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Abstract

Dominant contributions of enhanced pomeron diagrams to elastic hadron–hadron scattering amplitude are re-summed to all orders. The formal-
ism is applied to calculate total hadronic cross sections and elastic scattering slopes. An agreement with earlier results is obtained.
 2006 Elsevier B.V. Open access under CC BY license. 
1. Introduction

Despite a significant progress in the perturbative QCD dur-
ing last decades one still has to rely on phenomenological ap-
proaches when calculating total hadron–hadron cross sections,
diffraction dissociation probabilities, or when treating parti-
cle production in general minimum bias hadronic collisions.
The most powerful one proved to be the Gribov’s reggeon ap-
proach [1], where high energy interactions are described as
multiple scattering processes, elementary re-scatterings being
treated phenomenologically as pomeron exchanges, as shown
in Fig. 1.

Usual ansatz for the pomeron amplitude in impact parameter
representation is [2]

(1)f P

ad(s, b) = iγaγd(s/s0)
αP(0)−1

λad(s)
e
− b2

4λad (s) ,

(2)λad(s) = R2
a + R2

d + α′
P
(0) ln(s/s0),

where s and b are c.m. energy squared and impact parameter
for the interaction, s0 � 1 GeV2 is the hadronic mass scale,
αP(0) and α′

P
(0) are the intercept and the slope of the pomeron

Regge trajectory, and γa , R2
a are the coupling and the slope of

pomeron–hadron a vertex.
Considering any number of pomerons exchanged between

hadrons a and d one obtains elastic scattering amplitude as a
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sum of contributions of diagrams of Fig. 1 [2]:

ifad(s, b) = 1

CaCd

∞∑
n=1

[iCaCdf P

ad(s, b)]n
n!

(3)= 1

CaCd

[
e−χP

ad (s,b) − 1
]
,

(4)χP

ad(s, b) = 1

i
CaCdf P

ad(s, b),

where shower enhancement coefficient Ca accounts for low
mass inelastic intermediate states for hadron a; χP

ad is the
pomeron quasi-eikonal.

This allows one to calculate total cross section σ tot
ad and elas-

tic scattering slope Bel
ad as

σ tot
ad (s) = 2 Im

∫
d2b fad(s, b)

(5)= 2

CaCd

∫
d2b

[
1 − e−χP

ad (s,b)
]
,

Bel
ad(s) = d

dt
ln

dσ el
ad(s, t)

dt

∣∣∣∣
t=0

(6)= 1

CaCdσ tot
ad (s)

∫
d2b b2[1 − e−χP

ad (s,b)
]
,

where dσ el
ad(s, t)/dt is the differential elastic cross section for

momentum transfer squared t . Comparing to data one obtains
typically αP(0) � 1.1, α′ (0) � 0.2 GeV−2 [3].
P
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Fig. 1. General multi-pomeron contribution to hadron–hadron scattering am-
plitude; elementary scattering processes (vertical thick lines) are described as
pomeron exchanges.

Making use of Abramovskii–Gribov–Kancheli cutting rules
[4] allows one to re-sum contributions of various unitarity
cuts of the elastic scattering diagrams of Fig. 1, correspond-
ing to particular inelastic final states of hadron–hadron inter-
actions. This opens the way for developing powerful model
approaches [3] and for constructing Monte Carlo generators for
hadronic and nuclear collisions [5].

Still, the underlying picture for the described scheme corre-
sponds to an interaction mediated by a number of independent
parton cascades. In “dense” regime, i.e. in the limit of high en-
ergies and small impact parameters, one expects a large number
of such elementary scattering processes. Then, the underlying
parton cascades should largely overlap and interact with each
other, giving rise to significant non-linear effects [6]. The Lat-
ter are traditionally described by enhanced pomeron diagrams,
which involve pomeron–pomeron interactions [7,8]. However,
consistent treatment of enhanced corrections proved to be a
very non-trivial problem: as the energy increases more and
more diagrams of complicated topologies come into play.

General approach to the re-summation of higher order en-
hanced graphs has been proposed in [9] assuming π -meson
dominance of multi-pomeron vertices. It has been shown that
in the limit of very high energies the full pomeron scheme is
equivalent to the above-described quasi-eikonal picture, how-
ever, based on a pomeron with suitably renormalized intercept.
An alternative procedure was suggested in [10], where one re-
summed dominant enhanced corrections to hadron–nucleus and
nucleus–nucleus scattering amplitudes postulating a negligibly
small pomeron slope and including only triple-pomeron ver-
tices. However, corresponding algorithms cannot be applied to
treat general inelastic final states in hadronic interactions.

