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Abstract

In his lost notebook, Ramanujan offers several results related to the crank, the existence of which
was first conjectured by F. J. Dyson and later established by G.E. Andrews and F.G. Garvan. Using an
obscure identity found on p. 59 of the lost notebook, we provide uniform proofs of several congruences
in the ring of formal power series for the generating functitig) of cranks. All are found, sometimes
in abbreviated form, in the lost notebook, and imply dissection8(gf). Consequences of our work
are interesting new-series identities and congruences in the spirit of Atkin and Swinnerton-Dyer.
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1. Introduction

In attempting to find a combinatorial interpretation for Ramanujan’s famous congruences
for the partition functionp(n), the number of ways of representing the positive integer
as a sum of positive integers, in 1944, Dyddi defined therank of a partitionto be
the largest part minus the number of parts. Dyson offered several conjectures, including
combinatorial interpretations of Ramanujan’s famous congruen@es+ 4) = 0 (mod 5
and p(7n + 5) = 0(mod 7. These conjectures, as well as further conjectures of Dyson,
were first proved by Atkin and Swinnerton-Dyf@i] in 1954.

The corresponding analogue does not holdiftk1n 4+ 6) = 0 (mod 11, and so Dyson
conjectured the existence oteank In his doctoral dissertatioi@], Garvan defined vector
partitions which became the forerunners of the crank. ffine crankwas discovered by
Andrews and Garvafi].

Definition 1.1. For a partitionr, let 2(n) denote the largest part af let u(n) denote the
number of ones in, and letv(rm) denote the number of parts eflarger thanu(z). The
crankce(m) is then defined to be

A(T) if u(z) =0,
c(m) = ) (1.2)
v(n) — u(m) if p(m) > 0.

The crank not only leads to a combinatorial interpretatiop@fln + 6) = 0 (mod 12,
as predicted by Dyson, but also to similar interpretationspfiéin + 4) = 0(mod 5 and
p(7n +5) = 0(mod 7.

Forn > 1, let M (m, n) denote the number of partitions ofwith crankm, while for
n<1, we se{l10]

-1 if m,n) = (0, 1),
M(mv l’l) = 1 If (ms n) = (0’ O)’ (1s 1)7 (_13 1)5

0 otherwise.

Andrews and Garvafi] showed that the generating function fdi(m, n) is given by

Zoo ZOO (45 @)
M , m_n — . 12
m=—o00 n=0 . me K (aq; Q)oo(Q/a; Q)oo ( )

In fact, in his lost notebooKklL7], Ramanujan records several entries about cranks, mostly
about the generating functioh.@). At the top of p. 179 in his lost notebo§k7], Ramanujan
defines a functiorF (¢) and coefficientg,,, n >0, by

(4: D)oo -
F =F, = = nq" 1.3
@ @ (@q; q)oo(q/a; @)oo ”X:(:) fnd 9
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Thus, by (.2), forn > 1,

In = Z M@m,n)a™.

m=—0oQ

He then offers two congruences fBg). These congruences, like others in the sequel, are
to be regarded as congruences in the ring of formal power series in the two vasiadoiels
g. First, however, we need to define Ramanujan’s theta fungtians) by

o0
fla,b)y:= Y a"mt/2pr=hiz o ap) < 1, (1.4)

n=—o0
which satisfies the Jacobi triple product idenfBy p. 35, Entry 19]

f(a,b) = (—a; ab)eo(—b; ab) s (ab; ab) o (1.5)
and the elementary identifg, p. 34, Entry 18(iv)]

fa,b) = a""tV2pre=D/2 £ q(ab)", b(ab)™) (1.6)

for any integem. Both of these identities will be used many times in the sequel, possibly
without comment. The two congruences are then given by

(=43 —4° ( 1) f(=q,—q") ( » 1)
F =— - - ‘¢ -1+ = " (moda® + — 1.7
Vo) (—4% 4% 0 ¢ a ﬁ(—qz;qz)oo T &7
and
2 _ 7 4 _ 5
F(ql/3)Ef( q°, qgl)J;( q", —q°)
47 470
1 f(—=q.—4® f(—q* —4°
+la—1+=)g"?
(a a>q (4% 990
1 f(—q.—q® f(—q% —q") 1
2, %) 23 3 1
+(a +a2)q @ a9 moda +1+a3 .
(1.8)
Note thatl, = a2 + a2, which trivially implies thata® = —1(mod/y) anda® =

1(mod/Zy). Thus, in (L.7), a behaves like a primitive eighth root of unity modulg On the
other hand/z = a® + 1+ a3, from which it follows that:® = —a® — ¢ = 1 (mod/3).
Soin (1.8), a behaves like a primitive ninth root of unity modulg.

This leads us to the following definition.

Definition 1.2. Let P(g) denote any power series@Then the-dissection oP is given
by

t—1
P(q)=:)_ q"Pi(g"). (1.9)
k=0
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Thus, if we leta = exp(27i/8) and replace) by ¢2, (1.7) implies the 2-dissection of
F(q), while if we leta = exp(27i /9) and replace] by ¢2, (1.8) implies the 3-dissection of
F(q).

Ramanujan gives the 5-dissectionfofg) on p. 20 of his lost notebod) 7]. It is inter-
esting that Ramanujan does not give the alternative form, analogous to thds@ iand
(1.8), from which the 5-dissection would follow by settiagto be a primitive fifth root of
unity. Proofs of the 5-dissection have been given by Gajt@hand Ekin[6].

The first explicit statement and proof of the 7-dissectiof Gf) was given by Garvaji0,
Theorem 5.1]Although Ramanujan did not state the 7-dissectiof @f), he clearly knew
it, because the six quotients of theta functions that appear in the 7-dissection are found
on the bottom of p. 71 (written upside down) in his lost notebook. The first appearance
of the 11-dissection ofF (¢) in the literature can also be found in Garvan’s pafig),
Theorem 6.7]Further proofs have been given by Hirschhfir®] and Ekin[5,6], who also
gave a different proof of the 7-dissection. However, again, it is very likely that Ramanujan
knew the 11-dissection, since he offers the quotients of theta functions which appear in the
11-dissection on p. 70 of his lost notebddk].

On p. 59 in his lost notebogl 7], Ramanujan records a quotient of two power series,
with the highest power of the numerator beirfg and the highest power of the denominator
beingg?2. Underneath he records another power series with the highest powerg3eing
Although not claimed by Ramanujan, the two expressions are equal. We state Ramanujan’s
“claim” in the following theorem.

