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The Diophantine Equation y’ + k = x3 
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The effective method of Baker is applied to the equation y2 = x3 - 28 and 
all integral solutions are found. 

1. In a recent paper Baker [I] proved that all the integral solutions 
of the equation y2 + k = x3 satisfy the following inequality 

maxi] x I, I y I> < exp{lOIO I k )lo4}. (1) 

Thus, in principle a “constructive” algorithm for finding all the integral 
solutions for a given value of k would be: “Try all possible values of x, y 
less than the bound given by (l).” Needless to say, this could never be done 
in practice for any given equation. However, it is the purpose of this paper 
to demonstrate that given a specific equation and following Baker’s 
method of proof it is a perfectly reasonable proposition to find all the 
integral solutions of the equation. For each value of I k I less than say 1,000 
it would take about five minutes computation time on a modern calculating 
machine. 

Our intention is not to compute a table of solutions of the equation 
y2 + k = x3 for numerous values of k, but to show that if the occasion 
arises in a number-theoretic investigation when all the integral solutions 
must be found, then it is a fairly routine matter to find them. Idle curiosity 
ought to be satisfied by the book [4]. 

Ljunggren [5] gave a list of all the unsolved equations with I k I < 100. 
The complete solutions for k = 18, 25, 100 are claimed by London and 
Finkelstein [6]. Presumably these equations were solved using Skolem’s 
meth0d.l The smallest unsolved equation now seems to be y2 + 28 = x3, 
so we will take this as our example and find all the integral solutions using 
Baker’s method. 

* Departement de Mathematiques, Universite de Bordeaux, 33-Talence, France. 
1 Note added October 1970: Finkelstein and London have subsequently published 

their proof for k = 18. See [3]. 
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2. As a first step we reduce the equation y2 + 28 = x3 to a finite 
number of Thue equations. The field Q(v’--7) has unique factorisation, 
the only units are f 1, an integral basis is 

and 1+ d-7 2=( 2 )(‘-,“-7). 

Writing y2 f 28 as ( y + 2 d?)( y - 2 d/--7) we have 

(Y + 2 day - 2 d/-7) = x3. 

Let y + 2 2/- = aX3 and y - 2 d-7 = bY3, where a, b are cube free 
integers in Q(z/?), ab is a cube in Q(v’?) and z = b. Ifp is a prime in 
Q(G) andp [ a thenp3 I ab; since a is cube free this implies p 1 b. Hence 
p divides both y + 2 1/T and y - 2 d/--7 and so must divide 4 d-7. 
Thus, p must be one of 

I p1= d--7, 1 + d-7 l-d--7 
P2 = 2 ’ P3 = I 2 * 

Let a = IfIppp?pgs, b = &ppp$& where 0 < ai < 2, 0 < Pi < 2 and 
01~ + /3$ = O(mod 3) for 1 < i < 3. On noting that pz = p3, ii = b we 
see that the only possibilities are ((or , 0~~ , a3) = (0, 0,O) or (0, 1, 2) or 
(0,2, 1). Putting 

x=u+v 
( 

I++7 
2 1 

with u, v E Z 

three cases result: 

Case 1 

which yields 

Case 2 

2y = f(2u9 + 3u% - 9uv2 - 5v3}, 

4 = f(3u2v + 3uv2 - v”}. 
(2) 

= f ( 1+2/-‘7 
I( 

I-43 2 
2 2 ) ( u+v 1+d--7 3 

) 2 ’ 

which yields 
y = f{u3 + 12u2v + 6uv2 - 6291, 

2 = &(z$ - 6uv2 - 2~~)). 
(3) 
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Case 3 

y+2~~=*(l+~-7)z(l-~~)(U+v l-t,“,3, 

which yields 
y = f(u3 - 6u2v - 152~~ + v3}, 

2 = f(U3 + 3u% - 3uv2 - 3v3). 
(4) 

All the integral solutions of Eq. (2) are easily found and they are 

(u, 9 = (1,4), t-1, -41, (-5941, (5, -4). 

