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Abstract

In the framework of superfield approach, we derive the local, covariant, continuous and nilpotent (anti-)BRS
(anti-)co-BRST symmetry transformations on theU(1) gauge field (Aµ) and the (anti-)ghost fields ((C̄) C) of the Lagrangian
density of the two (1+ 1)-dimensional QED by exploiting the (dual-)horizontality conditions defined on the four (2+ 2)-
dimensional supermanifold. The long-standing problem of the derivation of the above symmetry transformations for th
(Dirac) fields (ψ̄,ψ) in the framework of superfield formulation is resolved by a new set of restrictions on the(2 + 2)-
dimensional supermanifold. These new physically interesting restrictions on the supermanifold owe their origin to the in
of conserved currents of the theory. The geometrical interpretation for all the above transformations is provided in the fra
of superfield formalism.
 2004 Elsevier B.V.
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1. Introduction

One of the most attractive and intuitive geometrical approaches to gain an insight into the phys
mathematics behind the Becchi–Rouet–Stora–Tyutin (BRST) formalism is the superfield formulation [1–6]
scheme, aD-dimensional gauge theory (endowed with the first-class constraints in the language of Dirac [
considered on a(D+2)-dimensional supermanifold parameterized byD-number of spacetime (even) co-ordina
xµ (µ = 0,1,2, . . . ,D−1) and a couple of (odd) Grassmannian variablesθ andθ̄ (with θ2 = θ̄2 = 0, θ θ̄ + θ̄θ = 0).
In general, the(p + 1)-form supercurvaturẽF constructed from the superexterior derivatived̃ (with d̃2 = 0) and
the super-p-form connectionÃ of a p-form (p = 1,2,3, . . . ,) gauge theory through the Maurer–Cartan equa
(i.e., d̃Ã + Ã ∧ Ã = F̃ ) is restricted to be flat along the Grassmannian directions of the(D + 2)-dimensional
supermanifold due to the so-called horizontality condition.1 Mathematically, this condition implies̃F = F where

E-mail address: malik@boson.bose.res.in (R.P. Malik).
1 Nakanishi and Ojima call it the “soul-flatness” condition which amounts to setting the Grassmannian components of a(p + 1)-form

supercurvature tensor (for ap-form gauge theory) equal to zero [9].
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F = dA + A ∧ A is the(p + 1)-form curvature defined on the ordinaryD-dimensional spacetime manifold. Th
horizontality condition, where only one of the three de Rham cohomological operators2 is exploited, leads to th
derivation of the nilpotent (anti-)BRST symmetry transformations on the gauge- and (anti-)ghost fields
(anti-)BRST invariant Lagrangian density of a givenD-dimensionalp-form gauge theory.

In a recent set of papers [15–17], all the three (super)de Rham cohomological operators have been e
in the generalized versions of the horizontality condition, to derive the (anti-)BRST, (anti-)co-BRST
bosonic symmetry (which is equal to the anti-commutator(s) of the (anti-)BRST and (anti-)co-BRST symm
transformations for the free one-form Abelian gauge theory in two dimensions (2D) of spacetime. For the de
of the above nilpotent symmetries, the super(co-)exterior derivatives(δ̃)d̃ have been exploited in the (dua
horizontality conditions on the four(2+ 2)-dimensional supermanifold. The Lagrangian formulation of the ab
symmetries has also been carried out in a set of papers [18–20] where it has been shown that this theory
(i) an example of a tractable field theoretical model for the Hodge theory, and (ii) an example of a new c
topological field theory where the Lagrangian density turns out to be like Witten type topological field theo
the symmetries of the theory are that of Schwarz type. Similar symmetries for the self-interacting 2D non-
gauge theory have also been obtained in the framework of 2D Lagrangian formalism [21] as well as in t
(2 + 2)-dimensional superfield formulation [22]. Furthermore, the above type of symmetries have been sh
exist for the 4D 2-form free Abelian gauge theory in the Lagrangian formalism [23,24].