Theorem 1.3. If

A, :=ad"+a™", (1.10)
then
o0
1— Z (_1)mqm(m+l)/2+mn (An+l —Ap)
(45 9)oo _ m=1,n=0 (1.11)
(aq; @)oo(q/a; q)oo (75 9)oo

The primary purpose of this paper is to employ an alternative version of TheloBtm
give uniform proofs of the 2, 3, 5, 7, and 11-dissection&'@f) in Sections3—7. However,
we emphasize that our results will be formulated in terms of congruences. An interesting
byproduct of our work is that several interestiggeries identities naturally arise in our
proofs. Some of these identities appear to be new (463-(4.10), while others (see
Theoremsl.2, 5.2, and7.2) can also be proved using identities discovered by [E&inwWe
emphasize here that our approach to tteeseries identities is much simpler than that of
Ekin. For example, Ekin’s proof of Theorem2 requires the verifications of 55 identities
[6, p. 2154] while in our proof, only Winquist’s identity and Theore2ril are needed.

We also employ a method of “rationalization” to provide alternative proofs of the con-
gruences foiF' (¢) corresponding to the 2, 3, 5, 7, and 11-dissections. These proofs of the
congruences for 2, 5, 7, and 11 are similar to those of Gaii@yi1] for the identities
associated wittF, (¢) when the variabl@ is replaced by the corresponding primitive root
of unity, but on the other hand are more detailed and more systematic, because of the use
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of Ramanujan’s addition formula for theta functions in Lem#2 Special cases of our
theorems yield congruences of Atkin and Swinnerton-0Og&r

In SectiorB, we, in fact, show that the formulations in terms of congruences are equivalent
to those in terms of roots of unity. This was claimed without proof by one ¢i&spp.
85-86] who unfortunately was unable to convince the other three present authors. Garvan
convinced all of us by providing a proof, a modification of which is given in Sedsion
An advantage, however, of the formulations in terms of congruences is that they yield
congruences like those of Atkin and Swinnerton-Dyer as corollaries.

2. Preliminary results

It is easily seen that Ramanujan’s Theor&rf is equivalent to a theorem discovered
independently by Kaand Wakimotd14] and by Evan$7, Eq. (3.1)] which we now give.
The notatioru; below will be used throughout the sequel.

Theorem 2.1. Leta; = (—1)%g**+D/2 Then

e¢]

(@ D% B ar(1—x)
(q/x; q)o0(qX; §)oo _kz 1—xgk (2.1)

=—00

Several times in the sequel, we shall use an addition theorem for theta functions found
in Chapter 16 of Ramanujan’s second notebfdk3, p. 48, Entry 31]

Lemma 2.2. If U, = an®+D/2g"1=D/2 gpgy, = on(n=0/27+D/2 gor each integer n
then

2.2)

N-1
U Vn_
fULV) =Y ka< Nk VN ").
k=0

Ue Uy
Also useful for us is the quintuple product identj8; p. 80, Eq. (38.2)]
Lemma 2.3(Quintuple product identily Let f(a, b) be defined as ifl.4), and let
f=a) = f(=4.—4%) = @ Do (2.3)

by (1.5). Then

f(=P?, -0/ P?
F(PQ,Q/P)

Lastly, we need Winquist’s identitjt8]. From[10, Eq. (6.15)] Winquist's identity can
be put in the following form.

f(P20, 05/P% — P2f(Q/P3, P3Q% = f(—0? (2.4)
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Lemma 2.4(Winquist's identity. If

n
(blv sz B bn; Q)oo = H(bp q)007
j=1

then
(o, q/o, B,q/B.of.q/©@p),o/B, Ba/o 4, q; @)oo
= f(=2% ¢/ f (—Bq. —a%/B%) — Bf (=B°a% —q/B*)
—af (=B =¥ B (—oq. —qP/0®) — o f (—a%q%, —q/a®)).  (2.5)

3. The 2-dissection forF (q)

Theorem 3.1. Recall thatF (g) = F,(q) is defined by1.3) and thatf (a, b) is defined by
(1.4). Then

p (modA»), (3.2)

_ f(—4°% —q*% N < 1) . f(=q? —q*

a—1+ -
(—q%* ¢ oo
whereA; is defined in(1.10).

Note that 8.1) is equivalent to 1.7), with /g in (1.7) replaced byg.

The first proof of Theorer.1that we give uses the method of “rationalization” and is an
elaboration and an extension of Garvan’s pifd®f. This method does not work in general,
but only for thosen-dissections when is “small.” The method used in our second proof
is longer, but it is more general. Furthermore, we obtain very interesting ident8i&8) (
and (.13, along the way.

First proof of Theorem 3.1. Throughout the proof, we assume that < |a| < 1/|g|. We
also shall frequently use the facts thdt= —1 (modA>) and thatz® = 1 (modA»).
Write

(45 oo = (¢ oo 1_[ (Z(aqn)k) (Z(qn/a)k> ) (3.2)
k=0

(aq; @)oo(q/a; @)oo el \io

We now subdivide the series under the product sign into residue classes modulo 8 and then
sum the series. Using repeatedly congruences modulo 8 for the poveersefeadily find
from (3.2) that
(4: oo
(aq; q)oo(q/a; 4)oo

]

o (1+aqn +a2q2n +a3q3n) (1+a71qn +a72q2n +a73q3n)
=@ 9] ] Aty

n=1
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(Do T _
= —(q4q > []@+agH@+a g (moday), (3.3)
(=4%4Mo0 4

upon multiplying out the polynomials in the product on the previous line and using congru-
ences for powers af moduloA».

Next, using Lemma&.2with o = @ andf = ¢/a, (1.6), and congruences for powers of
a moduloA,, we find that

(45 Doo(—aq; @oo(—q/a; @)oo

(—=a; @)oo

=(q; Qoo (—q/a; 9)
a

= L{f(a“qsy q*0/a*) + af (q%/a*, a*q*0)
1+a
+a?qf(q?/a*, a*q™ + (q/a) f(a*q?, ¢**/a™))
1
= a+ a) £ (4% —q*) + (@® + Ya)gf (—¢°, —¢ )

= £(=4% —¢"% + (A1 — Daf (—q% —¢**) (modAy). (3.4)
Using 3.4) in (3.3), we complete the proof of TheoreBil O

Second proof of Theorem 3.1From @.1), we deduce that

(q'q)cz>o > 1—x > 1—x71
: =14+) ax——+ ) ak—7—
(@/%; Doo(@X; @)oc kX_:_l 1—xq* ,; 1-q"/x
o
=1+1-x) ) aqa"
k=1,m=0
o
+(1-x"h Z argk"x .
k=1,m=0

Hence, we deduce that

(q; D%
(q/a; 9)o(qa; q)so

o
=14+ Y aq"(Aw—Ani1). (35)
k=1,m=0

(q; @)oo Falq) =

whereA,, is defined in {.10. Observe that
Ap — Apr1 = Aj—Ajn (modAy),

whenevern = j (mod 8. Therefore, if

o]

Sij= Y. aq"™,

k=1,m=0
m=i,j(mod 8§
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we conclude that
o0

1+ Z aqum(Am—Am+l)
k=1,m=0

=1+ (22— Ap{So,3— S47} + A1{S12 — S5.6}
=1+ (A1—D{S1,2— S56 — So,3+ S4,7}

+{S1,2 — S5.6 + So0,3 — Sa,7} (MOdA»).