These give the two solutions x = 37, y = f225 for y2 + 28 = x3. 
Putting u = u1 - v1 and v = vl, Eq. (4) becomes 

*I2 = u13 - 6u,v12 + 2v13. (5) 

Thus, if (a, b) is a solution of Eq. (3), then (a, --b) is a solution of Eq. (5), 
and conversely. Hence it will suffice to find all solutions to the Eq. (3). 
Putting u = 2Y, YE 2 and v = -X - ZY, X E 2, Eq. (3) becomes 

x3 - 12XY2 - 12Y3 = fl. (6) 

We will find all integral solutions of Eq. (6). 
Other ways of reducing an equation y2 + k = x3 to a finite set of Thue 

equations can be found in [7]. 

3. Letf(X, Y) = X3 - 12XY2 - 12Ys; we will be working in the 
field Q(0) where f(6, 1) = 0. Routine calculation shows that an integral 
basis is { 1, 8, P/2} and that a pair of fundamental units are 

q1 = -7 - 48 + (38212) and q2 = ii +8-e? 

Later we will have occasion to work with rational approximations to 8, 
71~ , q, and their conjugates. We relegate this numerical information to an 
appendix, to be quoted when required. 

If x, y E Z are such that f (x, JJ) = f 1, we have 

cx _ fpy)(x - eyj(x - e(3y) = f 1. 
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Putting /3 = x - l3y we see that /3 is a unit in Q(e) and so j.3 = -j&$ 
for some b, , b, E Z. It follows from this that 

log I ,8(j) I = b, log I $” I + b, log 1 $’ 1 for l<jj3 

and so 

b, = (log I /9’j’ ) . log 17:’ I - log j,&) I . log / 7;’ ]}/A, 

where r, s = { 1, 2}, r # s and 

A =logIr]:j’( logI7#/ -logi7j:i’/ -log(?$I. 

If H = max{( b, 1, I b2 I> and M = max{log ( T#) I, log ( $’ I> we 
deduce that H < (I log I /3(j) I + I log I P(i) I} . M/I d I and hence 
max{log ( p(j) I> b ( d ( . H/M = 6H. 

From the appendix we see that M = 2.745588..., I d I = 2.15632779... 
and so 6 3 2.6730415... . Since log 1 /3(l) / + log I fi’“) I + log I j3’“) ) = 0 
it follows that for at least one superscript (I) we must have 
log ) fi’u ) ,< -(6/2) H. Unfortunately we do not know for which values 
of I this holds. When we come to our numerical calculations we will have 
to do three calculations, one for each of the possible values of 1. Now, 

and it follows that at least one of I j?‘k) ( and I /3(j) 1, say I p’k) 1, must be 
larger than exp(SH/4). Consequently we infer that ) /3’c)//3’k) I < 
exp( --6H/4). Again we do not know the numerical value of k (other than 
1 # k) so there are six possible choices for the pair (k, I) and all must be 
tried when we do our computations. 

Recalling that p(j) = x - &i)y; p(k) = x - @)y; p(Z) = x - e(Z)y and 
eliminating x and y we obtain 

(e(k) - e(z)) p + (e(i) _ e(k)) jp + (e(z) _ e(i)) pm) = 0 

f+ 
e(z) _ e(j) 

e(k) _ e(z) = 

e(i) - e(k) p(z) 

e(z) _ e(k) * jjiG = wa 

Now /3 = @& and putting 
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we obtain a$$$ + a3 = w. From the appendix we see that 

p’ _ fp’ 

where a = 1.392517959378504..., thus I w  I < exp(a - @H/4)). Hence, 
we conclude that 

It will be convenient to rewrite this inequality in a diffe~nt form: 

I a&$ I = I --a3 + w  I and upon taking logarithms 

61 log I a1 I + b, log I a2 I = log 1 a3 - w  1 = log 1 a,l+logjl -;I. 

Thus, 

1 b, log I al I + h log I a21 --wb,lI = Ilogll -;I1 

and 

llogjl--lI=l~++~+.../$I~I- l . 
1- w I I a3 

We see that I w/a3 I < exp(a - (H6/4)), so if H 3 6. We certainly have 
I w/a3 I < 0.2 and hence 

llog/~-z/I <1.25/E/ $6exp(-F). 

Thus we certainly have 

1 bl log I 011 I + b, log I a3 I - log I 01~ I 1 < exp(--H ’ 0.404) (7) 

if H 2 20. 
In order to apply the result [2] of Baker we must find the heights of 

0119 % 7 a3 * This is easily done. The equation satisfied by a1 is 

~‘3 - 132X5 - 4773X4 - 27236P - 4773X2 - 132X + 1 = 0. 