One of the most difficult and long-standing problems in the realm of superfield approach to BRST formal
been to derive the (anti-)BRST symmetry transformations on the matter (e.g., Dirac, complex scalar, etc.) fi
a given interactingp-form gauge theory. The purpose of the present Letter is to demonstrate that an addition
restrictions, besides the (dual-)horizontality conditions w.r.t. super(co-)exterior derivatives(δ̃)d̃, are required on the
(D + 2)-dimensional supermanifold for the derivation of the (anti-)BRST and (anti-)co-BRST transformatio
the matter fields. For this purpose, as a prototype field theoretical model, we choose the two-dimensional in
U(1) gauge theory (i.e., QED3) and show that the (anti-)BRST and (anti-)co-BRST symmetry transformatio
the matter fields, derived in our earlier works [25,26] in the framework of Lagrangian formalism, can be ob
by exploiting the invariance of the conserved (super)currents constructed by the (super)Dirac fields of th
on a (super)manifold. In a more precise and sophisticated language, theequality of the supercurrents̃Jµ(x, θ, θ̄)

and J̃
(5)
µ (x, θ, θ̄) constructed by the superfields (cf. Eqs. (4.2) and (4.9) below) on the four(2 + 2)-dimensional

supermanifoldwith the conserved currentsJµ(x) = (ψ̄γµψ)(x) andJ (5)
µ ((x) = (ψ̄γµγ5ψ)(x) constructed by the

ordinary Dirac fields on the 2D ordinary manifold leads to the derivation of the (anti-)BRST and (anti-)co-
symmetry transformations on the Dirac fields, respectively. The above equality emerges automatically an
imposed by hand. We also provide, in the present Letter, the geometrical interpretations for the nilpotent sym
and the corresponding nilpotent generators.

The outline of our present Letter is as follows. In Section 2, we recapitulate the salient features of our
works [25,26] on the existence of the off-shell nilpotent (anti-)BRST- and (anti-)co-BRST symmetries
Lagrangian formulation for theinteracting U(1) gauge theory in two dimensions of spacetime. Section 3 is dev
to the derivation of the above symmetry transformations on the gauge fieldAµ and the (anti-)ghost fields(C̄) C by
exploiting the (dual-)horizontality conditions on the four(2+2)-dimensional supermanifold [17,22]. This exerc
is carried out for the sake of this Letter to be self-contained. The central of our Letter is Section 4 where w
the above symmetry transformations for the matter (Dirac) fields by invoking theinvariance of the conserved

2 On an ordinary manifold without a boundary, the three operators(d, δ,∆) form a set of de Rham cohomological operators where(δ)d

are the (co-)exterior derivatives withd = dxµ∂µ, δ = ± ∗ d∗ andd2 = δ2 = 0. Here∗ is the Hodge duality operation on the manifold. T
Laplacian operator∆ = (d + δ)2 = {d, δ} turns out to be the Casimir operator for the full set of algebra:δ2 = 0,d2 = 0,∆ = {d, δ}, [∆,d] = 0,
[∆,δ] = 0 obeyed by these cohomological operators belonging to the geometrical aspects of the subject of differential geometry
[10–14] for details).

3 A dynamically closed and locally gauge invariant system of the photon and Dirac fields.
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currents as the physical restriction on the supermanifold. Finally, we make some concluding remarks and
a few future directions in Section 5 for further investigations.

2. Preliminary: (anti-)BRST- and (anti-)co-BRST symmetries

To recapitulate the bare essentials of our earlier works [25,26] on QED in two dimensions, let us begin w
(anti-)BRST invariant Lagrangian densityLb for the interacting two (1+ 1)-dimensional (2D)U(1) gauge theory
in the Feynman gauge [27–29]

Lb = −1

4
FµνFµν + ψ̄

(
iγ µDµ −m

)
ψ +B(∂ ·A)+ 1

2
B2 − i∂µC̄∂µC

(2.1)≡ 1

2
E2 + ψ̄

(
iγ µDµ −m

)
ψ +B(∂ ·A)+ 1

2
B2 − i∂µC̄∂µC,

whereFµν = ∂µAν − ∂νAµ is the field strength tensor for theU(1) gauge theory that is derived from the
form dA = (1/2)(dxµ ∧ dxν)Fµν .4 As is evident, the latter is constructed by the application of the ext
derivatived = dxµ ∂µ (with d2 = 0) on the 1-formA = dxµAµ (which defines the vector potentialAµ). It will
be noted that in 2D,Fµν has only the electric component (i.e.,F01 = E) and there is no magnetic compone
associated with it. The gauge-fixing term(∂ ·A) is derived through the operation of the co-exterior derivativeδ (with
δ = −∗d∗, δ2 = 0) on the one-formA (i.e.,δA = −∗d ∗A = (∂ ·A)), where∗ is the Hodge duality operation. Th
fermionic Dirac fields(ψ, ψ̄), with the massm and chargee, couple to theU(1) gauge fieldAµ (i.e.,−eψ̄γ µAµψ)
through the conserved currentJµ = ψ̄γµψ . The anti-commuting (CC̄ + C̄C = 0, C2 = C̄2 = 0, Cψ + ψC = 0,
etc.) (anti-)ghost fields(C̄) C are required to maintain the unitarity and “quantum” gauge (i.e., BRST) invari
together at any arbitrary order of perturbation theory.5 The kinetic energy term(E2/2) of (2.1) can be linearize
by invoking an auxiliary fieldB

