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Abstract

We propose to use Lee–Yang theory of phase transitions as a practical tool to analyze experimentally anisotrop
nucleus–nucleus collisions. We argue that this method is more reliable than any other method, and that it is the natu
analyze collective effects.
 2003 Elsevier B.V.
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Fifty years ago, Yang and Lee [1] showed th
phase transitions can be characterized by the loca
of the zeroes of the grand partition function in t
complex plane. Since then, their theory has been
tensively used, in particular, to study phase transiti
in finite-size systems, via numerical simulations [
in lattice calculations, it has been applied to the el
troweak [3] and QCD phase transitions [4].

In this Letter, we propose to apply Lee–Yang the
for the first time to the analysis of experimen
data.1 More specifically, we show that it is the mo
natural way to study anisotropic flow in nucleu
nucleus collisions. Anisotropic flow is defined
a correlation between the azimuthal angleφ of an

E-mail address: ollie@spht.saclay.cea.fr (J.-Y. Ollitrault).
1 Lee–Yang zeroes were already used in analyzing multipli

distributions in high-energy collisions. But it was shown that
locations of the zeroes merely reflect general, well-known feat
of these distributions [5], and do not bring any new insight into
reaction dynamics.
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outgoing particle and the azimuthal angleΦR of
the impact parameter (see Fig. 1;ΦR is also called
the orientation of the reaction plane), which is b
characterized by the Fourier coefficients of the sing
particle distribution [6]

(1)vn ≡ 〈
cosn(φ −ΦR)

〉
.

In this expression,n is a positive integer and angu
lar brackets denote an average over many particles
longing to some phase-space region, and over m
collisions having approximately the same impact
rameter. In particular, the so-called elliptic flow [
v2 is a sensitive probe of the dense matter produ
in a nucleus–nucleus collision at ultrarelativistic en
gies [8].

While vn, defined by Eq. (1), is a trivial one-partic
observable which can easily be computed in a mo
or an event generator, the experimental situatio
quite different. Indeed, the reference directionΦR is
unknown experimentally, andvn can only be measure
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Fig. 1. Schematic picture of a nucleus–nucleus collision viewe
the plane transverse to the collision axisz. b is the impact paramete
ΦR its azimuthal angle.φ is the azimuthal angle of an outgoin
particle.

indirectly, from the azimuthal correlations between
detected particles. Furthermore,ΦR varies randomly
from one event to the other, which has a remarka
consequence: anisotropic flow appears as a truly
lective motion, in the sense that all outgoing partic
in a given event seem to be attracted towards som
bitrary direction.

The standard method for analyzing anisotropic fl
is to correlate particles with an estimate ofΦR [9].
However, this estimate is itself obtained from t
outgoing particles, and one essentially measure
two-particle correlation [10]. Intuitively, two-bod
correlations are not the appropriate tool to probe c
lective behaviour. Indeed, these two-particle meth
were shown to be inadequate due to various “n
flow” correlations from quantum statistics [11], res
nance decays, minijet production [12], etc., which
neglected and bias the analysis. Recently, new m
ods were developed, based on higher-order (typic
four-particle) correlations, together with a cumula
expansion which eliminates low-order nonflow co
relations [13]. However, it was argued that expe
mental results [14] could still be biased by nonflo
effects [15] at this order. In this Letter,vn will be an-
alyzed directly from the correlation between a lar
number of particles. It will be shown that the resu
are perfectly stable with respect to nonflow corre
tions, which involve a smaller number of particles.

Our new method is based on the following glob
observable, which is defined for each event:

(2)Qθ =
M∑

j=1

cosn(φj − θ),
wheren is the Fourier harmonic under study (n= 1 for
directed flowv1, n = 2 for elliptic flow), the sum runs
over allM detected particles,φj are their azimutha
angles, andθ is an arbitrary reference direction. Th
quantity is nothing but a projection of the “eve
flow-vector”, used in other methods to estimate
orientation of the reaction plane [9], on the transve
direction making an anglenθ with respect to thex-
axis. In practice, the sum in Eq. (2) is often weight
weights depending on the particle mass, transv
momentum and rapidity are used in order to red
statistical errors and increase the flow signal. They
omitted here for the sake of simplicity, but should
included in the actual analysis.

