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Abstract

We propose to use Lee-Yang theory of phase transitions as a practical tool to analyze experimentally anisotropic flow in
nucleus—nucleus collisions. We argue that this method is more reliable than any other method, and that it is the natural way to

analyze collective effects.
0 2003 Elsevier B.VOpen access under CC BY license.
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Fifty years ago, Yang and Lee [1] showed that outgoing particle and the azimuthal angier of
phase transitions can be characterized by the locationsthe impact parameter (see Fig. @ is also called
of the zeroes of the grand partition function in the the orientation of the reaction plane), which is best

complex plane. Since then, their theory has been ex-

characterized by the Fourier coefficients of the single-

tensively used, in particular, to study phase transitions particle distribution [6]

in finite-size systems, via numerical simulations [2]:
in lattice calculations, it has been applied to the elec-
troweak [3] and QCD phase transitions [4].

In this Letter, we propose to apply Lee—Yang theory
for the first time to the analysis of experimental
datal More specifically, we show that it is the most
natural way to study anisotropic flow in nucleus—
nucleus collisions. Anisotropic flow is defined as
a correlation between the azimuthal angleof an

E-mail address: ollie@spht.saclay.cea.fr (J.-Y. Ollitrault).

1 Lee-Yang zeroes were already used in analyzing multiplicity
distributions in high-energy collisions. But it was shown that the
locations of the zeroes merely reflect general, well-known features
of these distributions [5], and do not bring any new insight into the
reaction dynamics.
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vn = (cosn(¢ — ®p)). (1)

In this expressiong is a positive integer and angu-
lar brackets denote an average over many patrticles be-
longing to some phase-space region, and over many
collisions having approximately the same impact pa-
rameter. In particular, the so-called elliptic flow [7]
vp is a sensitive probe of the dense matter produced
in a nucleus—nucleus collision at ultrarelativistic ener-
gies [8].

While v,, defined by Eq. (1), is a trivial one-particle
observable which can easily be computed in a model
or an event generator, the experimental situation is
quite different. Indeed, the reference directidp is
unknown experimentally, ang, can only be measured
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Fig. 1. Schematic picture of a nucleus—nucleus collision viewed in
the plane transverse to the collision axi$ is the impact parameter,
®p its azimuthal angle¢ is the azimuthal angle of an outgoing
particle.

indirectly, from the azimuthal correlations between the
detected particles. Furthermor@g varies randomly
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wheren is the Fourier harmonic under study£ 1 for
directed flowv1, n = 2 for elliptic flow), the sum runs
over all M detected particlesp; are their azimuthal
angles, and is an arbitrary reference direction. This
quantity is nothing but a projection of the “event
flow-vector”, used in other methods to estimate the
orientation of the reaction plane [9], on the transverse
direction making an angleé with respect to thec-
axis. In practice, the sum in Eq. (2) is often weighted:
weights depending on the particle mass, transverse
momentum and rapidity are used in order to reduce
statistical errors and increase the flow signal. They are
omitted here for the sake of simplicity, but should be
included in the actual analysis.

The central object in the method is the moment
generating function [16]

from one event to the other, which has a remarkable _1.20°
consequence: anisotropic flow appears as a truly col- GQ)= (e ) ®)
lective motion, in the sense that all outgoing particles wherez is a complex variable, and angular brackets
in a given event seem to be attracted towards some ar-now denote an average over a large number of events
bitrary direction. with the same impact parameter. The procedure to
The standard method for analyzing anisotropic flow obtainv, (as will be shown below) is the following:

is to correlate particles with an estimate @k [9].
However, this estimate is itself obtained from the

choose a value of; constructQ? for each event,
evaluateG (ir) for real, positiver; plot |G(ir)| as a

outgoing particles, and one essentially measures afunction of r; determine the first minimumg. The

two-particle correlation [10]. Intuitively, two-body

correlations are not the appropriate tool to probe col-

flow is given byv, ~2.405/ M.
Let us now justify the procedure. We first introduce

lective behaviour. Indeed, these two-particle methods the cumulants;, which are defined as [16]

were shown to be inadequate due to various “non-

flow” correlations from quantum statistics [11], reso-

nance decays, minijet production [12], etc., which are
neglected and bias the analysis. Recently, new meth-
ods were developed, based on higher-order (typically,

four-particle) correlations, together with a cumulant
expansion which eliminates low-order nonflow cor-
relations [13]. However, it was argued that experi-
mental results [14] could still be biased by nonflow
effects [15] at this order. In this Lettew, will be an-
alyzed directly from the correlation between a large
number of particles. It will be shown that the results
are perfectly stable with respect to nonflow correla-
tions, which involve a smaller number of particles.
Our new method is based on the following global
observable, which is defined for each event:

M
Q% =Y cosn(e; —0),

j=1

2

+00

C
NG =Y k—’;zk.
k=1

The first two terms in this power-series expansion

correspond to the average value@f, and the square
of its standard deviation, respectively,

a={0").  e=(@"))-('" ®)

Note thatc; vanishes by symmetry if the detector has
uniform azimuthal coverage.