(2.2)LB = BE − 1

2
B2 + ψ̄

(
iγ µDµ −m

)
ψ +B(∂ ·A)+ 1

2
B2 − i∂µC̄∂µC,

which is the analogue of the Nakanishi–Lautrup auxiliary fieldB that is required to linearize the gauge-fixi
term−(∂ ·A)2/2 in (2.1). The above Lagrangian density (2.2) respects the following off-shell nilpotent (s2

(a)b = 0,

s2
(a)d = 0) (anti-)BRST (s(a)b),6 and (anti-)dual(co)-BRST (s(a)d) symmetry transformations (withsbsab + sabsb =

0, sdsad + sadsd = 0) [25,26]

sbAµ = ∂µC, sbC = 0, sbC̄ = iB, sbψ = −ieCψ,

sbψ̄ = −ieψ̄C, sbB = 0, sbB = 0, sbE = 0, sb(∂ ·A) = �C,

sabAµ = ∂µC̄, sabC̄ = 0, sabC = −iB, sabψ = −ieC̄ψ,

(2.3)sabψ̄ = −ieψ̄C̄, sabB = 0, sabB = 0, sabE = 0, sab(∂ ·A) = �C̄,

4 We adopt here the conventions and notations such that the 2D flat Minkowski metric is:ηµν = diag(+1,−1) and � = ηµν∂µ∂ν =
(∂0)

2 − (∂1)
2, εµν = −εµν , F01 = E = ∂0A1 − ∂1A0 = −εµν∂µAν = F10, ε01 = ε10 = +1, Dµψ = ∂µψ + ieAµψ . The Diracγ matrices

in two dimensions are chosen to be:γ 0 = σ2, γ 1 = iσ1, γ5 = γ 0γ 1 = σ3, {γµ,γ ν} = 2ηµν , γµγ5 = εµνγ
ν . Hereσ ’s are the usual 2× 2

Pauli matrices and the Greek indices:µ,ν,ρ . . . = 0,1 correspond to the spacetime directions on the manifold.
5 The full strength of the (anti-)ghost fields turns up in the discussion of the unitarity and gauge invariance for the perturbative com

in the realm of non-Abelian gauge theory where the loop diagrams of the gauge (gluon) fields play a very important role (see, e.g
details).

6 We adopt here the notations and conventions followed in [29]. In fact, in its full glory, a nilpotent (δ2
B = 0) BRST transformationδB is

equivalent to the product of an anti-commuting (ηC = −Cη, ηC̄ = −C̄η, ηψ = −ψη, ηψ̄ = −ψ̄η, etc.) spacetime independent parameteη

andsb (i.e.,δB = ηsb) wheres2
b

= 0.



R.P. Malik / Physics Letters B 584 (2004) 210–219 213

sely

ts the
ST

etry

y the de

charges

he

inates

ne
t

match.
perfield
rictions
sdAµ = −εµν∂
νC̄, sdB = 0, sd (∂ ·A) = 0, sd C̄ = 0, sdC = −iB,

sdB = 0, sdψ = −ieC̄γ5ψ, sdψ̄ = +ieψ̄C̄γ5, sdE = �C̄,

sadAµ = −εµν∂
νC, sadB = 0, sad(∂ ·A) = 0, sadC = 0, sadC̄ = +iB,

(2.4)sadB = 0, sadψ = −ieCγ5ψ, sadψ̄ = +ieψ̄Cγ5, sadE = �C.

The noteworthy points, at this stage, are

(i) under the (anti-)BRST and (anti-)co-BRST transformations, it is the kinetic energy term (more preciE

itself) and the gauge-fixing term (more accurately(∂ ·A) itself) that remain invariant, respectively.
(ii) The electric fieldE and(∂ · A) owe their origin to the operation of cohomological operatorsd andδ on the

one-formA = dxµAµ, respectively.
(iii) For the (anti-)co-BRST transformations to be the symmetry transformations for (2.2), there exis

restriction thatm = 0 for the Dirac fields. There is no such restriction for the validity of the (anti-)BR
symmetry transformations.