Summing the series am, and then converting the sums into bilateral series, we conclude
that

0]

1+ ) @d" (Aw — Apyn)
k=1,m=0
= (A1—1) Z ak1+ - L. Z 4k(modA2) (3.6)

k=—00
We are now ready to complete the proofﬁﬂo. Letw = ¢™/4. By calculating the partial

fraction decomposition, we find that
o0 k 1

1 3 1+ 0® L e 1+ of N 14+ ° 3.7)
=—= a . .
P “N1- gk T 1= wdgh T 1—wdgk T 1—wigh

By (2. 1) we may rewrite 8.7) as

Z . IRV { 1+ 0® N 1+
T g% + & =72 D0 (07 oo @)@ Do (©% oo (@)% oo

N 1+ w’ N 1+ w® 3.8)
(0% @)oo (q/0% Qoo (@7 Q)oo(q/O7; Qoo | '

Since 1— w/g* = 1 — ¢¥/w® 7, we may simplify 8.8) and obtain

[ee] o qk—l
= 1+q4k
= 202 ( : B 1 )
~ T V(03 oo @/ 0% Do (0 Do (@] Doc
V2 (@9 , . :
- m((q,q)oo(wch 4)oo(q/®; @)oo

(45 Do (@3¢5 Qoo (q /D% @) o0)- (3.9)
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From the second equality 084), with a replaced by—w and—w?3, respectively, we find
that
(@3 D)oo (g0 P)oo(q/®: @)oo = f(—q° —¢"0)
=0 — o’ = Dqf (—¢% —¢™), (3.10)
(4 D)oo (q0% oo (q /0% @)oo = f(—q° —q™°)
+(—0® - 0® = Dgf(—¢° —¢". (3.11)
Employing .10 and (3.11) in 8.9) and simplifying yields

o0

k .
g -1 (q: q)oo 2 14
E a = (—q°, —q™). 3.12
o 1 g% 1 (=% 9N oo A (312)

Using exactly the same method, we can show that

00 k
g +1 (45 9)oo 6 10
= —q°,—q ). 3.13
k_z 15 % T Cota AL i (313)
o
Substituting 8.12 and @.13 into (3.6), we obtain 8.1) by eliminating the factotq; ¢)co
in(3.5. O

4. The 3-dissection forF (q)

As in the case 0f3.1), we will prove instead the congruence given below. Surprisingly,
the 3-dissection is considerably more difficult to prove than the 2 and 5-dissections, for
example. We give two proofs. The first uses the method of “rationalization” and is shorter
than our second proof, which depends on Ramanujan’s key theorem, Th2zdrétowever,
we were only able to find the first proof because of insights gained from the second proof.
Whena = ¢2/9 Theorem4.1yields the 3-dissection df, (¢), which was first proved by
Garvan[11] using the Macdonald identity for the root systety. Garvan’s proof can be
modified to give another proof of Theorefrl

Theorem 4.1. If A, is given by(1.10, then
f(=q% —¢*H f(=q"% —q™)

Fa(g) = (q%"; 4% oo
(=3 —¢®% f(—q*2 —¢5)
A1 =Dy @%" 4% oo
_ 3 _ 24 _ .6 _ 21
+A2q? fizd” (qqz7.)qf2(7)q - )(modA3+1). (4.1)

First proof of Theorem 4.1.We first record the identities that we will need in our proof.
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Substituting P, Q) = (—¢¥2, ¢27/2), (—q1%/2, 427/2) and(—¢?Y2, 427/2) into the quin-
tuple product identityZ.4), we find that

F(=4% —a*@%"; 4" Mo

B—q°C= » 42
‘ P = @2
B f(_qlz, _q15)(q27; q27)00
Atq°C=A—-q"f(=q7% —¢") = 4.3
1 A q F(=4®, —¢2h) 4.3)
and
_ (_ 6’ _ 21)( 27; 27)
Atq®B=A—q?tf(—q 18’_q99)=f 9 =974 4 Do (4.2)

f(=q3 —q%% ’
respectively, wherel = f(—¢*%, —¢%), B = f(—¢%3, —¢'®), andC = f(—¢"% —¢°).
Substitutingr = —a?, f = —q/a?, andN = 9 into (2.2) and simplifying, we deduce
that
(@: D)oo (@®q: )oo(@/a%; @)oo

= —(14+ A2)q(¢%"; 4o + A — (A1 — 1)¢°B + A1¢°C (modA3 + 1). (4.5)

After these preliminary steps, we now complete our proof of the 3-dissection.
From the generating functiol (),
CRS

Fo(q) =
@ (aq; )00 (@8q; @)oo

_ (@ D% 430 (@%q; )00 (a*q; 900 (6% 9)oo(a'q3 @)oo
B (4% 4%

_ @% 49
(4 D(q% V0o

x{—(1+a®+a"q(q*; ¢*)oo + A — (a+a® — Dg®B + (a + a®)¢°C)
x{—(A+a*+ %94 ¢ o + A — (@®>+a” — 1)¢°B
+(@®+a"q®C} (modAs + 1),

where we have applied () in the last equality.
Arranging the terms in the “right” order, with knowledge from our second proof being
helpful, we find that
4% %o
(45 Doo(q% q%)oo

Fu(q) = (=4%@?; ¢*)% — (6%, 4* oo (A + ¢°B)
+(A+¢°B) (A +4¢%0)) + [a — 1+ a®l(—¢2(¢?"; ¢*")2,

+4(q%"; ¢*Noo(A +¢5C) — ¢3(B — ¢3C)(A + ¢%0))
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+a® +a"1q%q?"; ¢*)2% — ¢*(4%"; ¢* e (B — ¢°0)
—¢%(A +¢°B)(B — ¢3C))} (modAz + 1).