The equation satisfied by a2 is 

x6 + 30X5 - 783X4 - 2408X3 - 783X2 + 30X + 1 = 0. 
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The equation satisfied by 0~~ is 

21X6 + 63X5 - 198X4 - 484X3 - 198X2 + 63X + 21 = 0. 

Using Baker’s theorem [2] we deduce that all the integral solutions of 
the inequality (7) satisfy 

max{j b, 1, 1 bz I} < {49(0.404...)-1 66 log 27236)49 < 10663. 

In order to reduce this rather large upper bound we employ a simple 
lemma from diophantine approximation theory, due to Davenport. 

LEMMA. Suppose 8, /Zl are given real numbers and M, B > 6 are given 
integers. Let p, q be integerssuch that 1 < q < BM, I Oq -p I < 2(BM)-I. 
Then if I/ q/3 (j > 3B-l there is no solution of the inequality I b,8 + bz - /3 I < 
K-lb11 in integers bl , bz with log(B2M)/log K < j b, / < M. 

Proof. 1 b,qll + b2q - pq I < qK-lbll < BMK-lbll and if qB = p + w, 
where 1 w  ] < 2(MB)-‘, we have 

I b,(p + u) + b,q - Pq I < mbb”. 

And since II jlq I/ > 3/B and I b,w I < 2/B it follows that II bIw - flq I/ 3 l/B. 
Thus we have 

$ < BMK-‘b”. 

Hence 

I b I < lwWM) 
1L log K . 

We will apply this lemma to the inequality 

1 b, log I (~1 I + b, log I a3 I - log I 01~ (1 -=C exp(--H.0404...) 

by letting 

K = eO.404; M = 105'33; B = 10". 

In order to use the lemma in a numerical example one must compute 
rational approximations to 8 and /3. Thus if a/b is a rational approximation 
to 6 which satisfies [ 8 - a/b I < 1/(MB)2 and p/q is a rational approx- 
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imation to a/b which sasitfies 1 < q < MB, I(a/b) - (p/q)] < l/MB, 
then p/q is a rational approximation to 8 which satisfies 

We computed a/b such that 

! I e--i c10-12aa 

and c/d such that ) /3 - (c/dJ < lo- 650. The rational approximation p/q 
to a/b was found from the continued fraction expansion of a/b, where q is 
the largest convergent <105s6. The computer calculated the quantities 8, 
/3, p/q to the required degree of accuracy and found that 

3 3 x 1O-33 in all cases. 

Thus all solutions of the inequality (7) satisfy 

log 10629 
I b, I < o.404 d 3,585. 

We applied the lemma a second time with M = 4,500, B = 102. Again in 
all cases the condition (I/3q jl 3 3B-l was satisfied, from which we con- 
cluded that all solutions of (7) satisfy 

, b , < 1og(4*5 x lo) 
11 0.404 

It was appropriate to use a desk calculator to find all integral solutions 
of the inequality 

for H G 6 and the inequality 

1 b, log I LY~ I + b, log I cs2 / - log I 01~ II < 6 exp(-H * 0.5438) 

for H in the range 4 < H -=c 50, say. 
As was to be expected, there are many solutions of the inequality in this 

range. They are listed with the other numerical data, in the appendix. 
If (b, , b,) are pairs of integers which satisfied the inequality, we 
checked to see whether the units f&# were of the form x - ey. The 
only integers which satisfy the inequality and are such that the corre- 
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sponding unit is of the required form are b, = 0, b, = 0 and bl = 0, 
b, = -1. These give the solutions x = 1, y = 0 and x = 1, y = - 1. 

Thus, the only integral solutions of the equations 

X3 - 12XY2 - 12Y3 = fl are (X, Y) = (fl, 0) and (fl, Ifl). 

Hence the only solutions to Eqs. (3) are (u, V) = (0, &l) and (32, F 1). 
These give as the solutions of y2 + 28 = x3, the following 

(xv Y) = (4, f6) and (8, SW. 

Then the complete set of integral solutions of the equation ya + 28 = x3 is 

(x, Y> = (4, f6); (8, 1G59; (37, f225). 

APPENDIX 

Here we give some of the numerical data used in the investigation. 
The roots of the equationf(0, 1) = 0 are 

d(l) = -2.768734305276282... 
Ot2) = - 1.115749396663048... 
Ot3) = +3.88448370193933... 