Present Letter is devoted to a direct all-order re-summation
of enhanced contributions to hadron–hadron elastic scattering
amplitude. The analysis of corresponding unitarity cuts and ap-
plications of the approach to particle production treatment are
discussed elsewhere [11].

2. The formalism

Comparatively simple generalization of the previous scheme
can be obtained using eikonal vertexes gmn for the transi-
tion of m into n pomerons, gmn = r3Pγ m+n−3

P
/(4πm!n!), with

r3P being the triple-pomeron coupling. In particular, assum-
ing pion dominance of multi-pomeron vertices, one has gmn =
G

2 (Cπγπ)m+n/m!/n! and the vertex slope R2
P

is equal to the

Cπ
Fig. 2. Lowest order enhanced graphs; pomeron connections to the projectile
and target hadrons not shown explicitely.

one of pomeron–pion coupling R2
π [8,9]. Thus, for a pomeron

exchanged between two vertices one uses the quasi-eikonal
for pion–pion scattering χP

ππ (s0e
�y,�b), as defined by (4),

(1), (2), where �y and �b are rapidity and impact parame-
ter distances between the vertices. Correspondingly, a pomeron
exchange between hadron a and a given vertex is described
by χP

aπ (s0e
�y,�b). This way the contribution with only one

multi-pomeron vertex is obtained using standard reggeon calcu-
lus techniques [1,2]: summing over m � 1 pomerons exchanged
between the vertex and the projectile hadron, n � 1 pomeron
exchanges between the vertex and the target, subtracting the
term with m = n = 1 (pomeron self-coupling), and integrating
over rapidity y1 < Y = ln s

s0
and impact parameter �b1 of the

vertex [9], see Fig. 2:

�χPPP

ad (s, b)

= G

C2
π

∑
m,n�1;m+n�3

Y∫
0

dy1

×
∫

d2b1
[−χP

aπ (s0e
Y−y1 , |�b − �b1|)]m

m!
× [−χP

dπ (s0e
y1, b1)]n

n!

= G

C2
π

Y∫
0

dy1

∫
d2b1

{(
1 − e−χP

aπ

(
s0e

Y−y1 ,|�b−�b1|))

× (
1 − e−χP

dπ (s0e
y1 ,b1)

)
(7)− χP

aπ

(
s0e

Y−y1 , |�b − �b1|
)
χP

dπ

(
s0e

y1 , b1
)}

.

At s → ∞ and b, b1 → 0 the integrand in the r.h.s. of (7)
is dominated by the last term in the curly brackets, which cor-
responds to the contribution of the subtracted graph in Fig. 2.
Thus, assuming that the main contribution to the integral over
�b1 in (7) comes from comparatively small b1 and neglecting the
slope of the multi-pomeron vertex, one obtains asymptotically

(8)�χ
asymp(1)

ad (s, b) ∼ −4πGγ 2
π ln

s

s0
χP

ad(s, b).

Under the above assumptions the contributions of higher
order graphs also reduce in the “dense” limit to subtracted
pomeron self-couplings, which leads to [9]

(9)�χ
asymp
ad (s, b) ∼ (

(s/s0)
−4πGγ 2

π − 1
)
χP

ad(s, b).

Thus, asymptotically one recovers the usual quasi-eikonal
scheme based on re-normalized quasi-eikonal χ̃P = χP +
ad ad



42 S. Ostapchenko / Physics Letters B 636 (2006) 40–45
Fig. 3. An example of a “loop” graph.

Fig. 4. Enhanced pomeron graphs of “tree” type (a,b) and of “net” type (c).

�χ
asymp
ad , which is defined by (4), (1), (2) with the pomeron

intercept α̃P(0) = αP(0) − 4πGγ 2
π .

Our goal is to re-sum dominant enhanced diagrams to all or-
ders, to obtain a smooth transition between the “dilute” (small
energies, large impact parameters) and “dense” regimes. As
in [9], we assume pion dominance of multi-pomeron vertices;
treating r3P = 4πGCπγ 3

π , γP = Cπγπ , R2
P

= R2
π as free pa-

rameters one may recover the general eikonal form for the
pomeron vertices gmn in case of proton–proton scattering.