Substituting 4.2—(4.4) into the terms on the right-hand side and simplifying, we find
that

4% 4% (@?7; 47N
(@ Do (@ 4% o0

5 { f(=q*2 —¢") — qf (—4% —¢®Y) — ¢?f(—q3, —q?Y

F.(q) =

f(_qS’ _6124)
f(—=q*2 —¢%) — qf (—4% —¢®Y) — ¢? (¢ —¢%Y
+la — 1+ a8]q f(—qﬁ, —q21)

f(=q*2 —q") — qf (—4% —¢®Y) — ¢?fF(—q3, —q*Y
et ale? =42 =)

4% 4% (@7 47N, { (4 Doo 8 (4 oo
= +la—1+ ———F %57 _
(@ Do (@% 490 | F(—q3 —¢%4 la “’la f(—4% —q?)

2, 72 @@
+la“+a'lg W} (modAz + 1),
where we have applig®, p. 349, Entry 2(v)]jn the last equality, namely,
(@: D)oo = F(=q". —q™) — qf (—q° —¢®") — ¢°F (—4°. —¢*. (4.6)
Finally, note tha{3, p. 349, Entry 2(vi)]

@% 0¥ @072 (@ Do f(—q% —q®D f(—q*2 —q™)

(@ Doe@% ¢V f(—q3 —q%%H UM ’
@% 4% @5 @ D _ f(=4% —a"Hf(=q"% —4")

(4: Doo(q% 4% f(—q5 —q?D) (%" 4% o ’
@%d¥% @A @G Do _ f(=4% ~a*H f(=4% —a*H

(0: Do (@% 4%o0  f(—q12, —¢15) 4% 4% oo ’

and this completes the first proof of the 3-dissection given in Thedrém [

Second proof of Theorem 4.1First, we observe that

Ay —Apy1 = Aj - Aj+1 (modAz + 1),
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whenevein = j (mod 9, whereA,, is defined in 1.10. Proceeding as before, if we set

e @]

. k
Tiji= Y, aq™,

k=1,m=0
m=i,j,[(mod9

we find that

o]

1+ ) ag" (A — Ant)
k=1,m=0

=1+ {To12— Te 78} + (A1 — D{T1 38 — To57}

+A2{T> 37— T156} (MOdA3 + 1).

Simplifying, we find that

o0

1+ Z aqum(Am—Am+l)
k=1,m=0

o0 [o,0]
1+ gk +q% -1
_ Z ap -4 Td a1 Z ap —2

3k 6k 3k 6k
P e Rl o} = T+ g¥ g
— g% — q*
A —2 1 (modAs+ 1). 4.7
i Zk;ooak1+q3k+q6k( 3t ) ( )

The proof of &.1) now follows from Theoreni.3and the following identities, which are
analogues of.12 and 8.13. [

Theorem 4.2. We have

i P et S e ) F(=4% =a*H f(=q" —¢™) 4.8)
o T a¥F g U (%" 4% ’ '

i P el A TR o i /A S M i) 4.9)
Lo T gE g T e N |

i g Lrd St —a?) (g™ ™) 4.10)
T B L @%": 4?0 ' '

We give only the proof of4.8). The other two identities can be established using the
same method.
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Proof of (4.8).Let { = ¢2™/9. Proceeding as in the second proof of the 2-dissection, we
calculate the partial fraction decomposition

M—qH _ 4 (20 10 1-C
1+q3k+q6k_(l C)<1_qu +1_C4qk 1_C7qk

1= - U
+(1 C)(l—csqk+1—C5qk+1—C2qk)'

Hence, we find that

l_CS 00 1_44 1_C2 00 1_{7
+1—C4 ; akl—CA' k+1—C7 kgooakl_éiqk

1_C4 o0 1_(5 1_&7 00 1_&2
+ ay + ay ——— | - (4.12)
1-0° k;oo 1%k 1-0 k;oo 1- %
Using @.1) and the identity - (%= -5 = 3), we rewrite 4.1 as

o
gzakl_—qk

Pt 1 + q3k + qﬁk
= —1-3g k%
5 4 2 T
(i e )
(Do (a0 (0 Do @)oo (705 ool @)oo

(@; D% (3% ¥
(4% 4%

X[ = OV oo q: D)oo D)oo (45 P oo
+(* = O DooPq: ool D)oo (B @)oo
R (A o Y(C/E ) I (7 7D Y (/D IS (T VO (4.12)

=-1-3
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Note that whem = ¢/ and gcdj, 9) = 1, we can deduce frond(5) that
(@ D)oo (¥ 45 oo/ oo

1 )
= - <1+ @t CZJ> 9q%" 4% Noo
A iv X 1) B RER WS 4.13
+A— C'i‘g_ q B + C+C_1 qC. (4.13)

Using @.13 six times, we rewrite4.12) as

_ g 4% o
% 4%

+(q%": 4" ooA — q°BC — q*AB + ¢MC? + ¢°AC]

[—2(a*": 4°N3 + %% 4% C

_ g (4% 4P

(4% 4%

—q*(A+4°C)(B — ¢°C)]. (4.14)
Substituting 4.2) and @.3) into (4.14), we deduce that

[—q@%"; *D% + (¢%7; ¢*)oo(A + ¢°0)

Ak 3, 6k
o 1+ aT +g

_ ., (4% 4o P f(=4*% =4"¢*" ¢*N%
(@°% ¢ o f(=45 —4?Y

f(_qlzv —6115) f(_qﬁ’ _6121)
_ (4% 4300 (@*"; 4*H5
(4% 4% o0 f(—q%, —q?Y)
+£(=q* —¢") — 4% f(=¢>, —¢**)
. @% 400 @773 47D% (45 Do
4% 9%  f(—q% —q%YH
(@: D)oo f (=43, =Y f(—q*%, —q™)
1 @%" 4% oo ’

where we have appliedd(6) in the penultimate equality. This completes the proof
of(4.8. O

7 F(=4% =4*Y@%" 4" Do f(—=¢"% =4 (4™ q27)oo)

(—qf(—=q% —¢*
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5. The 5-dissection forF(gq)

For this and the remaining sections, it will be convenient to define

Su(a) = Y a*. (5.1)

k=—n

Note that wherp is an odd prime,
Sp-12(a) = a=P/2®,(a),

where®,, (a) is the minimal, monic polynomial for a primitiveth root of unity.

In this section{ = ¢2™/5 We provide two proofs of the congruence corresponding to the
5-dissection. The first proof is similar to Garvan’s pr¢b®] of the 5-dissection of(q).
Note that if we setz = 1 in Theorenb.1, we recover Atkin and Swinnerton-Dyer’s result
[2, Theorem 1]

Theorem 5.1. With f(—¢) and S as defined above andl, defined by(1.10),
f(—q*, —¢™) f3(=q®)

f2(=¢°% —4¢%) f(=4° —q?%)
e I A f(=4%—4¢*
(=g, —¢%) f2(—¢*0, —q1%)

Fu(q) = 2(—=¢®) + (A1 - 1)g

2(—=¢?® (modsy).
(5.2)

+A2q

In his lost notebook17, pp. 58, 59, 182]JRamanujan factored the coefficientsiofig)
as functions o#. In particular, he sought factors 8% in the coefficients.