(iv) The anti-commutator(sw = {sbsd} = {sab, sad}) of the above nilpotent symmetries is a bosonic symm
transformationsw (with s2

w �= 0) for the Lagrangian density (2.2) [26].
(v) The operator algebra among the above transformations is exactly identical to the algebra obeyed b

Rham cohomological operators.
(vi) The symmetry transformations in (2.3) and (2.4) are generated by the local, conserved and nilpotent

Q(a)b andQ(a)d . This statement can be succinctly expressed in the mathematical form as

(2.5)srΣ(x) = −i
[
Σ(x),Qr

]
±, r = b, ab, d, ad,

where the local generic fieldΣ = Aµ,C, C̄,ψ, ψ̄,B,B and the(+)− signs, as the subscripts on t
(anti-)commutator[ , ]±, stand forΣ being (fermionic) bosonic in nature.

3. Nilpotent symmetries for the gauge- and (anti-)ghost fields

We begin here with a four (2+ 2)-dimensional supermanifold parametrized by the superspace coord
ZM = (xµ, θ, θ̄ ) wherexµ(µ = 0,1) are a couple of even (bosonic) spacetime coordinates andθ and θ̄ are the
two odd (Grassmannian) coordinates (withθ2 = θ̄2 = 0, θ θ̄ + θ̄ θ = 0). On this supermanifold, one can defi
a supervector superfield̃AM (i.e., ÃM = (Bµ(x, θ, θ̄ ),Φ(x, θ, θ̄), Φ̄(x, θ, θ̄)) with Bµ,Φ, Φ̄ as the componen
multiplet superfields [4]. The superfieldsBµ,Φ, Φ̄ can be expanded in terms of the basic fields (Aµ,C, C̄) and
auxiliary fields (B,B) of (2.2) and some extra secondary fields as follows

Bµ(x, θ, θ̄) = Aµ(x)+ θR̄µ(x)+ θ̄Rµ(x)+ iθ θ̄Sµ(x),

Φ(x, θ, θ̄) = C(x)+ iθB̄(x)− iθ̄B(x)+ iθ θ̄s(x),

(3.1)Φ̄(x, θ, θ̄) = C̄(x)− iθ B̄(x)+ iθ̄B(x) + iθ θ̄ s̄(x).

It is straightforward to note that the local fieldsRµ(x), R̄µ(x), C(x), C̄(x), s(x), s̄(x) are fermionic (anti-
commuting) in nature and the bosonic (commuting) local fields in (3.1) are:Aµ(x), Sµ(x), B(x), B̄(x), B(x),
B̄(x). It is unequivocally clear that, in the above expansion, the bosonic- and fermionic degrees of freedom
This requirement is essential for the validity and sanctity of any arbitrary supersymmetric theory in the su
formulation. In fact, all the secondary fields will be expressed in terms of basic fields due to the rest
emerging from the application of horizontality condition (i.e.,F̃ = F ), namely;

(3.2)F̃ = 1(
dZM ∧ dZN

)
F̃MN = d̃Ã ≡ dA = 1(

dxµ ∧ dxν
)
Fµν = F,
2 2
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where the superexterior derivatived̃ and the connection superone-form̃A are defined as

d̃ = dZM ∂M = dxµ ∂µ + dθ ∂θ + dθ̄ ∂θ̄ ,

(3.3)Ã = dZM ÃM = dxµ Bµ(x, θ, θ̄ )+ dθ Φ̄(x, θ, θ̄)+ dθ̄ Φ(x, θ, θ̄).

In physical language, this requirement implies that the physical fieldE, derived from the curvature termFµν , does
not get any contribution from the Grassmannian variables. In other words, the physical electric fieldE for 2D QED
remains intact in the superfield formulation. Mathematically, the condition (3.2) implies the “flatness” of
components of the supercurvature (2-form) tensorF̃MN that are directed along theθ and/orθ̄ directions of the
supermanifold. To this end in mind, first we expandd̃Ã as

d̃Ã = (
dxµ ∧ dxν

)
(∂µBν)− (dθ ∧ dθ)(∂θ Φ̄)+ (

dxµ ∧ dθ̄
)
(∂µΦ − ∂θ̄Bµ)

(3.4)− (dθ ∧ dθ̄)(∂θΦ + ∂θ̄ Φ̄)+ (
dxµ ∧ dθ

)
(∂µΦ̄ − ∂θBµ)− (dθ̄ ∧ dθ̄)(∂θ̄Φ).

Ultimately, the application of soul-flatness (horizontality) condition (d̃Ã = dA) yields [17]

Rµ(x) = ∂µC(x), R̄µ(x) = ∂µC̄(x), s(x) = s̄(x)= 0,

(3.5)Sµ(x)= ∂µB(x), B(x)+ B̄(x) = 0, B(x)= B̄(x) = 0.