We start from recalling that one can neglect contributions
of “loop” graphs, which contain multi-pomeron vertices con-
nected to each other by at least two pomerons, as shown in
Fig. 3. Indeed, in the “dilute” regime such contributions are
suppressed by powers of small triple pomeron coupling G (G2

for the diagram of Fig. 3). On the other hand, in the “dense”
limit, summing over any number n1 of pomerons exchanged be-
tween the target and the upper vertex in Fig. 3 (similarly for the
lower vertex), one obtains an exponential factor which strongly
dumps the overall contribution [8,9]:

(10)
∞∑

n1=0

[−χP

dπ (s0e
y1, b1)]n1

n1! = e−χP

dπ (s0e
y1 ,b1).

Let us first re-sum contributions of “tree”-type graphs,
shown in Fig. 4(a), (b). Those contain one “central” (not nec-
essarily unique, see Fig. 4(b)) vertex, from which a number of
pomeron “fans” develops towards the projectile and the target.

General “fan” contribution can be defined via the recursive
equation of Fig. 5:

χ fan
a (y1, b1) = χP

aπ

(
s0e

y1 , b1
)

+ G

C2
π

y1∫
0

dy2

∫
d2b2 χP

ππ

(
s0e

y1−y2 , |�b1 − �b2|
)

(11)× [
1 − e−χ fan

a (y2,b2) − χ fan
a (y2, b2)

]
.

Thus, a general representation for “tree” graphs corresponds
to the diagram with one “central” vertex connected to any num-
ber m of projectile “fans” χ fan

a and to any number n of target
Fig. 5. Recursive equation for the “fan” contribution χ fan
a (y1, b1); y1 and b1

are rapidity and impact parameter distances between hadron a and the vertex in
the “handle” of the “fan”.

Fig. 6. “Tree” graphs with only one target “fan” can be expanded as shown in
the figure.

Fig. 7. Complete set of “tree” graphs.

ones χ fan
d ; m,n � 1, m + n � 3. However, here one should

be careful with counting some contributions twice. For exam-
ple, comparing the subsamples with m = 2, n = 1 and m = 1,
n = 2, we can see that the graphs of the type of Fig. 4(b) are
present in both cases. Let us consider the first case and express
the lower (target) “fan” using the relation of Fig. 5, as shown
in Fig. 6. A similar procedure can be performed in the second
case (m = 1, n = 2), which results in the graphs of Fig. 6 be-
ing reversed upside-down, with the second diagram in the r.h.s.
staying unchanged. Thus, correcting for such double counts, the
overall “tree” type contribution is given by the set of graphs of
Fig. 7, with

χ tree
ad (s, b)

= G

C2
π

Y∫
0

dy1

∫
d2b1

×
{(

1 − e−χ fan
a − χ fan

a

)(
1 − e−χ fan

d − χ fan
d

)

+ 1

2

(
χ fan

a + χP

aπ

)(
1 − e−χ fan

d − χ fan
d

)

(12)+ 1

2

(
χ fan

d + χP

dπ

)(
1 − e−χ fan

a − χ fan
a

)}
.

Here χP
aπ = χP

aπ (s0e
Y−y1 , |�b − �b1|), χ fan

a = χ fan
a (Y − y1, |�b −

�b1|), χP = χP (s0e
y1 , b1), χ fan = χ fan(y1, b1).
dπ dπ d d
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Fig. 8. Recursive equation for the “net fan” χ
net(k)
a|d (y1, �b1|Y, �b). The vertex

(y2, b2) couples together m projectile “net fans” of kth order and n target “net
fans” of (k − 1)th order.

Let us come to more general diagrams of the type of
Fig. 4(c), corresponding to arbitrary “nets” of pomerons. It is
convenient to introduce some new building blocks. We define
the “net fan” of kth order via the recursive equation of Fig. 8:

χ
net(k)
a|d (y1, �b1|Y, �b)

= χP

aπ

(
s0e

y1 , b1
)

+ G

C2
π

y1∫
0

dy2

∫
d2b2

{[
1 − e

−χ
net(k)
a|d (y2,�b2|Y,�b)]

× exp
(−χ

net(k−1)
d|a

(
Y − y2, �b − �b2|Y, �b))

(13)− χ
net(k)
a|d (y2, �b2|Y, �b)

}
χP

ππ

(
s0e

y1−y2 , |�b1 − �b2|
)
.