First proof of Theorem 5.1. 1t is easy to see that
(43 D5%(@%q: 9)o0(@q: @
(4% %00

We shall use later a famous formula for the Rogers—Ramanujan continued fr&¢tipn
defined by

Fu(q) = (modsSy). (5.3)

1/5 2 3
9 q q* q
R(g) == R i lgl <1,
namely[3, p. 265, Entry 11(iii)]
f(—=q*)
R —1=1T 5.4
R O s o) &4

Using the well-known facf3, p. 266, Entry 11(iii)]

1/5 f(=q,—q"

RO =0 =y
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we can rewrite§.4) in the form

fo) _ f(=4*%—¢")  qf(=¢° -4%)
af (=4®)  qf(=¢% 4%  f(—4q0 —¢™

By (1.5) and Lemma2.2with (a, §, n) = (—a?, —q/a?, 5), we find that

~1 (5.5)

(@ oo (@®q; Qoo (@3¢ @)oo

— f(_azv _Q/az)
T (1-a?
= f(—¢q*°, —¢™) + g A1/ (—¢%°, —=¢®) (modSy). (5.6)

Substituting $.6) and 6.5) into (5.3) yields 6.2. [

Second proof of Theorem 5.1We apply Theoren2.1 Define

o0
Ti= 3 ag™
k=1,m=0
m=i(mod 5
Then
(q: 9)2 S
(6147 ‘I)oo(q/a’ Q)oo k=1,m=0

=1+ 2— A{To — Ta} + (A1 — A){T1 — T3}
=1+ {2To — 274+ T1 — T3}
+A1{Ty — To + 2T1 — 273} (ModS>), (5.7)
whereA,, is defined in {.10. Note that

o 2k
q
2w =0
k= 1-4q

k#0

This enables us to simplifyb(7) to conclude that

(45 9% _ i w 2+ 3¢
@q: Poolq/a oo = 1+gk +q% +q3% +q%
S k
q“ -1
+A a modsSy).
lk;oo k1+qk+q2k+q3k+q4k( 2)

The proof of the 5-dissection now follows from the following identities. ]
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Theorem 5.2. We have

o]

Y aron
k
Bt 1 + qk + qZk + q3k + q4k
_ @ 9x@** %51 (=q%%. —¢*)
f2(_q5’ _qzo)
(45 Doo(q®% 45 2 Do (g 45
f(=q° —q?9 f(=q*0, —¢1%)

o]

> o
a
T gf g% 1 g 1 g%

k=—o00
(43 Dooq® %5 2 Do (% 4%
f(=4% —4¢%9) f(=q'%, —q")
NG D)oo (@ %5 f (=4 —4*°)
f2(_q10’ _q15)

Proof. We prove only 5.8), since the proof of4.9) is similar.
We begin with the partial fraction decomposition

5(2 + 3¢%) _A-e+3hy  a-532+38
1+qk+q2k+q3k+q4k_ 1_qu 1—C26]k
1-2+3% 1-02+30
+ 3 7 .
1- gk 1-—("gk
Therefore,
PR 2+ 34"
A=+ & 1-¢
- 1-¢ kgooakl_qu
1-32+33 & 1-¢2
+ g ————
1-¢2 k;oo T
AL-32+33 & 1-¢
TR k;oo RO

1-02+3) & 1-¢*
+ 1_(4 Z akl_c4qk'

k=—00

107

(5.8)

(5.9)
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Applying Theoren?.1on the right-hand side and simplifying, we find that
(4 D3

(4 Doo(*q: Do
(4; D%

(Pq: D)oo (i Do

.3 (72, 3 .
_ o2 3 @D Do 9o
@-e-o (@° 4°)o0

G(g)=—0* + 33 + 20 + 307

— 03 4+ 30+ 282 + 34

(@ D3 T Do (g5 oo _

2_ _ 4
=0 (4% 4% o0

(5.10)

Applying (5.6) two times on the right-hand side &0 with a = { and(®, respectively,
we find that

. \2
Glg) = (45 9)5

- (q5 q5) !Sf(_qlov _6]15)

2 3C4_C3 4CZ_C4 5 20
+[<z—£ S v GRSl el PGV

_c @ D2 f(—=q0, —¢
(4% 4% '

(5.11)

From (6.5), we find that

(@ Doo = —9(q%% )0

F=q5. =g 1 72410, —4T5)

Substituting $.12) into (5.11) and dividing by five, we find that (¢) /5 equals the right-
hand side of%.8). [

Theorem5.2 can also be proved using identities established by Ekidottom of p.
2149]

_,10 _ 15 .5 _ 20
+(q25;q25)oo{f( 94 )_ 2 f(=9°.—q )}‘ (5.12)

6. The 7-dissection forF(q)

We offer two proofs of the 7-dissection 6 (¢). The first is an extension and elaboration
of that of Garvarj10], while the second uses the theorem of Ramanujao atd' Wakimoto
[14] and Evand7], Theorem 2.1 Note that if we substitute = 1 in Theorem6.1, we
immediately obtairf2, Theorem 2] In this section{ = ¢2%/7.
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Theorem 6.1. With f (a, b) defined by{1.4), f (—q) defined by(2.3), A,, defined by(1.10),
and S,, defined by5.1),

(45 9)o0 _
(qa: oo (q/a: @)oo f(—q7)
—A1¢*BC — (A2 + 1)¢%C?) (modS3), (6.1)
whereA = f(—¢*, —¢*%, B = f(=¢%, —¢'%), andC = f(—¢*, —¢").

