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Brain Rhythms Connect Impaired Inhibition to
Altered Cognition in Schizophrenia
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Nancy J. Kopell
ABSTRACT
In recent years, schizophrenia research has focused on inhibitory interneuron dysfunction at the level of neurobiology
and on cognitive impairments at the psychological level. Reviewing both experimental and computational findings,
we show how the temporal structure of the activity of neuronal populations, exemplified by brain rhythms, can begin
to bridge these levels of complexity. Oscillations in neuronal activity tie the pathophysiology of schizophrenia to
alterations in local processing and large-scale coordination, and these alterations in turn can lead to the cognitive
and perceptual disturbances observed in schizophrenia.
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A quarter century after the discovery of reduced markers of
gamma-aminobutyric acid (GABA)ergic interneurons in the
brains of schizophrenia patients (1), inhibitory interneuron
dysfunction has emerged as a central player in the etiology
of schizophrenia. It has been tied to multiple neurotransmitter
systems involved in the pharmacology of psychosis (2–5), as
well as to the major genetic risk markers of schizophrenia
(6–9). Inhibitory interneurons may be key because their develop-
ment is targeted by a variety of schizophrenia risk genes (6,8–
10), they are particularly vulnerable to environmental factors and
oxidative stress (9,11), and their dysfunction may be either
consequent or causal to other alterations (4,7,9,12–14).

Similarly, while schizophrenia is characterized by a variety
of positive, negative, and cognitive symptoms, the latter have
come to be recognized for their constancy and functional
relevance (15). Deficits including alterations in executive
function (16,17), sensory processing (18,19), and memory
(20) are manifestations of an overall cognitive disorganization,
which seems to be mediated by an underlying dysfunction of
the coordination of neural activity (21–23).

It remains challenging to understand how the varied and
specific manifestations of cognitive disorganization seen in
schizophrenia arise from the varied and specific changes
observed in schizophrenia-associated cell- and circuit-level
neurobiology. We outline a framework for thinking about how
these cellular level changes can be traced through mesoscale
physiology to the level of the whole brain, to understand
specific symptomatologies. Key to this multilevel analysis are
temporal structures in the brain, including brain rhythms (2,24).
Rhythmic alterations occur in schizophrenia and its animal
models, accompany all neurotransmitter system manipulations
that produce psychotic-like behavior (5,25–29), and are can-
didate endophenotypes of the disease (30). Rhythms are
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believed to play a key role in coordinating the activity of
neuronal populations across multiple spatial and temporal
scales (31–34) and are known to be associated with a wide
range of cognitive and perceptual processes (35,36). Finally,
inhibitory interneurons are central to the formation and main-
tenance of most brain rhythms (37–39), providing a conceptual
link between the neurobiological and psychological manifes-
tations of schizophrenia.

We review selected evidence from experimental and mod-
eling work to sketch the following picture of schizophrenia
dysfunction: changes at the cellular and molecular level—
especially those affecting the function of inhibitory interneur-
ons—alter the rhythmic coordination of neuronal activity.
These alterations interfere with local processing, which is
mediated by rhythmic activity. Perturbations of the oscillatory
structure of local processing upset large-scale coordination of
neuronal activity across brain regions. Finally, distorted local
processing and large-scale coordination produce altered
cognition.
CELLULAR, MOLECULAR AND CIRCUIT LEVEL
CHANGES ALTER RHYTHMS

Different Rhythms Have Different Physiology

Spectral analysis of brain signals reveals multiple frequency
bands (Figure 1), whose power, phase, and coordination are
differentially related to task, state, and brain region (35,36).
Brain rhythms reflect oscillations in population activity, but the
local circuit structures giving rise to these oscillations vary
widely (40), even between cortical layers, and under various
conditions a single circuit or layer may express multiple
rhythms.
article under the CC BY-NC-ND license

l ISSN: 0006-3223

RY ON PAGE

https://core.ac.uk/display/82056992?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
dx.doi.org/10.1016/j.biopsych.2015.02.005
dx.doi.org/10.1016/j.biopsych.2015.02.005
dx.doi.org/10.1016/j.biopsych.2015.02.005
www.sobp.org/journal


1 10 100
Frequency (Hz)

Po
we

r (
no

rm
ali

se
d 

to
 m

od
al 

pe
ak

)