The central object in the method is the mom
generating function [16]

(3)G(z)≡ 〈
ezQ

θ 〉
,

wherez is a complex variable, and angular brack
now denote an average over a large number of ev
with the same impact parameter. The procedure
obtainvn (as will be shown below) is the following
choose a value ofθ ; constructQθ for each event
evaluateG(ir) for real, positiver; plot |G(ir)| as a
function of r; determine the first minimumr0. The
flow is given byvn � 2.405/Mr0.

Let us now justify the procedure. We first introdu
the cumulantsck , which are defined as [16]

(4)lnG(z)≡
+∞∑

k=1

ck

k! z
k.

The first two terms in this power-series expans
correspond to the average value ofQθ , and the squar
of its standard deviation, respectively,

(5)c1 = 〈
Qθ

〉
, c2 = 〈(

Qθ
)2〉 − 〈

Qθ
〉2
.

Note thatc1 vanishes by symmetry if the detector h
uniform azimuthal coverage.

The order of magnitude of the cumulants diffe
depending on whether or not there are collec
effects in the system. SinceQθ is the sum ofM
terms of order unity, andck involves(Qθ )k , the naive
expectation is thatck should be of orderMk or, more
generally, scale withM like Mk. As we shall see
later, this is precisely the case when anisotropic flow
present. When no collective effect is present, howe
cumulants are much smaller: one can view the sys
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as made of independent clusters of particles.G(z)

then factorizes into the product of the contributio
of each cluster, which is converted into a sum
the logarithm. Henceck scales onlylinearly with M.
For particles emitted with uncorrelated, random
distributed azimuthal angles, for instance, Eq.
givesc2 =M/2.

This shows that the value ofck for largek is the
natural observable to characterize collective effe
the largerk, the larger the contribution of collectiv
effects, relative to other contributions, which sc
like M. The asymptotic behaviour ofck for large k

therefore provides a cleaner separation between
lective effects and few-body correlations than fini
order cumulants [13]. This can be easily underst
physically: the cumulantck essentially isolates th
contribution of genuinek-particle correlations, by sub
tracting out most contributions from lower-order co
relations. In order to study collective effects, which
definition involve a large number of particles,k should
be as large as possible.

The asymptotic behaviour ofck for large k is
determined by the radius of convergence of the pow
series expansion, Eq. (4), i.e., by the singularity
lnG(z) which lies closest to the origin in the comple
plane. SinceG(z) has no singularity, the only possib
singularities of lnG(z) are the zeroes ofG(z). If
z0 denotes the zero closest to the origin,ck scales
typically like z−k

0 for largek. Therefore, ifck scales
like Mk (collective effects),z0 scales like 1/M. If
there is no collective effect,G(z) is the product of
contributions of small clusters, and the zeroes ofG(z)

are the zeroes of the individual contributions:z0 does
not depend onM.

We are now in a position to explain how o
approach relates to the theory of phase transition
Yang and Lee [1]. The starting point is the gra
partition function

(6)G(µ) =
+∞∑

N=0

ZNe
µN/kT ,

whereZN is the canonical partition function forN
particles at temperatureT in a volumeV (bothT and
V are fixed). Letµc denote a reference value of th
chemical potentialµ. The probabilityPN to haveN
particles in the system atµ = µc is

(7)PN ≡ ZNe
µcN/kT

G(µc)
.

The moment generating function of this probabil
distribution can be simply expressed in terms of
grand partition function, Eq. (6)

(8)G(z)≡
+∞∑

N=0

PNe
zN = G(µc + kT z)

G(µc)
.

