong answers, and, furthermore, the evaluation of the a priori and a posteriori damping
factors may be corrupted.
To overcome these difficulties, one may evaluate the discretized functionF (p) and its derivative

J (p) = F ′(p) very accurately in order to mimic a smooth behaviour ofF andJ. Typical required toler-
ances forF-evaluation,�F , andJ-evaluation,�J , are in the range[10−4,10−7]. But, using such stringent
accuracy requirements may be prohibitive for 2D time-dependent problems. So, one way to reduce the
computational work is an adaptation of the tolerance with the following general strategy: relaxed accu-
racy requirement far from the solution and successively more stringent tolerances when approaching the
solution of the parameter estimation problem. First steps in this direction have been made for damped
Gauss–Newton schemes, combined with ODEmodels, in[5,16]. However, it turns out that the adaptation
procedures must work very carefully in order not to disturb the GN-iteration severely. The main problem
of such adaptation strategies is still the introduction of roughness into the objective functionF (p).
So, we propose an adaptation strategy which is smoothness oriented. First of all, we do not adapt the

mathematical grid, either within one time integration or within the course of the GN-iteration. Instead, we
use an initially chosen grid, which, however,may be nonuniform. Concerning the time stepping procedure
of LIMEX, we use the idea of a master/slave integration which works as follows.
In order to meet a prescribed time tolerance�t

F , the very first GN function evaluation,F (p0), is done
with the adaptive stepsize and order control switched on (master mode). All subsequent function and
sensitivity evaluations are performed in slave mode, i.e., using the stepsizes, orders and, if necessary, the
number of linear system iterations, of the master mode integration. During the slave mode integration
for F, the error estimator of LIMEX is activated and the maximum value over time is recorded. If this
achieved precision, say�̃t

F is much larger than the prescribed precision of the master run, e.g.,

�̃t
F > 
1�

t
F (
1 ≈ 10) (13)

this integration is repeated. Now again in master mode with�t
F as required tolerance.

In addition, a heuristical approach for checking the quality of the proposed damping factors has shown
to improve the GN-iteration considerably. If within one step, say fromk to k + 1 the achieved error
�̃t
F (k + 1) increases too much, i.e.,

�̃t
F (k + 1) > 
2�̃

t
F (k) (
2 ≈ 10), (14)

the current damping factor is not accepted and is reduced heuristically, e.g., by a factor of two. The
subsequent re-evaluation ofF is done still in slave mode.
For the spatial discretization a rather coarse tensor product gridZ ⊗ R is used. With that, the over-

all computing time for the GN-iteration is drastically reduced and the performance of the numerically
disturbed iteration is rather close to the “optimal” performance, i.e., an iteration without discretization
errors.
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However, convergence will not occur to the true solution (of the continuous problem), but to a value
which is corrupted by comparatively large temporal and spatial discretization errors. We try to estimate
these errors (at least the order of magnitude) in the parameter estimates (not in the numerical solution
ysim(p∗)) by the following refinement procedure.
Starting with epstF (1) = epstF , Z(1) = Z andR(1) = R we refine separately the time tolerance and

initial grid sizes and perform in each case a full GN-iteration. Starting with the available solutionp∗
111=

p∗(epstF (1), Z(1), R(1)) as a very good initial guess, just one or two iteration steps are required. As a
rougherror estimate forp∗

111due to timediscretizationweuse thedifferences‖p∗(epstF (1), Z(1), R(1))−
p∗(epstF (2), Z(1), R(1)) = ‖p∗

111− p∗
211‖. If the error estimate is of the order of the statistical error of

the parameters the refinement is stopped, otherwise we continue the refinement process in order to get
the estimate‖p∗

211− p∗
311‖ (and so forth, if necessary). Similarly the error due to spatial discretization in

thez-direction andr-direction, respectively, are estimated.
This procedure is finished with a final Gauss–Newton iteration using appropriately refined tolerances

and grids, i.e., for which the error estimates are in the range of the statistical error.

4. Numerical examples

We present some numerical experiments for our parameter identification procedure, applied to a heat
transfer problem and a carbon monoxide gas oxidation model.

4.1. Heat conduction problem

To study heat transfer properties of our reactor module, we investigate a heat conduction problem
without chemical reaction. A fixed bed blown by cold air will be heated up over a time period of several
hours. The reactor allows temperaturemeasurements at different radial and axial positions aswell as in the
reactor jacket. Smoothed measured temperature profiles were used to prescribe the boundary conditions
at the inlet of the fixed bed and at the reactor walls. The measurements were realized for different tube
diameters and flow rates, at a temperature range from 20 up to 350◦C. So, a spectrum of parameter
estimation problems have been solved, using the data provided by[4]. The heat transport coefficients to
be identified are the radial effective heat conduction�r, the wall heat transfer coefficient�w of Eq. (3),
and the width of a laminar flow film�, cf. [13].
Concerning the numerical difficulty, the integration problem is rather easy to solve. No steep spatial

gradients appear and there is a moderate dynamical behaviour in time. Using good starting values, the
performance of the GN scheme is generally very robust and reliable—nearly independent of the applied
accuracy matching strategy.
Things change, if we use rather bad initial guessesp0. Comparing our new strategy with a standard

approach where allF andJ evaluations are done in master mode (for a fixed prescribed time tolerance)
the new strategy allows the use of tolerances of�t