1 

0

1 2 1 2 1 2EEG band

Figure 1. Multiple modal peak frequencies of persistent rhythms gener-
ated in isolated neocortex in vitro. All rhythms were generated in secondary
somatosensory (parietal) cortical slices maintained in artificial cerebrospinal
fluid (aCSF). Rhythms were recorded as local field potentials, resulting
spectra (from 60-second epochs of data) are plotted with powers normal-
ized to modal peak. Delta1 (δ1, �1.5 Hz) rhythms were generated in control
slices spontaneously after .1 hour incubation in normal aCSF. Delta2 (δ2,
2–3 Hz) rhythms were generated by bath application of cholinergic agonist
carbachol (2 μmol/L). Both delta rhythms had maximal amplitudes in layer
(L)V. Theta (θ, 6–8 Hz) rhythms were recorded in layers II/III in the presence
of the glutamatergic receptor agonist kainate (10 nmol/L) and occurred
concurrently with δ2 rhythms in LV. Alpha (α, �10 Hz) rhythms were
generated following transient activation of cortex by pressure ejection of
glutamate. Peak amplitude was in LV and was present concurrently with θ
and β1 rhythms in LII/III and LIV, respectively. Beta1 (β1,13–17 Hz) rhythms
were generated alone by partial blockade of alpha-amino-3-hydroxy-5-
methyl-4-isoxazole propionic acid/kainate receptors following tonic activa-
tion by kainate (400 nmol/L). Beta2 (β2, 22–27 Hz) rhythms were generated
in LV by kainate (400 nmol/L) and always occurred concurrently with
gamma1 (γ1, 30–50 Hz) rhythms in LII/III in this brain region. Gamma2
(γ2, 0–80 Hz) rhythms were also generated by kainate (400 nmol/L) but
occurred in LV in aCSF with reduced chloride ion concentration. Additional
peak frequencies at $100 Hz are generated by brief, intense periods of
excitation but rarely meet criteria for persistence and so are not considered
here. [Reproduced with permission from Roopun et al. (150)]. EEG,
electroencephalogram.
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Some general principles have been learned from work on the
biophysical mechanisms underlying brain rhythms. Inhibitory
interneuron diversity is crucial to the temporal dynamics of
neural activity (37), and the kinetics of the intrinsic and synaptic
currents of neurons are critical for determining the frequencies
of network oscillations. For example, the time scale of the γ
rhythm (�30–90 Hz) is determined by feedback inhibition from
(predominantly parvalbumin-positive [PV1]) interneurons (41).
Perturbations changing the decay time of inhibition can change
the frequency of this rhythm (41). Other GABAergic interneurons
mediate inhibition at different time scales, to different receptors,
cell types, and positions on neurons. Rhythm frequency is also
determined by time constants associated with interneuron-
specific intrinsic currents (42–47). Due to this variety, inhibition
plays different roles in different rhythms, by interacting differ-
ently with the multiple underlying voltage-dependent processes.
Changes in inhibition can thus have a variety of effects on
rhythms (see below), and an understanding of these effects
necessarily involves computational modeling.
Biological Psyc
The Pathophysiology of Schizophrenia Affects
Rhythms

Early research into electroencephalography alterations in
schizophrenia found consistent increases in δ and θ power
in patients (48). Recent studies have revealed an overall profile
of enhanced and uncoordinated baseline γ power in schizo-
phrenia, coupled with decreased synchronized γ and β across
sites during tasks and presentation of sensory stimuli, and
altered coordination of γ, β, and α rhythmicity (24,49–55).

Investigators have attempted to determine how various
molecular and cellular level changes lead to these rhythmic
disruptions; effects on inhibition are often key. Below, we
describe results for schizophrenia risk genes and multiple
neurotransmitter systems.

Schizophrenia Risk Genes. Many genetic markers of
schizophrenia code for products affecting neuronal rhythms.
The loci meeting genome-wide significance in the largest
genome-wide association study of schizophrenia ever con-
ducted (8) include genes coding proteins shown to directly affect
neuronal oscillations, such as metabotropic glutamate receptor 3
(mGluR3 - δ, θ and β) (56,57), glutamate receptor 1 (GluR1 - δ-γ
interactions) (58), hyperpolarization-activated cyclic nucleotide-
gated channel (HCN - θ and α) (42,43,59), nicotinic acetylcholine
receptor (nAChr - θ) (60), T-type calcium channels (δ) (45), and
NR2A subunit-containing NMDA receptor (Nr2Ar - γ) (61). Further
genome-wide associations concern genes that may be indirectly
involved in rhythms, expressed in GABAergic interneurons, or
regulate synaptic transmission or neurodevelopment (8,9).