(A% + (A1 — 1)gAB + A2¢°B? + (A3 + 1)¢%AC

First proof of Theorem 6.1.Rationalizing and using Jacobi’s triple product identitys],
we find that

(45 9o _ (@ D5%4d% Dooga™? @)oo(qa®; Poolqa™ ¢)oo
(9a: P)oo(q/a: Poo @ qNoo
1 f(=d? —q/a®) f(=a® —q/d®)

= f(—=q)) (1—ad 1—a3 (modSz). (6.2)

Using Lemma2.2, with («, 8, N) = (—a?, —q/a?, 7) and(—a®, —q/a®, 7), respectively,
we find that

f(=a? —q/a®) _ (@®—a" 3 (@3 —ab)
A2 A9 g BTe g € (modsy) (6.3)
and
f(=a® —q/a®) _ (a* —a®) 3 (a@—a?
o Attt a5 ¢ (modsS3). (6.4)

Substituting 6.3) and 6.4) into (6.2) and simplifying, we complete the proof of Theorem
6.L O

Second proof of Theorem 6.1Set

o0

T: == Z aqu’".

k=1,m=0
m=i(mod 7

As in our proofs of the 2, 3 and 5-dissections, we begin by using The@réito deduce
that

(q; D%
(aq; 9)oo(q/a; q)oo

o
=14+ Y aqd"(An—Ans)
k=1,m=0

=14+ 2 — A){To — Te} + (A1 — A){T1 — T5}
+(Az — A3){T2 — T4}

S k 2k
1+4¢"+¢
=2-A a
( ﬂk;oo “lrght ¥
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o k 2k
q" +q
+(A1— A a
(1 Z)k;oo kl+qk+”'+q6k

q2k

1+gk+-- + 4%

oo
+(A2 — Az) Z a
k=—00

_ i . 24 2g% + 3¢%
= k k... 4 g6k
P 1+4g%+ +q

q2k_1

o0
+A1 ai

00 g% — g*
+A a modsSs3), 6.5
2k=2_:oo k1+qk+_._+q6k( 3) (6.5)

whereA,, is defined in 1.10.
The proof of Theoren6.1 now follows from the following identities. Indeed, if we

substitute the identities of TheoregRinto (6.5) and collect terms, we complete the second
proof of Theoren6.1. [

Theorem 6.2. We have

> 7
Z At K ... o 6k
Pt 1+g+---+g¢g

N (;q% Z%C))O (A2 — 69AB + 29°B? + 3¢3AC + 5¢°BC —3¢°C?),  (6.6)
) oo
o] 7qk

Z Ak K ... o 6k
Pt 14+ g%+ +q

_ ((—Zf qi(;o (A% 4+ gAB — 5¢°B? + 3¢3AC — 24*BC + 445C?), 6.7)

o0 40 2k

> wp
1+qk++q6k

= %{AZ + gAB +2¢°B? — 443AC — 2¢*BC — 34°C?), (6.8)
) o

whereA, B and C are given in TheoreB 1

Proof. We prove only 6.6), since the proofs of the remaining two identities are similar.
We first calculate the partial fraction decomposition

7 1= N 1-0° 1-¢
T+gh+-+4q%  1-(gk  1-Pgk 1 8gk
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1-¢3 1-¢2 1-¢

+ + .
1-g%  1- 05k 1-%F
Therefore we deduce that

o]

7
Z Ak k... o 6k
P o e

_ 1= i o 1=t 1-0° & 1-2
1

+ Ak ——5
1-¢ = —{q* 1—C2 oo 1—C2qk
1-0 & 1-8 1-8 & 1-¢
+ C3 Z Ak g k C4 Z E k
1_C k=—00 1—CC] 1- C k=—00 1_€q
1— CZ 00 1— (5 1— CG
+—70>= ai . (6.9)
1-¢° k;oo EOT cﬁ k;,o 1%k

From the identity §.9) and Theoren2.1, we find that

i a 7 B E S S (45 D%
MW o A KR e 1-0 01— g 9B @)oo

+
1-2 1-) @4 9000 @)oo

1-¢* 1-¢8 (@ 9%
L P 3 . 4 . :
1-0 1-0 €4 Doo(Cg: 9o
Rationalizing the denominators of the infinite products on the right-hand side and applying
the elementary identity & " = —"(1 — ('), we deduce that

0]

_ 5 _ 2 .2
+{1 oo c} @ D%

7
Z A K ... o 6k
P o

(q; q)oo

= 22 (-1 = 0 oo Do (05 oo oo
(q 7 4oo
+H = ) Do D)oo (a1 900 (a1 oo
+(=* = B Do (P Do (P 90003 @)oo} (6.10)
Applying Lemma2.2with « = —a, f = —q/a, andN = 7, we deduce that
2 a6 5_ 3
(@4 oo (@85 oo (@ oo = A+ —qB+ ¢3C (modSz). (6.11)

1- 1-

Applying (6.11) six times witha = (2, (3, ¢, (3, ¢, CZ in (6.10 and simplifying, we complete
the proof of the first identity in Theore®2 [



112 B.C. Berndt et al. / Journal of Combinatorial Theory, Series A 109 (2005) 91-120

Theorenb.2can also be found i[5, Egs. (4.13)—(4.15)Pur method of proof is different
from that of Ekin.

7. The 11-dissection forF(q)

In this section{ = ¢2®/11 [fwe setu = 1in Theoren¥.1below, we recovef2, Theorem
3]. An elementary proof of2, Theorem 3has been given by Hirschhofh3].

Theorem 7.1. With A, defined by1.10 and S5 defined by(5.1), we have

1
Fa(g) = (g1 g oo (g 125

+{A2)¢2AC?D + {A3 + 1}¢3ABD?

2
15 (ABCD + {A1 — 1}qA°BE
D5

+{A2 + As+ 1}g*ABCE — {A2 + A4}q°B?CE
+{A1+ As}q"ABDE — {A3 + As + 1}¢*°C DE?

—{As+ 1}¢°ACDE — {A3}q*°BCDE) (modSs),
where A = f(=¢%,-¢%), B = f(=¢"",—¢*"), C = f(=¢%,-¢%), D =
(4%, —¢?»,andE = f(—¢q*° —q1Y).

Before we begin our proofs of Theorefr, we first state some results that will be useful
in our proofs. Specializing?(5) with « = a™ andf = 4", we find that

(amq’all—mq’anq’all—nq’am+nq’all—m—nq’am—nq’all—m+nq’q’q; Q)oo
B 1
T (1-am(1—an)(l—amtn)(d—amn)
x{G(@®)H@") —a" "G (@*>)H (™)} (modSs), (7.1)

where
Gx) == f(—x, —x%3 and Hx) = f(—x3q, —x8¢?) — xf(—x3¢% —x%9).