The order of magnitude of the cumulants differs
depending on whether or not there are collective
effects in the system. Sinc@? is the sum ofM
terms of order unity, and, involves(Q?)¥, the naive
expectation is that; should be of ordeM* or, more
generally, scale withM like M*. As we shall see
later, this is precisely the case when anisotropic flow is
present. When no collective effect is present, however,
cumulants are much smaller: one can view the system

(4)
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as made of independent clusters of particlé$z)
then factorizes into the product of the contributions
of each cluster, which is converted into a sum by
the logarithm. Hencey, scales onlylinearly with M.
For particles emitted with uncorrelated, randomly
distributed azimuthal angles, for instance, Eqg. (5)
givescy = M/2.

This shows that the value af, for largek is the
natural observable to characterize collective effects
the largerk, the larger the contribution of collective
effects, relative to other contributions, which scale
like M. The asymptotic behaviour af; for large k
therefore provides a cleaner separation between co
lective effects and few-body correlations than finite-

159
particles in the system at = u. is
7 neN/kT
Py=2NC @)
G(e)

The moment generating function of this probability
distribution can be simply expressed in terms of the
grand partition function, Eq. (6)

N _ g(,bbc +kTZ)
O Ge)

This function is analogous to our generating function,

Eq. (3), with the number of particle¥ instead ofQ?,
I-and the volumeV instead of the multiplicityM. We

can repeat the previous discussions: if particles are

+00
:GR)= ) Pye ®)
N=0

order cumulants [13]. This can be easily understood correlated only within small clustersg (the zero of

physically: the cumulant; essentially isolates the
contribution of genuin&-particle correlations, by sub-
tracting out most contributions from lower-order cor-
relations. In order to study collective effects, which by
definition involve a large number of particlésshould
be as large as possible.

The asymptotic behaviour ofy for large k is

G (z) closest to the origin) is independent Bt This

is the case when no phase transition occugsaty..
Now assume that a first-order transition, say, a liquid—
gas transition, occurs at= .. Then, the system can
be any mixture of the low-density gas phase and the
high-density liquid phase. The probability distribution
Py in Eq. (8) is widely spread between two values

detgrmined by_the radius of convergence Qf the POWer- Npyin (gas) andVmax (liquid) which both scale like the
series expansion, Eq. (4), i.e., by the singularity of volumeV. Then, the partition functio® (z) depends

In G(z) which lies closest to the origin in the complex
plane. Since&5(z) has no singularity, the only possible
singularities of InG(z) are the zeroes ofi(z). If
zo denotes the zero closest to the origin, scales
typically like zg" for large k. Therefore, ifc; scales
like M* (collective effects),zo scales like 1M. If
there is no collective effect7(z) is the product of
contributions of small clusters, and the zeroe&¢f)
are the zeroes of the individual contributiops:does
not depend o/ .

We are now in a position to explain how our

on the volumeV essentially through the combination
zV, and consequently its zeroes scale with the volume
like 1/V. The general result of Lee and Yang is
precisely that a phase transition occurguat . if
the zeroes of; (z) come closer and closer to the origin
z = 0 as the volume of the syste¥i, increases (note,
however, that Ref. [1] is written in terms of the variable
y = €% instead of).

Let us come back to heavy ion collisions. So
far, our analysis has been general, apd could be
replaced by any extensive variable in Eqg. (3). We

approach relates to the theory of phase transitions of are now going to specify what happens when there

Yang and Lee [1]. The starting point is the grand
partition function

+00
Gy =) Zye"NH,
N=0

(6)

where Zy is the canonical partition function fav
particles at temperatufg in a volumeV (bothT and
V are fixed). Letu. denote a reference value of the
chemical potentialt. The probabilityPy to have N

is anisotropic flow in the system. We can repeat the
discussion of Egs. (3)—(5), but with all average values
taken for a fixed orientation of the reaction plabg.
Such averages will be denoted by- |®r). Using the
definition ofv,, Eq. (1), and symmetry with respect to
the reaction plane (which impligsinn(¢ — @g)) =

0), and assuming for simplicity that the multiplicity
M is the same for all events, one obtains from Eq. (2)

c1=(0°|®g) = Mv, con(Pr — ). )
We neglect termsz and higher in Eq. (4). This
amounts to assuming that the probability distribution
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of 07 is Gaussian for a fixed: this is the central
limit theorem, which holds itV is large enough, and
if there is no other collective effect in the system. We
further neglect theg-dependence afz. Finally, av-
eraging ove g, one obtains the following theoretical
expression of5 (z), which we denote by ¢ (z) since

it corresponds to the central limit approximation

Gey.(2) = €212 1o (Mv,2), (10)

where Iy is a modified Bessel function. Taking the
logarithm and expanding in powers gf one checks
that the cumulant; in Eq. (4) scales witiM like M*,
as anticipated.