Schizophrenia susceptibility genes also play roles in neuro-
nal development and maintenance and oscillations. Disrupted in
schizophrenia 1 mutations affect GABA and dopamine systems
and appear to preferentially disrupt parvalbumin-interneuron
cytoarchitecture and function (10,62). Neuregulin-1, the product
of a schizophrenia susceptibility gene, increases the power of
γ-band oscillations in hippocampal slices (5,63). Reduced
dysbindin-1, as occurs with schizophrenia, is associated with
reduced phasic activation of parvalbumin-interneurons and
impaired auditory evoked γ band activity (6).

GABA Alterations. Widespread, diverse changes in GABAer-
gic signaling are seen in schizophrenia, affecting almost all
mechanisms governing the activation of interneurons, the release
of GABA, and its postsynaptic effects (64). A widespread
reduction in glutamic acid decarboxylase 67 (required for GABA
synthesis) is seen, while changes in GABA receptor subunit
expression enhance the impact of a given quantity of GABA (64).
The changing role of GABAergic signaling during development
may magnify and complicate the effects of these alterations (9).
Potassium channel subunits essential for fast spiking and
coincidence detection in interneurons are also reduced (65).

Changes in the amount, temporal fidelity (65), and kinetics
of inhibition have varied rhythmic effects. Reduced calcium
binding via parvalbumin enhances the repetitive release of
GABA and consequently γ rhythm power (66). Reduced
reuptake via specific GABA transporters allows the transmitter
to remain in the synaptic cleft for longer, prolonging post-
synaptic inhibition (67). A longer time scale of GABA inhibition
can result in slowed γ rhythms and explains patient deficits in
hiatry June 15, 2015; 77:1020–1030 www.sobp.org/journal 1021
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entrainment of the auditory steady-state response to a 40-Hz
click stimulus (53).

N-methyl-D-aspartate Hypofunction. Acute N-methyl-
D-aspartate (NMDA) antagonism reproduces positive, cognitive,
and negative symptoms of schizophrenia (12,14), and patients
show reduced expression of NMDA receptor (NMDAR) messen-
ger RNAs (68). In vivo, acute NMDAR blockade induces varied
rhythmic and behavioral effects (24,69,70), intimately tied to the
preferential effects of NMDAR blockade on different classes of
inhibitory interneurons (4). Depending on these interneurons’
properties and their roles in local circuits, NMDAR blockade may
result in increased, decreased, or altered rhythmicity, as seen
below in multiple studies of rodent electrophysiology.
�

102
In rat prefrontal cortex (PFC), NMDA hypofunction seems
to preferentially affect PV1 interneurons, reducing their
level of tonic drive (3). Modeling has illuminated the
mechanisms by which this gives rise to an increase, rather
than the expected decrease, in γ power (71,72).
�
 In rodent hippocampus in vivo, NMDAR blockade results in
both γ increases and θ decreases (73–75). Experimental
and modeling work has shown how blockade of NMDARs
on somatostatin-positive oriens lacunosum-moleculare
interneurons may disinhibit PV1 interneurons, yielding
increased γ via decreased θ rhythmicity (38,76,77).
�
 In entorhinal cortex (EC) slice, a slowing of γ oscillations is
seen with NMDAR antagonism (78). Here, NMDA antago-
nism reduces drive to PV1 interneurons, unveiling a class
of GABAergic interneurons having a slower decay of
inhibition. These so-called goblet cells mediate the emer-
gence of a slower γ rhythm.
�
 Recent thalamic slice work illuminates how NMDAR block-
ade acts on PV1 interneurons to give rise to increased δ
rhythmicity (45). In contrast, acute NMDAR blockade in
neocortex in vitro nearly abolishes locally generated δ
activity (44), suggesting a shift in schizophrenia from
coordinated, balanced thalamocortical δ activity to sub-
cortically dominated δ activity.