This function is analogous to our generating functi
Eq. (3), with the number of particlesN instead ofQθ ,
and the volumeV instead of the multiplicityM. We
can repeat the previous discussions: if particles
correlated only within small clusters,z0 (the zero of
G(z) closest to the origin) is independent ofV . This
is the case when no phase transition occurs atµ= µc.
Now assume that a first-order transition, say, a liqu
gas transition, occurs atµ= µc . Then, the system ca
be any mixture of the low-density gas phase and
high-density liquid phase. The probability distributi
PN in Eq. (8) is widely spread between two valu
Nmin (gas) andNmax (liquid) which both scale like the
volumeV . Then, the partition functionG(z) depends
on the volumeV essentially through the combinatio
zV , and consequently its zeroes scale with the volu
like 1/V . The general result of Lee and Yang
precisely that a phase transition occurs atµ = µc if
the zeroes ofG(z) come closer and closer to the orig
z = 0 as the volume of the system,V , increases (note
however, that Ref. [1] is written in terms of the variab
y = ez instead ofz).

Let us come back to heavy ion collisions.
far, our analysis has been general, andQθ could be
replaced by any extensive variable in Eq. (3). W
are now going to specify what happens when th
is anisotropic flow in the system. We can repeat
discussion of Eqs. (3)–(5), but with all average valu
taken for a fixed orientation of the reaction planeΦR .
Such averages will be denoted by〈· · · |ΦR〉. Using the
definition ofvn, Eq. (1), and symmetry with respect
the reaction plane (which implies〈sinn(φ − ΦR)〉 =
0), and assuming for simplicity that the multiplici
M is the same for all events, one obtains from Eq.

(9)c1 = 〈
Qθ

∣∣ΦR

〉 =Mvn cos
(
n(ΦR − θ)

)
.

We neglect termsc3 and higher in Eq. (4). This
amounts to assuming that the probability distribut
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of Qθ is Gaussian for a fixedΦR : this is the centra
limit theorem, which holds ifM is large enough, an
if there is no other collective effect in the system. W
further neglect theΦR-dependence ofc2. Finally, av-
eraging overΦR , one obtains the following theoretic
expression ofG(z), which we denote byGc.l.(z) since
it corresponds to the central limit approximation

(10)Gc.l.(z)= ec2z
2/2I0(Mvnz),

where I0 is a modified Bessel function. Taking th
logarithm and expanding in powers ofz, one checks
that the cumulantck in Eq. (4) scales withM like Mk ,
as anticipated.

The first zeroes ofGc.l.(z) lie on the imaginary axis
at

(11)z0 = ir0 = ij01

Mvn
,

and at−z0, wherej01 � 2.405 is the first positive
root of the Bessel functionJ0(x). As expected from
the general discussion above, anisotropic flowvn,
being a collective effect, is completely determin
by z0. The situation is analogous to a first-ord
phase transition, in the sense that the position of
zero scales like 1/M, and the multiplicityM is the
analogue of the volumeV in Lee–Yang theory. The
important difference with statistical physics is that t
system size is much smaller. As a consequence, ze
never come very close to the origin, but the phys
involved is essentially the same.

In a second paper [17], Lee and Yang furth
showed that all zeroes lie on the imaginary axis
the variablez (or, equivalently, on the unit circle fo
y = ez) for a general class of models. It is interesti
to note that our theoretical estimate, Eq. (10), has
same property.

Fig. 2 displays the variation of|G(ir)| as a function
of r for simulated data. The data set containedNevts=
20 000 events. In each event,M = 300 particles are
emitted independently with an azimuthal distributi
dN/dφ ∝ 1 + 2v2 cos(2(φ − ΦR)), wherev2 = 6%,
and the azimuth of the reaction plane,ΦR , is randomly
chosen. These numbers are typical values for a m
central Au+ Au collision at

√
sNN = 130 GeV, as

analyzed by the STAR Collaboration [8]. The glob
observableQθ in Eq. (2) was constructed for eac
event with n = 2 and various values ofθ . Fig. 2
corresponds toθ = 0. The numerical results ar
compared with the theoretical estimate, Eq. (1
where we have takenc2 = M/2 (the expected valu
for independent particles). The excellent agreem
justifies the approximations made in deriving Eq. (1
However, a closer look at the numerical results (in
in Fig. 2) shows that unlike the theoretical estima
Fig. 2. Variation of|G(ir)| with r . The crosses are the values of|G(ir)|. The solid line displays the expected value|Gc.l.(ir)| defined by
Eq. (10).
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|G(ir)| does not strictly vanish: due to statistic
fluctuations, the zeroes ofG(z) are slightly off the
imaginary axis. This small deviation is physica
irrelevant, and we choose to investigate the minima
|G(z)|, rather than the zeroes ofG(z). We denote by
rθ0 the first minimum of|G(ir)|, where the superscrip
θ recalls that it may depend on the reference angleθ in
Eq. (2). IdentifyingG(z) with the theoretical estimat
Gc.l.(z), and using Eq. (11), we obtain the followin
estimate ofvn, which may also depend onθ :

(12)vθn ≡ j01

Mrθ0

.