The first zeroes ofi¢).(z) lie on the imaginary axis
at
1jor
Muv,’
and at—zo, where jo1 >~ 2.405 is the first positive
root of the Bessel functiodp(x). As expected from
the general discussion above, anisotropic floy
being a collective effect, is completely determined
by zo. The situation is analogous to a first-order

0=irg= (1)
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system size is much smaller. As a consequence, zeroes
never come very close to the origin, but the physics
involved is essentially the same.

In a second paper [17], Lee and Yang further
showed that all zeroes lie on the imaginary axis of
the variablez (or, equivalently, on the unit circle for
y = ¢%) for a general class of models. It is interesting
to note that our theoretical estimate, Eq. (10), has the
same property.

Fig. 2 displays the variation 06 (ir)| as a function
of r for simulated data. The data set contaiMggis=
20000 events. In each evemt, = 300 particles are
emitted independently with an azimuthal distribution
dN/d¢p x 1+ 2v2c092(¢p — Dg)), Wherevy = 6%,
and the azimuth of the reaction plaig, is randomly
chosen. These numbers are typical values for a mid-
central Au+ Au collision at ./snn = 130 GeV, as
analyzed by the STAR Collaboration [8]. The global
observableQ? in Eq. (2) was constructed for each
event withn = 2 and various values of. Fig. 2
corresponds to¥ = 0. The numerical results are
compared with the theoretical estimate, Eq. (10),
where we have takem, = M/2 (the expected value

phase transition, in the sense that the position of the for independent particles). The excellent agreement

zero scales like AM, and the multiplicityM is the
analogue of the volum#& in Lee—Yang theory. The
important difference with statistical physics is that the

1 8 T T

justifies the approximations made in deriving Eq. (10).
However, a closer look at the numerical results (inlay
in Fig. 2) shows that unlike the theoretical estimate,

lainl X
I, (in)
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Fig. 2. Variation of|G(ir)| with r. The crosses are the values|6f(ir)|. The solid line displays the expected vali&. (ir)| defined by

Eq. (10).
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|G(ir)| does not strictly vanish: due to statistical nite number of eventsyeyts AS @ consequenceé;(ir)
fluctuations, the zeroes af(z) are slightly off the has statistical fluctuations, whose typical magnitude is
imaginary axis. This small deviation is physically 1/./Newts Forlarge enough, they become as large as
irrelevant, and we choose to investigate the minima of the expectation value given by Eq. (10), in which we
|G(z)|, rather than the zeroes 6f(z). We denote by setv, =0 and e = M/2. This occurs when

rg the first minimum of G (ir)|, where the superscript ) 1

0 recalls that it may depend on the reference adgle ¢ " /4~ ——. (13)

Eqg. (2). IdentifyingG(z) with the theoretical estimate v N_e"ts _ _
Ge1.(2), and using Eq. (11), we obtain the following As soon asr is larger than this value, fluctuations

estimate ofs,,, which may also depend an can produce a minimum gfz(ir)|. The correspond-
. ing “spurious flow” given by the analysis, Eq. (12),
o = 1019. (12) satisfies .
Mrq 0<__ J01 (14)

v .
This procedure was applied to the simulated data.  +2M N News
The result is shown in Fig. 4 coincides with the For our simulated data, the right-hand side (rhs) is
input valuevy = 6%, up to statistical fluctuations. about 31%, which is depicted as the dashed line in
Performing the analysis for several valueséofand Fig. 3. As expected, the values 0% lie below this
averagingvg overd, reduces this statistical error. We value, but only slightly. This is the main limitation of
finally obtain 595%: v, is reconstructed with great our methody, can be safely reconstructed only if it is
accuracy. larger than the rhs of Eq. (14).

For the sake of illustration, we also applied the Since no “nonflow” correlation between the parti-
same procedure to simulated data with no flow. The cles was simulated, standard methods of flow analysis
procedure yields a spurious “flow” value, due to sta- would have worked well too. However, the unique fea-
tistical fluctuations, which is also shown in Fig. 3. The ture of the present method is its absolute stability with
maghnitude of this spurious flow can easily be under- respectto such correlations. As an illustration, assume
stood. The average in Eq. (3) is evaluated over a fi- that instead of emitting/ particles in each event, we

0.07 T T T

0.06 E—R_n_n I.....-..III---- = =

0.05 - 4
0.04 .
DO P S S M T T I e LT _'

0.02 | » . o ® .

0.01 - .

0 1 1 1
0 /8 /4 3n/8 /2

Fig. 3. The reconstructed valwg as a function ob. Squares: simulated data with inpyt= 6% (same data as in Fig. 2). Circles: simulated
data with inputv, = 0.
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