Dopaminergic Disregulation. Mesolimbic hyperdopami-
nergia and mesocortical hypodopaminergia are leading causes
of psychosis and negative/cognitive symptoms, respectively;
may result from disinhibition in cortex and hippocampus (79);
and may lead to regional differences in the effects of dop-
amine on brain rhythms. In a recent empirical and modeling
study, amphetamine administration induced gamma
decreases and increases in healthy and patient participants,
respectively (80), changes replicated in a PFC model (80). In a
hippocampal network model (81), dopamine had the opposite
effect, reducing stimulus-induced gamma activity in putatively
schizophrenic parameter regimes and increasing it in others.

While difficult to measure in humans (50), such baseline
gamma effects are accessible in animal models. Nonspecific
dopamine agonists and dopamine-releasing drugs like
amphetamine have modest effects on baseline gamma
(5,26), but selective activation of D4 receptors increases
gamma power in hippocampal slice (5) and in the PFC
in vivo (28). These effects are also likely mediated by PV1
2 Biological Psychiatry June 15, 2015; 77:1020–1030 www.sobp.o
interneurons: these cells are particularly enriched with D4
receptors, and interneuron spiking activity and pyramidal cell
inhibitory postsynaptic potentials show enhanced synchrony
with field potentials following D4 activation (5).
RHYTHMS ASSIST IN LOCAL PROCESSING

The temporal structure rhythms imposed on neural dynamics can
have dramatic effects on cells’ ability to elicit responses in their
downstream targets. The temporal proximity of spikes occurring
within a single γ cycle enhances their ability to induce spiking
and spike-timing dependent plasticity in downstream neurons
(82,83). Also, multiple lines of evidence suggest that spike phase,
relative to ongoing rhythms, contributes to the neural code (84–
87). Indeed, cell assemblies may consist of distributed neuronal
populations whose spiking is brought together in time by
rhythmic phase-locking (88,89). Below, we elaborate on the
ways rhythms can enable local processing (90) and how altered
rhythmicity can lead to information processing deficits.

Frequency Segregates Information Streams and
Directs Information Flow

When oscillations are paced by inhibition, periodic inhibitory
volleys result in the rhythmic gain modulation of both the
inputs to and the outputs from cells participating in the rhythm
(40,91). Rhythmic population output directed to a rhythmic
target population can be filtered out, depending on the
frequency and phase relationships between the rhythms of
the two populations (40,91). Thus, oscillations may support
selective (frequency dependent) population interactions, such
as alternating receptivity of cornu ammonis (CA)1 to CA3 and
EC (92). A change in the endogenous γ frequency of EC, as
observed with NMDAR blockade (78), could lead to altered
information flow within these circuits.

The frequency of an inhibition-based rhythm depends, at
least in part, on the degree of excitatory drive to the participating
cells, but the sensitivity of this dependence can vary, subtly
directing information flow. In rodent auditory cortex in vitro, the
frequency of a layer 4 γ rhythm is highly sensitive to changing
excitation; in contrast, a superficial γ is relatively insensitive to
excitation (93). Output layer 5 follows the layer with the higher
frequency; thus, the degree of excitation determines which
superficial layer dominates (Figure 2). The NMDAR-dependent
layer 4 γ may mediate the response to salient stimuli, bypassing
layers 2 and 3 to directly drive layer 5 (93). Schizophrenia-
associated changes may detrimentally affect this switching of
information flow: both NMDAR-mediated excitation and the
kinetics of GABAergic inhibition are critical for this phenomenon.

Rhythm Concatenation Allows Integration of Cell
Assemblies

In rodent parietal cortex, a superficial layer γ rhythm (�40 Hz)
and a deep layer β2 rhythm (�25 Hz) combine to produce a
slower β1 rhythm (�15 Hz) (Figure 3) (94,95). In this slow β1,
which requires both fast perisomatic (PV1 interneuron-mediated)
and slower dendritic (SOM interneuron-mediated) inhibition,
inhibitory interneurons are no longer entirely driven by superficial
pyramidal cells, allowing multiple γ-rhythmic cell assemblies to
be active simultaneously and perhaps integrated (96).
rg/journal
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Figure 2. In rodent auditory cortex in vitro, the frequency of a layer (L)4 γ
rhythm is highly sensitive to changing excitation. Under conditions of high
excitation (A), layer 4 exhibits a high frequency rhythm, which bypasses
layers 2/3 to entrain output layer 5. Under conditions of moderate excitation
(B), layer 4 and layer 2/3 exhibit rhythms of the same frequency, and layer 5 is
driven by both layers. Sinusoids depict gamma rhythms in each layer. The
light gray sinusoid in L2/3 depicts oscillatory input from L4. Signal flow is
depicted by green arrows. The size of the arrow denotes the relative strength
of connection. [Reproduced with permission from Cannon et al. (40)].
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θ-γ Nesting Coordinates and Sequences Cell
Assemblies