The equations satisfied by the fundamental units Q and ~7~ are 
X3 - 15X2 - 9X + 1 = 0 and X3 - 9X2 + 3X + 1 = 0, respectively. 
The approximate roots of these equations are as follows: 

7;) = 15.5737717009257510...; # = 0.565376041509972... 

$’ = -0.6696573391168678...; yp’ = 8.639353887182992... 

# = 0.0958856381911168...; (3) 
r/2 = -0.2047299286929642... 

log 1 71” 1 = 2.745588198059661...; 

log 1 q(l) / = 2 -0.5702642090280092 . . . 

log 1 qp) / = -0.4009891315781089...; 

log I # 1 = 2.156327798443639... 

log [ # I = -2.344599066481552...; 

log I $) I = -1.586063589415630... 

rnax 11 log ] # 1 - j log I$) I/l = 2.175323989031652... . 



115 

The quantities log 
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1 0~~ 1 and log 1 01~ 1 are computed from 

log $ 
I I 

= 5.090187264541213... 

= 1.943609934903443... 

= 3.146577329637770... 

log g = 2.762592007471648... 
I I 77p 

log $ = 3.742391387859269... 
I I 

log $ 
I I 

= 1.015799380387621... 

The values of log 1 aS 1 are computed from the following quantities: 

1 W - 6@) 1 = 1.652984908613233... 

I e(l) - F3) I = 6.653218007215614... 

1 et3’ - r9t2’ ) = 5.00023309860238... 

log I e (l) - t?t2) 1 = 0.5025826891016480... 

log I 6(l) - 0c3) I = 1.895100648480152... 

log I P3) - P2) I = 1.60948453106791... 
e(j) - e(k) 

y$F e(z) - e(k) G eor~ 
a = 1.392517959378504... 

There are essentially three distinct linear inequalities 

b 1% I 011 I + b 
l loi3 Ia2 I 

2 
_ 1% I Qg I 

1% I a2 I I 
< 6 exp(-0.543H) 

corresponding to the different choices of 1 and k mentioned earlier. They 
are as follows: 

I bleA + b, - PA ( < 6 exp(-0.543H) (4 
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where, 
8, = - 1.154033064.. . ; PA = -0.104752055... 

and corresponds to the choices I = 3, k = 1 and I = 3, k = 2. 

I b,e, + b2 - pB I -=c 6 exp(-0.543H) 
where, 

Or, = 5.01101631 l...; /3B = - 1.089685486... 

and corresponds to the choices I = 2, k = 1 and 1 = 2, k = 3. 

(B) 

where, 
1 bIti, + b, - /lc I < 6 exp(-0.543H) 

8, = 0.519349724...; ,& = -0.372093085... 

cc> 

and corresponds to the choices I = 1, k = 2 and I = 1, k = 3. For 
A4 = 4500, B = lo2 the rational numbers p/q which occur in the 
Davenport lemma are as follows: 

(A) (p, q) = (20989; 24,222); II p/lq II b 0.359104; 

@I (p, q) = (153292; 30,591); II /%q II 3 0.431283; 

(C) (p, q) = (146091; 281296); I/ &q I/ > 0.296633. 

For M = 10563, B = 1O33 the cost of letting the computer print out the 
decimal representation of the corresponding integers (p, q) was prohibitive. 
Only the first few decimals of the fractional parts of II pq [j were printed. 
They are as follows: 

II BAq II 3 0.107819, 
II Beq II >, 0.139308, 
11 /$q I/ 3 0.0452155. 

The solutions to the linear inequalities A, B, C for H in the range 
4 d H < 50 are 

Case A. (b, , b,) = (-3, -4), (-4, -5); (-5, -6), (-6, -7),(3,4), 
(4,4), (4, 5). 

Case B. (b,, b,) = (1, -6), (-1,4), (-2,9). 

Case C. (b, , bd = (4, -3), (5, -3), (7, -4), (-4,2), (-5,2), (-6,3). 

For each of the above choices of (b, , b,) we checked to see if q$@ was 
of the form A - Be, No pair (b, , b,) has this property. The remaining 
possibility is that I b, ( ,< 5 and [ b, 1 6 5. In this range the only pairs 
(b, , b,) with @# of the form A - Be are (0,O) and (0, -1). 
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