Here we set

χ
net(1)
a|d (y1, �b1|Y, �b) ≡ χ fan

a (y1, b1),

χ
net(0)
a|d (y1, �b1|Y, �b) ≡ 0.

By construction, the “net fan” of kth order contains contribu-
tions with a sequence of up to k pomerons connected to each
other in a “zig-zag” way, such that pomeron end rapidities are
arranged as y1 > y2 < y3 > · · · < yk . For example, the part
of the graph of Fig. 4(c), positioned to the left of the vertex
(y1, b1), can be considered as belonging to the projectile “net
fan” of 3rd order; the “zig-zag” is formed by three pomerons:
those exchanged between the vertices (y1, b1) and (y2, b2),
(y2, b2) and (y3, b3), and by the leftmost pomeron connected
to the projectile. Correspondingly, we define a “zig-zag fan” of
kth order as the difference between kth and (k−1)th “net fans”:

(14)χ
zz(k)
a|d ≡ χ

net(k)
a|d − χ

net(k−1)
a|d .

Using the representation of Fig. 8 for the “net fan” contribu-
tions, χ

zz(k)
a|d can be expressed as shown in Fig. 9. The two

graphs in the r.h.s. of the figure differ by their uppermost ver-
tices: in the 1st graph it couples together m � 1 projectile “net
fans” of (k −1)th order, q � 1 target “zig-zag fans” of (k −1)th
order and any number n � 0 of target “net fans” of (k −2)th or-
der; the uppermost vertex of the 2nd graph is coupled to p � 2
projectile “zig-zag fans” of kth order and to any number m � 0
of projectile and n � 0 of target “net fans” of (k − 1)th order.
In addition, both graphs may contain any number l � 0 of inter-
mediate vertices, coupled correspondingly to mi projectile and
ni target “net fans” of (k − 1)th order; mi,ni � 0, mi + ni � 1,
i = 1, . . . , l.
Fig. 9. “Zig-zag fan” χ
zz(k)
a|d (y1, �b1|Y, �b) can be represented as shown in the

figure.

Now we can re-sum enhanced diagrams which contain “zig-
zag fans” of kth order, starting from k = 2, using the represen-
tation of Fig. 9 to correct for double counts in the same way as
we did for “tree” graphs. This results in the set of diagrams of
Fig. 10; the corresponding contribution to quasi-eikonal is

χ
enh(k)
ad (s, b)

= G

C2
π

Y∫
0

dy1

∫
d2b1

{(
1 − e

−χ
zz(k)
a|d − χ

zz(k)
a|d

)
e
−χ

net(k−1)
a|d

× (
1 − e

−χ
zz(k)
d|a − χ

zz(k)
d|a

)
e
−χ

net(k−1)
d|a

+
[(

1 − e
−χ

zz(k)
a|d − χ

zz(k)
a|d

)
e
−χ

net(k−1)
a|d

×
(

1 − e
−χ

net(k−1)
d|a + 1

2
χ

zz(k)
d|a e

−χ
net(k−1)
d|a

)

+ 1

2
χ

zz(k)
a|d

(
e
−χ

zz(k−1)
a|d − 1

)
e
−χ

net(k−2)
a|d

(15)× (
1 − e

−χ
net(k−1)
d|a

)] + [a ↔ d]
}
.

Here

χ
X(k)
a|d = χ

X(k)
a|d (Y − y1, �b − �b1|Y, �b),

χ
X(k)
d|a = χ

X(k)
d|a (y1, �b1|Y, �b), X = “zz”, “net”.

Finally, combining together the contributions χ tree
ad (s, b) and

χ
enh(k)
ad (s, b) for any k � 2 and using (13), (14), we can obtain

for the full set of non-loop enhanced diagrams the representa-
tion of Fig. 11,with the eikonal contribution

χenh
ad (s, b)

= χ tree
ad (s, b) +

∞∑
k=2

χ
enh(k)
ad (s, b)

= G

C2
π

Y∫
0

dy1

∫
d2b1

{[(
1 − e

−χnet
a|d (1))

× (
1 − e

−χnet
d|a(1)) − χnet

a|d(1)χnet
d|a(1)

]

− G

C2
π

y1∫
0

dy2

∫
d2b2 χP

ππ

(
s0e

y1−y2 , |�b1 − �b2|
)

× [(
1 − e

−χnet
a|d (1))

e
−χnet

d|a(1) − χnet
a|d(1)

]

(16)× [(
1 − e

−χnet
d|a(2))

e
−χnet

a|d (2) − χnet
d|a(2)

]}
.
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Fig. 10. Complete set of enhanced diagrams containing “zig-zag fans” of kth order.
Fig. 11. Full set of non-loop diagrams.