The insertion of all the above values in the expansion (3.1) leads to the derivation of the (anti-)BRST sym
for the gauge- and (anti-)ghost fields of the Abelian gauge theory. In addition, this exercise provid
physical interpretation for the (anti-)BRST chargesQ(a)b as the generators (cf. Eq. (2.5)) of translations (
Lim θ̄→0(∂/∂θ),Limθ→0(∂/∂θ̄)) along the Grassmannian directions of the supermanifold. Both these observ
can be succinctly expressed, in a combined way, by re-writing the superexpansion (3.1) as

Bµ(x, θ, θ̄) = Aµ(x)+ θ
(
sabAµ(x)

) + θ̄
(
sbAµ(x)

) + θ θ̄
(
sbsabAµ(x)

)
,

Φ(x, θ, θ̄) = C(x)+ θ
(
sabC(x)

) + θ̄
(
sbC(x)

) + θ θ̄
(
sbsabC(x)

)
,

(3.6)Φ̄
(
x, θ, θ̄

) = C̄(x)+ θ
(
sabC̄(x)

) + θ̄
(
sbC̄(x)

) + θ θ̄
(
sbsabC̄(x)

)
.

To obtain the (anti-)co-BRST transformations on the gauge- and (anti-)ghost fields, we exploit the
horizontality conditionδ̃Ã = δA on the(2 + 2)-dimensional supermanifold wherẽδ = − - d̃- is the super-co
exterior derivative on the four(2 + 2)-dimensional supermanifold andδ = − ∗ d∗ is the co-exterior derivative o
the ordinary 2D manifold. The Hodge duality operations on the supermanifold and ordinary manifold are d
by - and∗, respectively. The- operations on the superdifferentials(dZM) and their wedge products(dZM ∧dZN),
etc., defined on the(2+ 2)-dimensional supermanifold, are [22,31]

-
(
dxµ

) = εµν(dxν ∧ dθ ∧ dθ̄), -(dθ) = 1

2!ε
µν(dxµ ∧ dxν ∧ dθ̄),

-(dθ̄) = 1

2!ε
µν(dxµ ∧ dxν ∧ dθ), -

(
dxµ ∧ dxν

) = εµν(dθ ∧ dθ̄),

-
(
dxµ ∧ dθ

) = εµν(dxν ∧ dθ̄), -
(
dxµ ∧ dθ̄

) = εµν(dxν ∧ dθ),

-(dθ ∧ dθ) = 1

2!s
θθ εµν(dxµ ∧ dxν), -(dθ ∧ dθ̄) = 1

2! s
θθ̄ εµν(dxµ ∧ dxν),

-(dθ̄ ∧ dθ̄) = 1

2!s
θ̄ θ̄ εµν(dxµ ∧ dxν), -(dxµ ∧ dθ ∧ dθ̄) = εµν

(
dxν

)
,

-(dxµ ∧ dxν ∧ dθ ∧ dθ̄) = εµν, -(dxµ ∧ dxν ∧ dθ) = εµν(dθ̄),

(3.7)-(dxµ ∧ dxν ∧ dθ̄) = εµν(dθ), -(dxµ ∧ dxν ∧ dθ ∧ dθ) = εµνs
θθ ,
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wheress are the symmetric (i.e.,sθθ̄ = sθ̄θ ) constant quantities on the Grassmannian submanifold of the
(2+ 2)-dimensional supermanifold. They are introduced to take care of the fact that two successive- operation on
any differential should yield the same differential (see, [31] for detail discussions). With the above inputs, it
checked that the superscalar superfieldδ̃Ã = − - d̃ - Ã, turns out to be

(3.8)δ̃Ã = (∂ · B)+ sθθ (∂θΦ)+ sθ̄ θ̄ (∂θ̄ Φ̄)+ sθθ̄ (∂θ Φ̄ + ∂θ̄Φ).

Ultimately, the dual-horizontality restrictioñδÃ = δA produces the following restrictions on the compon
superfields (see, e.g., [31] for details)

(3.9)∂θ Φ̄ + ∂θ̄Φ = 0, ∂θΦ = 0, ∂θ̄ Φ̄ = 0, (∂ ·B) = (∂ ·A),

where, as is evident, the r.h.s. of the last entry in the above equation is due toδA = (∂ · A). Exploiting the
superexpansions of (3.1), we obtain

(∂ · R)(x) = (∂ · R̄)(x) = (∂ · S)(x) = 0, s(x) = s̄(x) = 0,

(3.10)B(x) = 0, B̄(x) = 0, B(x)+ B̄(x) = 0.

It is clear from the above that we cannot get aunique solution forRµ, R̄µ andSµ in terms of the basic fields of th
Lagrangian density (2.2). This is why there are non-local and non-covariant solutions for these in the case
in 4D (see, e.g., [31]). It is interesting, however, to point out that for 2D QED, we have the local and co
solutions as

(3.11)Rµ = −εµν∂
νC̄, R̄µ = −εµν∂

νC, Sµ = +εµν∂
νB.