F = 10−2, whereas the standard strategy requires values
of about�t

F = 10−4 in order to show a similar smooth behaviour as the new strategy. In all cases we
use a grid of sizenz × nr = 31× 16. Our a posteriori error estimator for the accuracy of the parameters
characterized this grid as sufficiently good for nearly all scenarios.
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4.2. Carbon monoxide oxidation

The carbon monoxide oxidation reaction (CuO catalyst)[11] is prescribed by

CO+ 1
2 O2 ⇒ CO2. (15)

The effective reaction rate is determined by the mole fraction of the carbon monoxide and the Arrhenius
function:

reff = xCOk∞ exp
−EA

RT
. (16)

The specific enthalpy of the exothermal reaction is�HR =−290×103 kJ/kmol. Themathematical model
for this problemconsists of a systemof type (1–2) for temperatureTand 3 chemical species. The dynamics
of this system is dramatically more challenging than in the previous example. For slightly improperly
chosen parameter values one can observe reactor runaway, as illustrated inFig. 1. As local overheating
(hot spots) causes catalyst damage, we stop the simulation whenever a temperature valueT >650K is
observed.
Real measurement data are available for the stationary state only. So, in order to study the effect of

our temporal master/slave accuracy adaptation, we generate artificial measurement data for 50 spatial
positions at 10 time points. To generate these data, we use parameter values close to the ones identified
using the stationary data only. The artificial measurements are perturbed (relatively) using normally
distributed random numbers with standard deviation
 = 0.02. Solution and measurement values for
temperature and CO, in stationary state, are depicted inFig. 2.
In our numerical experiments we try to re-identify the four diffusive parameters�r = 0.8, �z = 0.18,

Dr = 10−3, Dz = 5× 10−6.
In the first step, we choose starting guessesp0 for our GN method by a random selection, uniformly

distributed in the cube[pT/2,2pT]. About 20% of them turn out to be “too bad” in the sense, that the
initial function evaluationF (p0) fails, i.e., was terminated by indicating reactor runaway. For about
30% of the test runs a smooth convergence of our GN scheme can be observed. A solutionp∗ is found
typically within 5–6 GN iterations with at most 1–2 damped steps. The remaining test cases turn out
to be very critical. The restart condition (13) and/or the reject condition (14) are activated at least one
time, sometimes up to three times. Nevertheless, the highest GN-iteration count was 11 (successful) steps
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Fig. 1. Reactor runaway (temperature and CO concentration).
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Fig. 2. Solution and measurement data for stationary state.

Table 1
Accuracy comparison of parameter estimates

Solution �r �z Dr Dz

Reference 0.708 0.181 0.995(−3) 0.479(−5)

Coarse 0.604 0.182 0.950(−3) 0.404(−5)

Refined 0.668 0.181 0.979(−3) 0.4590(−5)

Num. Err. 3% 1% 2% 4%
Stat. Err. 40% 1% 4% 8%

using 7 damped updates. Enlarging the cube leads to very similar results, except that for a certain sector
of the cube the number of initial fail runs increases above average.
For all these test runs a fixed spatial gridnz × nr = 31× 16 and an initial time tolerance of�t

F = 10−2

was used.
Inorder to illustrateouraposteriori refinementprocedurewehavecollectedsome results for onespecific

test run inTable 1. Generally, the coarse tolerance solution depends on the choice ofp0. However, the
results given inTable 1are quite representative.
In the first row ofTable 1a set of reference parameters, calculated on a very fine spatial grid, using

a very stringent time tolerance, are given. Due to the measurement errors they differ from the values
used to create the artificial measurements. In the second row the estimated parameters of the coarse
grid/tolerance GN solution are given. The third row contains the values using the final GN solution with
the automatically refined grid/tolerance valuesnz=69,nr =36,�t

F =0.25×10−2. In our spatial refinement
strategy we increase the number of uniformly distributed grid points by a factor of approximately

√
2,

whereas the time tolerance is reduced by a factor of 2. The last two lines display the relative errors
of this solution and the estimated relative error due to statistical uncertainty in terms of the individual
confidence intervals. Obviously, the numerical errors are below the latter level. Computing numerically
more accurate parameters would just waste computing time.

5. Conclusion and outlook

An adaptive accuracy matching strategy was developed, which enables a robust, reliable and efficient
performance of a self-adaptive, damped Gauss–Newton scheme. Within the course of one GN-iteration
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the temporal and spatial discretization is chosen initially and then frozen in order to have a discrete
functional changing smoothly with changes inp. The nonlinear least-squares solution may be refined
by repeated GN-iterations with varying, more accurate discretizations until a reasonable level of accu-
racy is reached, i.e., only slightly more accurate than the statistical uncertainty in the parameters to be
estimated.
Further testing is required to check the quality of some of the heuristic parameters in our procedure.

Furthermore, techniques for a locally oriented spatial refinement will be investigated. Based on error
estimates for the numerical solutionysim(p∗) one may try to insert new grid points in a nonuniform
fashion.
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