Using Lemma2.2with N = 11 and(x, f) = (—x, —x1%3), (—x3¢, —x84?) and(—x34¢?,
—x84), taking congruences moduls, and using the fact thaf(—1, b) = 0 for every
complex numbeb with |b| < 1[3, p. 34, Entry 18(iii)] we find that, for every positive
integern,

G(@)=1—a")PA5 + @ —a'"¢*P(12) + @ — a®)q°P(9)
+(@* —a®)q8P6) + (@™ — a®)¢g*°P(3) (modSs) (7.2)
and
H(a")=(1—a")[P(16) — ¢2P(5)] + q(@™ — a®)[P(14) — ¢*'P(8)]
+q2@™ — a®)[P(13) — ¢BP2)] + ¢*%@™ — a®)[P(7) + ¢*1 P (4)]



B.C. Berndt et al. / Journal of Combinatorial Theory, Series A 109 (2005) 91-120 113
+¢" (@ —a™)[P(10) + ¢**P(1)] (modSs), (7.3)

where
P(k) = f(=q™, =g, (7.4)

Furthermore, we obtain the following 10 identitie&5)— (7 14) from Winquist’s identity
(2.5 by replacing (o, 5, q) by (¢°°, g% ¢*%Y, (¢°°, ¢t ¢1%h, (q55 PES) 121)

(q44 22 121),(6]44,6]11,6]121) (6]44 33 21) (q55 44 121) (6]22 121) (6]
q22 121), and(q33’ qll’ qul):

ABCD

P(15)[P(16) — %P (5)] — ¢**P(6)[P(7) + ¢"* P (H)] = gz (79
11 44 11 A BE

P(A[PA4 —gP®]—g " PRIP()+q P@A]= (12 4122 (7.6)
33 22 11 AC?D

PQAS[P(A3) — g™ P —q " POIP() +q P(D]= (2 4122 (7.7)
22 422 33 ABD?

PUIPO) — ¢**P(B)] ~ ¢*POIP10) + ¢ PD] = oz (78)
ABCE

P(12[P(14) — ¢™P(®)] — ¢®P3)[P(10) + ¢**P(1)] = iz gz (19
33 11 33 B*CE

P(A2[P(13) — g™ P(2D)] — ¢ PIIP(10 + 47 P(D)] = (2 172 (7.10)
ABDE

PA5[P(10) +¢*3P )] — ¢ PAD[P(7) + ¢™ P (4] = T T (7.11)
CDE?

P6)[P(14) — ¢''P(8)] — g™ P(3[P(16) — ¢**P(5)] = o gz (112
ACDE

P(9)[P(16) — ¢**P(5)] — g™ P(B)[ P(13) — ¢**P(2)] = ez (713

POIP4) — ¢1P@)] - ¢2P@[PA3) — ¢ PP Q)] = —o e (7.14)

(q121; q121)go :

We now begin our first proof of the 11-dissection of the generating fundfiggn) for
cranks.

First proof of Theorem 7.1. Beginning, as usual, with the generating function fQcq)
and rationalizing, we find that

(45 @)oo
(aq; )00 (@'0q; @)oo

Fa(q) =
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_ (a%q,d%q, a%q,a%q,a%, a’q,a%q, %, 4. 45 9o

@ g1
1
= @'% g1
1
) ((1 —a)(A—a®(1—a’)(1—db) (G@®)H (@) — agG(a“)H(az)})

1
T gy (PADIPAS — g PE] = g POIPT) + 4 P(A)

+A1 - L}g(PAB[P A4 — ¢ P®)] — g™ PRIP(7) + ¢ P (D))
+{A2)q?(P(15)[P(13) — ¢**P(2)] — ¢’ P ([P (7) + "' P(4)))

+{A3+ 1}g*(P(12[P(16) — ¢**P(5)] — ¢**P(B)[P(10) + ¢**P (1))
+{A2+ Ag+1)g*(P(AD[P(14) — g P(8)] — ¢**P(3)[P(10) + ¢**P(D)])
—{A2+ Aa)g>(P(12[P(13) — ¢**P(2)] — g™ P(9[P(10) + =P (D))
+{A1+ Ag)g"(P(AH[P(10) + ¢**P(D)] — ¢ P[P (T7) + ¢ P(A)])
—{A2+ As+ 1}g"*(P(B)[P(14) — ¢ P(8)] — ¢ P (I[P (16) — ¢**P(5)])
—{A2+ 1q° (P[P (16) — ¢*°P(5)] — ¢ P(B)[ P(13) — ¢**P(2)])
—{A3)q™(P(9)[P(14) — ¢''P(8)]

—q??P(3)[P(13) — ¢**P(2)])) (M0dSs).

where, in the last congruence, we appliéd) withm = 5 andn = 2, (7.2) withn = 4, 6,
and (7.3) withn =5, 2.

Applying (7.5—(7.14) to each of the dissection factors, respectively, above, we complete
the first proof of Theoreni.1L. [

Second proof of Theorem 7.1As in our second proofs of the 2, 3, 5 and 7-dissections,
we apply Theoren2.1and divide the series into residue classes modulo 11. If we set

o]

Toi= Y aq"™,

k=1,m=0
m=i(mod 11

we deduce that

(4; D% _ S km
- . -1 + Z akq (Am — Am+l)
(aq; @)oo(q/a; @)oo k=Lm=0

=14+ 2 — A){To — Tro} + (A1 — A){T1 — To}
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+(A2 — A3){To — Tg} + (A3 — A){T3 — T7}
+(Ag — As){Ty — T}

o0

_ Z . 2+2qk+2q2k+2q3k+3q4k
- AR R SRR

o q4k_1
+A a
1k§w “lgb - gl

= g% —q*
+ Ao a

o 4k q2k
+A3 ay
k:z_:oo 14qgk+ - 420

o0 g — g%
+A modSs). 7.15
4k_2: ak1+qk+~--+q10"( 5) (7.15)
=—00
The second proof of Theoreihl now follows from the following identities. Indeed, if

we substitute the identities of Theoreh®into (7.15 and collect terms, we complete the
second proof of Theorem1 [

Theorem 7.2. We have

o]

> =
Ak K. 4 ik
Pt 1+g8+---+¢q

(q; oo
(g ¢ oo (g2 g12H2

x{ABCD — 10gA%BE + 2¢?AC?D + 3¢°ABD? + 54*ABCE
—4¢°B2CE — 7¢"ABDE — 5¢*°*CDE? — 3°ACDE
—2¢"°BCDE}, (7.16)

> et
“Lgb g™

(q: @)oo
11; qll)oo (C] 121; q121)go

(¢
x{ABCD + qA’BE — 99°AC?D + 3¢3ABD? — 64*ABCE
+7¢°B?CE + 4q" ABDE + 6¢*°CDE? — 34°ACDE
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—2¢"°BCDE}, (7.17)

S 2k
1
Z Ak 3 “ 10k
PSR e o e
(9: ¢)oo
(g% 4™ o (12 ¢1212,
Xx{ABCD + qA?BE + 2¢q°AC?D — 8¢°ABD? + 5¢*ABCE
—44°B2CE + 49" ABDE — 5¢*°C DE?

—34°ACDE +9¢*°BCDE}, (7.18)

Ak K4 ... 4 ik
PV o7 SR

(45 9o
(g ¢ oo (g2 g12H2

x{ABCD + qA?BE + 2¢°AC?D + 3¢°ABD? — 64*ABCE

+7¢°B?CE — 7q"ABDE — 5¢*°C DE?
+84°ACDE — 2¢4"°BCDE}, (7.19)

o

11q4k
Z ak1+qk+.,,+qlﬂk
k=—00

(q; oo
(qll; qll)oo (C] 121; qlzl)go

x{ABCD + qA’BE + 2¢q°AC?D + 3¢°ABD? + 5¢*ABCE
—4¢4°B2CE + 49" ABDE + 64*°CDE?