With the above insertions, it can be easily checked that the expansion (3.1) becomes

Bµ(x, θ, θ̄) = Aµ(x)+ θ
(
sadAµ(x)

) + θ̄
(
sdAµ(x)

) + θ θ̄
(
sdsadAµ(x)

)
,

Φ(x, θ, θ̄) = C(x)+ θ
(
sadC(x)

) + θ̄
(
sdC(x)

) + θ θ̄
(
sdsadC(x)

)
,

(3.12)Φ̄(x, θ, θ̄) = C̄(x)+ θ
(
sadC̄(x)

) + θ̄
(
sd C̄(x)

) + θ θ̄
(
sdsadC̄(x)

)
.

Thus, the geometrical interpretation for the generatorsQ(a)d of the (anti-)co-BRST symmetries is identical to th
of the (anti-)BRST chargesQ(a)b. However, there is a clear-cut distinction betweenQ(a)d andQ(a)b when the
transformations on the (anti-)ghost fields are considered. For instance, the BRST chargeQb generates a symmetr
transformation such that the superfieldΦ̄(x, θ, θ̄) becomesanti-chiral and the superfieldΦ(x, θ, θ̄) becomes an
ordinary local fieldC(x). In contrast, the co-BRST chargeQd generates a symmetry transformation under wh
just theopposite of the above happens. Similarly, the distinction betweenQab andQad can be argued where on
of the above superfields becomeschiral.

4. Nilpotent symmetries for the Dirac fields

In contrast to the (dual-)horizontality conditions that rely on the (super)co-exterior derivatives(δ̃)δ, the (super)
exterior derivative(d̃)d and the (super)one-form(Ã)A for the derivation of the (anti-)BRST and (anti-)co-BRS
symmetry transformations on the gauge fieldAµ and the (anti-)ghost fields(C̄) C, the corresponding nilpoten
symmetries for the matter (Dirac) fields(ψ, ψ̄) are obtained due to the invariance of the conserved cur
of the theory. To corroborate this assertion, first of all, we start off with the superexpansion of the sup
(Ψ, Ψ̄ )(x, θ, θ̄)), corresponding to the ordinary Dirac fields(ψ, ψ̄)(x), as

Ψ (x, θ, θ̄) = ψ(x) + iθ b̄1(x)+ iθ̄b2(x)+ iθ θ̄f (x),

(4.1)Ψ̄ (x, θ, θ̄) = ψ̄(x)+ iθ b̄2(x)+ iθ̄b1(x)+ iθ θ̄ f̄ (x).
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It is clear and evident that, in the limit(θ, θ̄ ) → 0, we get back the Dirac fields(ψ, ψ̄) of the Lagrangian densit
(2.1). Furthermore, the number of bosonic fields (b1, b̄1, b2, b̄2) match with the fermionic fields(ψ, ψ̄, f, f̄ ) so that
the above expansion is consistent with the basic tenets of supersymmetry. Now one can construct the sup
J̃µ(x, θ, θ̄) from the above superfields with the following general superexpansion

(4.2)J̃µ(x, θ, θ̄) = Ψ̄ (x, θ, θ̄)γµΨ (x, θ, θ̄) = Jµ(x)+ θK̄µ(x)+ θ̄Kµ(x)+ iθ θ̄Lµ(x),

where the above components (i.e.,K̄µ,Kµ,Lµ,Jµ), along the Grassmannian directionsθ and θ̄ as well as the
bosonic directionsθ θ̄ and identity1̂ of the supermanifold, can be expressed in terms of the components
basic superexpansions (4.1), as

K̄µ(x) = i(b̄2γµψ − ψ̄γµb̄1), Kµ(x)= i(b1γµψ − ψ̄γµb2),

(4.3)Lµ(x) = f̄ γµψ + ψ̄γµf + i(b̄2γµb2 − b1γµb̄1), Jµ(x)= ψ̄γµψ.

To be consistent with our earlier observation that the (co-)BRST transformations(s(d)b) are equivalent to
the translations (i.e., Limθ→0(∂/∂θ̄)) along theθ̄ -direction and the anti-BRST(sab) and anti-co-BRST (sad )
transformations are equivalent to the translations (i.e., Limθ̄→0(∂/∂θ)) along theθ -direction of the supermanifold
it is straightforward to re-express the expansion in (4.2) as follows

(4.4)J̃µ(x, θ, θ̄) = Jµ(x)+ θ
(
sabJµ(x)

) + θ̄
(
sbJµ(x)

) + θ θ̄
(
sbsabJµ(x)

)
.