Here we used the abbreviations χnet
a|d(i) = χnet

a|d(Y − yi, �b −
�bi |Y, �b), χnet

d|a(i) = χnet
d|a(yi, �bi |Y, �b), i = 1,2, and introduced

general “net fan” contribution as χnet
a|d = limk→∞ χ

net(k)
a|d . Us-

ing (13), we obtain for the latter the recursive equation

χnet
a|d(y1, �b1|Y, �b)

= χP

aπ

(
s0e

y1 , b1
)

+ G

C2
π

y1∫
0

dy2

∫
d2b2

{[
1 − e

−χnet
a|d (y2,�b2|Y,�b)]

× exp
(−χnet

d|a(Y − y2, �b − �b2|Y, �b)
)

(17)− χnet
a|d(y2, �b2|Y, �b)

}
χP

ππ

(
s0e

y1−y2, |�b1 − �b2|
)
.

3. Numerical results

The obtained expressions allowed us to calculate hadronic
elastic scattering amplitudes and correspondingly total cross
sections and elastic scattering slopes with enhanced contribu-
tions taken into account. Here fad , σ tot

ad , Bel
ad are given by usual

expressions (3)–(6), with the pomeron quasi-eikonal χP

ad be-
ing replaced by χ tot

ad = χP

ad + χenh
ad . Technically, the “net fan”

contribution χnet
a|d has been obtained solving (17) iteratively and

substituted to (16) to calculate enhanced diagram contribution
χenh

ad . Concerning the parameter choice we used the usual values
C2

p = 1.5, Cπ = 1.6/Cp , γπ = 2/3γp [3], and from compar-

ison to data obtained αP(0) = 1.18, α′
P
(0) = 0.195 GeV−2,

γp = 1.59 GeV−1, R2
p = 1.8 GeV−2, R2

π = 0.7 GeV−2, G3P =
9 × 10−3 GeV2. Thus, for the triple-pomeron coupling we have
r3P = 4πGCπγ 3

π = 0.18 GeV−1 compared to 0.12 GeV−1 and
0.083 GeV−1 in [9] and [10] correspondingly. The results for
σ tot

pp , σ tot
πp , Bel

pp are shown in Fig. 12 as calculated with the full

scheme or based on the bare pomeron eikonal χP

ad . In practice,
it is sufficient to take into consideration only the “tree” χ tree

ad

and the first “zig-zag” χ
enh(2)
ad corrections, i.e. to use for the

enhanced contribution χ̃enh = χ tree + χ
enh(2) instead of χenh
ad ad ad ad
Fig. 12. Total cross section (left) and elastic scattering slope (right) as calculated
with and without enhanced contributions—solid and dashed lines correspond-
ingly. The compilation of data is from [12].

defined in (16); the difference for the calculated cross sections
is below percent level. This is because the contributions χ

enh(k)
ad

for k � 3 are suppressed by exponential factors in the same way
as for “loop” diagrams in (10).

Let us finally verify that the developed scheme approaches
the asymptotic result (9) in the “dense” limit. Indeed, neglect-
ing the radius of multi-pomeron vertices, at s → ∞, b → 0 and
for αP(0) − 4πGγ 2

π > 1 we can obtain the solution of (17)
as χnet

a|d(y1, �b1|Y, �b) � χP
aπ (s0e

y1 , b1) + �χ
asymp
aπ (s0e

y1 , b1),

�χ
asymp
aπ being defined in (9). Substituting this to (16), we see

that the enhanced contribution χenh
ad reduces to the asymptotic

form (9): χenh
ad (s, b) � �χ

asymp
ad (s, b).

In conclusion, we re-summed dominant enhanced contribu-
tions to elastic hadron–hadron scattering amplitude to all or-
ders. Although the numerical calculations have been performed
using the simple pomeron exchange amplitude (1), (2), the ob-
tained formulas can be used for a different functional form of
f P

ad(s, b). In principle, one may apply similar techniques in the
perturbative QCD, using the BFKL pomeron amplitude [13],
provided eikonal approximation remains applicable for multi-
pomeron vertices.
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