—3¢°ACDE — 2¢'°BCDE}, (7.20)

where A = f(—¢%,—¢%), B = f(—q"",—¢*, C = f(—¢%, —¢®), D =
f(=q%, —¢??),andE = f(—q*° —¢Y).

We present only the proof o7 (16), since the proofs of the remaining four identities are
similar.

Proof. We calculate the partial fraction decomposition

11
14+gF+- + 4%
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_1_C10+ 1-¢° N 1- (8 1-¢7 18
1=l 1-gk 1=k 1k 1Pk

+11—_C6i -+ 11__;: ot 11__€§;k + 11—_2:52 Tt i Elqu. (7.21)
From the identity 7.21) and Theoren2.1, we find that
1) Z:ki@ oo = —
= 11_};0 k:i:o ak 11__C(§k 1 gz ioo 11 ngk
o
1 g kio " 11—_c52k = gz k_ioo r— c§6k
5 ? kio “ 11—_;; *io Ez i - cgsk
+i:_§ kio “ 11—_4'5; o ki «:go
_{1 0 1—C} (4; D%
1-0  1-) (g 9eo(@g: 9o
i i: EZ " i: gz (%g; ;I:Zgoq; 9oo
i i: E: i i: E: (g; q(()];jégz; 9o
i i: EZ i i: E: g g:izéoq; 9)oo
" i: EZ i i: EZ (g ;?ZZ%I; Doo (722
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Applying the elementary identity 4 " = —"(1 — ¢*¥™"), and rationalizing the denomi-
nator, we find that

.3
I(q) = %({—C —%Pq, g, g, 0q. 0. a0, a0, 8Cg; oo

=0 = Vg, g, . g, 8, g, Bq. (% @)oo
=3B -BYq. g, 9. 8q. 8, 9. 0q. % 9o
== Ve, g, B, g, 8, 8. g, % 9o

= = 8)g, g, Bq. Bq. g, Bq, g, % o). (7.23)

Next, applying 7.1) with (a,m,n) = ((,5,2), ({,4,1), ({,5,4), ({,3,2), and((, 3, 1),
respectively, on each summand @fZ3 and simplifying, we find that

1(q)= %(F(l&[mw) —q*P(B)] - ¢BPOIP(D) + " P(4)]

~10¢{P(15)[P(14) — ¢"'P®)1 - ¢**PB)[P(7) + ¢ P (4]}
+24%(P(15)[P(13) — ¢**P(2)] — ¢22P(9)[P(7) + ¢" P (D]}
+3¢%(P(12[P(16) — ¢**P(5)] — g**P(E)[P(10) + ¢**P (D]}
+5¢{P(12[P(14 — ¢"'P(®)] — ¢*PR)[P(10) + ¢*P (D]}
—4g°(P(12[P(13) — ¢**P(2)] — ¢"' P(O[P(10) + ¢*P (D]}
~7"(PA5[P(10) + ¢**P(1)] — ¢"' P[P (D) + ¢ P(H)]}
~5¢"%[P(6)[P(14) — ¢ P(8)] — ¢ P(J)[P(16) — ¢**P(5)])
—3¢°(P(9)[P(16) — ¢**P(5)] — ¢ P(B)[P(13) — ¢**P(2)])
—2q"%(P Q[P (14 — ¢"'P(®)] — ¢**P([P(13) — ¢**P(I1)).

Finally, applying 7.5-(7.14) to each of the dissection factors, respectively, we obtain
the right-hand side of7(16), which completes the proof of Theoref2. [

If we let a be a primitive 11th root of unity in Theoreifl, then we recover the identity
discovered by Hirschhofd 2]. Hirschhorn’s identity is a simplification of Garvan’s identity
given in[10, Theorem 6.7]The proof of Hirschhorn’s identity was first given by EKB
pp. 286—287]The idea illustrated in our first proof here is similar to that of Ekin.

Theorem7.2 can also be proved using identities found in Ekin’s pgdpeEqgs. (5.13)—
(5.17), p. 2153]Our approach of Theorem?2is different from that of Ekin.

8. Conclusion

In the beginning of this article, we mention that by substitutirtgy the corresponding
primitive root of unity, we obtain Garvan'’s identities proved10,11] Garvan highlighted
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to us that the identities if10,11]imply the congruences established in this paper. We briefly
explain his observation here.
Suppose, for some functidsi, (¢), we want to show that

Fa(q) = Galq) (mOdS(p—l)/2)~
Let Hy(q) = Fa(q) — Ga(q). Then

Ha(q) =) h(a,n)q",
n=0

wheréh(a, n) € Z[a, 1/al.Leth(a, n) = a'™h(a, n), where nowh(a, n) is a polynomial
in Z[a] andz (n) is the largest integésfor which 1/a* appearsim (a, n). Garvan’s identities
show thath (¢, n) = O for all roots of the cyclotomic polynomiab, (a). Sinceh(a, n) €
Zla], this implies thatD , (a) dividesi(a, n). Therefore,

h(a,n) =a ' M®,(a)Q(a,n) = a ' WTCDI25 1) 5(@)Qa, n),
whereQ(a, n) € Z[a]. This implies that
H,(q) = O(modS(p,l)/z).

Garvan’s observation allows us to deduce from [11, Eq. (2.16), 10, Theorem 8.16] re-
spectively, the 5-dissection @, (¢) (moda—*®10(a)) and the congruence

o] qZ
mZ.

= (aq; OIm(q/a; @m

e P U N P i
~ f2(—45, Zo)f( g\t @) +q 7 (=45, —¢%)
1 f2(=4%) 1\ 3 f(=¢°—4*
+<“+ ) (- 15)_<“+_> 2t g T

5
(2 +Z +1) 'p;q ) (modsy),

where
o0 151(n+1)/2
q q
Q) = ——=— D' ———
b(q 5 %00 ”;OO TS
and
152(n+1)/2
q
Wig) = Z Y T
n=—0oo

A direct proof of the congruence above in the spirit of our second method illustrated in this
paper has not been found. Note that if we substitute 1 in the congruence above and use
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Euler’s identity[10, Eq. (7.1)]

qﬂlz 1
—@n @D

we recover the Atkin—Swinnerton-Dyer congruenf&s heorem 1] This also provides an
explanation to the “curious fact” raised by GarJafn, second paragraph, p. 52]
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