It can be checked explicitly that, under the (anti-)BRST transformations (2.3), the conserved currentJµ(x) remains
invariant (i.e.,sbJµ(x) = sabJµ(x) = 0). This statement, with the help of (4.2) and (4.3), can be mathemat
expressed as

(4.5)b1γµψ = ψ̄γµb2, b̄2γµψ = ψ̄γµb̄1, f̄ γµψ + ψ̄γµf = i(b1γµb̄1 − b̄2γµb2).

One of the possible solutions of the above restrictions, in terms of the components of the basic expansion
and the basic fields of the Lagrangian density (2.2), is

b1 = −eψ̄C, b2 = −eCψ, b̄1 = −eC̄ψ, b̄2 = −eψ̄C̄,

(4.6)f = −ie[B + eC̄C]ψ, f̄ = +ieψ̄[B + eCC̄].
At the moment, it appears to us that the above solutions are theunique solutions to all the restrictions in (4.5)7

Ultimately, the restriction that emerges on the(2+ 2)-dimensional supermanifold is

(4.7)J̃µ(x, θ, θ̄) = Jµ(x).

Physically, the above mathematical equation implies that there is no superspace contribution to the
conserved currentJµ(x). In other words, the transformations on the Dirac fieldsψ and ψ̄ (cf. (2.3)) are such
that the supercurrent̃Jµ(x, θ, θ̄ ) becomes a local composite fieldJµ(x) = (ψ̄γµψ)(x) vis-á-vis equation (4.4)
and there is no Grassmannian contribution to it. In a more sophisticated language, the conservation law∂ · J = 0
remains intact despite our discussions connected with the superspace and supersymmetry. It is straightf
check that the substitution of (4.6) into (4.1) leads to the following

Ψ (x, θ, θ̄) = ψ(x) + θ
(
sabψ(x)

) + θ̄
(
sbψ(x)

) + θ θ̄
(
sbsabψ(x)

)
,

(4.8)Ψ̄
(
x, θ, θ̄

) = ψ̄(x)+ θ
(
sabψ̄(x)

) + θ̄
(
sbψ̄(x)

) + θ θ̄
(
sbsabψ̄(x)

)
.

7 Let us focus onb1γµψ = ψ̄γµb2. It is evident that the pair of bosonic componentsb1 and b2 should be proportional to the pair o
fermionic fieldsψ̄ andψ , respectively. To make the latter pair bosonic in nature, we have to include the ghost fieldC of the Lagrangian density
(2.2) to obtain:b1 ∼ ψ̄C, b2 ∼ Cψ . Rest of the choices in (4.6) follow exactly similar kind of arguments.
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This establishes the fact that the nilpotent (anti-)BRST chargesQ(a)b are the translations generato
(Lim θ̄→0(∂/∂θ))Limθ→0(∂/∂θ̄) along the(θ)θ̄ directions of the supermanifold. The property of the nilpote
(i.e.,Q2

(a)b = 0) is encoded in the two successive translations along the Grassmannian directions of the su

ifold (i.e., (∂/∂θ)2 = (∂/∂θ̄)2 = 0).
Now we shall concentrate on the derivation of the symmetry transformations (2.4) on the matter field

framework of superfield formulation. To this end in mind, we construct the superaxial-vector currentJ̃
(5)
µ (x, θ, θ̄)

and substitute (4.1) to obtain

J̃ (5)
µ (x, θ, θ̄) = Ψ̄ (x, θ, θ̄)γµγ5Ψ (x, θ, θ̄)

(4.9)= J (5)
µ (x)+ θK̄(5)

µ (x)+ θ̄K(5)
µ (x)+ iθ θ̄L(5)

µ (x),

where the above components on the r.h.s. can be expressed, in terms of the basic components of the ex
(4.1), as

K̄(5)
µ (x) = i(b̄2γµγ5ψ − ψ̄γµγ5b̄1), K(5)

µ (x) = i(b1γµγ5ψ − ψ̄γµγ5b2),

(4.10)L(5)
µ (x)= f̄ γµγ5ψ + ψ̄γµγ5f + i(b̄2γµγ5b2 − b1γµγ5b̄1), J (5)

µ (x) = ψ̄γµγ5ψ.

Invoking the analogue of the condition (4.7) (i.e.,J̃
(5)
µ (x, θ, θ̄) = J

(5)
µ (x)), we obtain the following conditions o

the components of the superexpansion in (4.9):

(4.11)K(5)
µ (x) = 0, K̄(5)

µ (x) = 0, L(5)
µ (x)= 0.