This procedure was applied to the simulated d
The result is shown in Fig. 3.vθ2 coincides with the
input valuev2 = 6%, up to statistical fluctuations
Performing the analysis for several values ofθ , and
averagingvθ2 overθ , reduces this statistical error. W
finally obtain 5.95%: v2 is reconstructed with grea
accuracy.

For the sake of illustration, we also applied t
same procedure to simulated data with no flow. T
procedure yields a spurious “flow” value, due to s
tistical fluctuations, which is also shown in Fig. 3. T
magnitude of this spurious flow can easily be und
stood. The average in Eq. (3) is evaluated over a
nite number of events,Nevts. As a consequence,G(ir)
has statistical fluctuations, whose typical magnitud
1/

√
Nevts. For large enoughr, they become as large a

the expectation value given by Eq. (10), in which
setvn = 0 and c2 =M/2. This occurs when

(13)e−Mr2/4 ∼ 1√
Nevts

.

As soon asr is larger than this value, fluctuation
can produce a minimum of|G(ir)|. The correspond
ing “spurious flow” given by the analysis, Eq. (12
satisfies

(14)vθn � j01√
2M lnNevts

.

For our simulated data, the right-hand side (rhs
about 3.1%, which is depicted as the dashed line
Fig. 3. As expected, the values ofvθ2 lie below this
value, but only slightly. This is the main limitation o
our method:vn can be safely reconstructed only if it
larger than the rhs of Eq. (14).

Since no “nonflow” correlation between the par
cles was simulated, standard methods of flow anal
would have worked well too. However, the unique fe
ture of the present method is its absolute stability w
respect to such correlations. As an illustration, assu
that instead of emittingM particles in each event, w
ed
Fig. 3. The reconstructed valuevθ2 as a function ofθ . Squares: simulated data with inputv2 = 6% (same data as in Fig. 2). Circles: simulat
data with inputv2 = 0.
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emit M clusters, each cluster containingq collinear
particles. Then,Qθ is increased by a factor ofq . As a
consequence, the position of the first minimum,rθ0 , is
smaller by a factor ofq . Since the event multiplicity is
nowqM, one must replaceM with qM in the denomi-
nator of Eq. (12), so that the flow estimatevθn is strictly
the same, as it should. On the other hand, estimate
v2 from 2-particle or 4-particle methods [13] are ge
erally increased by such correlations. With the num
ical values above, the increase would be significan
2-particle methods (one obtainsv2 = 7.3% instead of
6%), but very small for 4-particle cumulants: in mo
cases of interest, these cumulants will give results v
similar to those obtained with the present method,
the latter is the most systematic one to disentangle
lective motion from other effects.

The method can be extended to the analysis
differential flow, i.e., the analysis ofvn as a function
of transverse momentum, particle type and rapid
This is explained in detail in Ref. [18], where we al
discuss thoroughly errors due to nonflow correlatio
statistical fluctuations, and show that the method
remarkably insensitive to azimuthal asymmetries
the detector acceptance.

We have shown that Lee–Yang theory of phase tr
sitions can be used as a practical means of ana
ing anisotropic flow experimentally. The method is e
pected to give results similar to cumulant methods,
is significantly simpler to implement, and formally e
egant. It does not require the knowledge of the re
tion plane and there is no need to construct correla
functions and cumulants. More generally, Lee–Ya
zeroes provide a natural probe of collective behavi
It would be interesting to extend the present appro
to other observables, in order to look for critical flu
tuations which may occur in the vicinity of a pha
transition [19].
f
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