Ultimately, these conditions lead to

b1 = +eψ̄C̄γ5, b2 = −eC̄γ5ψ, b̄1 = −eCγ5ψ, b̄2 = +eψ̄Cγ5,

(4.12)f = +ie[Bγ5 − eCC̄]ψ, f̄ = +ieψ̄[Bγ5 + eC̄C].
The substitution of the above values in the superexpansion in (4.1) leads to the analogous expansion a
with the replacements:sb → sd , sab → sad . Thus, we obtain

Ψ (x, θ, θ̄) = ψ(x) + θ
(
sadψ(x)

) + θ̄
(
sdψ(x)

) + θ θ̄
(
sdsadψ(x)

)
,

(4.13)Ψ̄ (x, θ, θ̄) = ψ̄(x)+ θ
(
sadψ̄(x)

) + θ̄
(
sd ψ̄(x)

) + θ θ̄
(
sdsad ψ̄(x)

)
.

This provides the geometrical interpretation for the (anti-)co-BRST charges as the translation generato
the (θ) θ̄ directions of the supermanifold. This interpretation is exactly identical to the interpretation fo
(anti-)BRST charges as the translation generators. The above statement for the (anti-)BRST- and (anti-)c
charges can be succinctly expressed in the mathematical form, using (2.5), as

srΣ(x) = Limθ→0
∂

∂θ̄
Σ̃(x, θ, θ̄) ≡ −i

{
Σ(x),Qr

}
,

(4.14)stΣ(x) = Limθ̄→0
∂

∂θ
Σ̃(x, θ, θ̄) ≡ −i

{
Σ(x),Qt

}
,

wherer = b, d , t = ab, ad andΣ(x) = ψ(x), ψ̄(x), Σ̃(x, θ, θ̄) = Ψ (x, θ, θ̄), Ψ̄ (x, θ, θ̄). Thus, it is clear that the
mapping that exists among the symmetry transformations, the conserved charges and the translation g
along the Grassmannian directions are

(4.15)sb(d) ↔ Qb(d) ↔ Limθ→0
∂

∂θ̄
, sad ↔ Qad ↔ Limθ̄→0

∂

∂θ
, sab ↔ Qab ↔ Limθ̄→0

∂

∂θ
.
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5. Conclusions

In the present investigation, we set out to derive the off-shell nilpotent (anti-)BRST and (anti-)co-
symmetries for the matter (Dirac) fields in the framework of geometrical superfield approach to BRST form
We chose the two-dimensional interactingU(1) gauge theory (i.e., QED) for our discussion primarily for t
reasons. First and foremost, this theory provides one of the simplest gauge theory and aunique interacting field
theoretical model for the Hodge theory. Second, the Lagrangian density (2.2) of this theory is endowed with
covariant, continuous and nilpotent (anti-)co-BRST symmetries which is not the case for the four-dime
QED where the (anti-)co-BRST transformations are non-local and non-covariant (see, e.g., [31] for deta
have been able to derive the off-shell nilpotent (anti-)BRST and (anti-)co-BRST symmetry transformati
the Dirac fields by invoking a couple of restrictions (i.e.,J̃µ(x, θ, θ̄) = Jµ(x) andJ̃ (5)

µ (x, θ, θ̄) = J
(5)
µ (x)) on the

(2 + 2)-dimensional supermanifold. In contrast to the (dual-)horizontality conditions, these restrictions a
imposed by hand from the outside. Rather, they appear very naturally because of the fact thats(a)bJµ(x) = 0,

s(a)dJ
(5)
µ (x) = 0 in the superexpansion of the supercurrentsJ̃µ(x, θ, θ̄ ) andJ̃ (5)

µ (x, θ, θ̄) (cf. Eqs. (4.4) and (4.9))
Physically, these conditions imply nothing but the conservation of the electric charge for the massive Dira
and the conservation of the spin (i.e., helicity in 2D spacetime) for the massless Dirac fields, respectivel
conservation laws persist even in the superfield formulation of the theory. This is why, automatically,
the conditionsJ̃µ(x, θ, θ̄) = Jµ(x) and J̃

(5)
µ (x, θ, θ̄) = J

(5)
µ (x). We would like to comment that our method

derivation of the (anti-)BRST transformations for the matter fields, in the framework of the superfield form
can be generalized to the physical 4D Abelian as well as non-Abelian gauge theories (see, e.g., [31
transformations). It would be also interesting to obtain the on-shell nilpotent version of the above sym
in the framework of the superfield formulation. These are some of the open problems which are under inve
and our results would be reported elsewhere [33].
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