In the hippocampus, multiple time scales of inhibition lead to
nested γ and θ frequency rhythms (Figure 4) and the multi-
plexing of spatial representations into θ sequences: series of
cell assemblies activated sequentially, each during one of the
multiple γ cycles contained in a θ cycle (38). θ-γ nesting may
serve encoding by bringing the firing of place-encoding cells
together in time in a way that optimizes plasticity (82). Both γ
and θ rhythms are perturbed in schizophrenia, and these
rhythms’ multiplexed coordination is decreased with NMDA
hypofunction in rodents (73,74) in a manner consistent with
decreased inhibition onto PV1 interneurons (38,77).
Figure 3. In
rodent parietal
cortex in vitro
(and in compu-
tational mod-
els), a superfi-
cial layer γ
rhythm (�40
Hz) and a deep
layer β2 rhythm
(�25 Hz) are
observed un-
der conditions
of high excita-
tion, as with
kainate appli-
cation (top).
When high
excitation is
followed by

low excitation, as when kainate application is followed by application of the
alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid and kainate
receptor blocker NBQX (bottom), these rhythms combine to produce a
slower β1 rhythm (�15 Hz). A single period of this slow β1 rhythm is a
concatenation of a single period of the superficial layer γ and a single period
of the deep layer β2. The emergence of this β1 requires plasticity. [Repro-
duced with permission from Kramer et al. (95)].

Biological Psyc
RHYTHM PATHOLOGIES LEAD TO PATHOLOGIES OF
COORDINATION

Abnormalities of structural and functional connectivity are well
documented in schizophrenia (23,97). While altered structural
connectivity can result in functional connectivity changes, the
latter can also precede and cause the former (98); genetic
markers suggest both may occur in schizophrenia (9,99–101).

The functional meaning of the statistical relationships often
used to determine functional connectivity depends on their
underlying mechanisms. By establishing transiently phase-locked
ensembles of cells, controlling the direction of information flow
between neuronal populations and allowing cross-talk on multiple
channels defined by different frequencies (31,102), brain rhythms
mediate dynamic interactions that contribute to measures of
functional connectivity (34,103,104). Below, we discuss how
multifaceted and location-specific rhythmic changes contribute
to altered functional connectivity in schizophrenia.

θ Rhythm Dysfunction Leads to Impaired
Hippocampal-Prefrontal Connectivity

Evidence strongly implicates abnormalities in hippocampo-
prefrontal connectivity in the pathophysiology of schizophrenia
(105,106). Disruption of the θ rhythm—which seems to coor-
dinate hippocampal and prefrontal neuronal activity (107–109)
—may be responsible: a genetic mouse model of schizophre-
nia exhibits reduced hippocampo-prefrontal θ-band coordina-
tion (110); similarly, both acute and genetically induced
NMDAR hypofunction result in decreased θ coherence and
increased δ coherence between hippocampus and prefrontal
cortex in anesthetized mice (111).

Rhythmic Dynamics Mediate Switching Between
Cortical and Limbic Control of Basal Ganglia
Networks

The striatum has long been implicated in the pathophysiology
of schizophrenia, with distinct roles for its dorsal and ventral
Figure 4. θ-γ nesting in a rodent hippocampal local field potential
recording (top). γ rhythms (45–55 Hz bandpass, bottom) appear only at
certain phases of the underlying θ rhythm (5–10 Hz bandpass, middle),
allowing for multiplexing of cell assemblies into θ sequences.
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Figure 5. A dramatization of the effects of top-down beta signals in a
computational model of a cortical column. Both model columns receive
background Poisson inputs (at a rate of 50 Hz) to layer (L)2/3, and bottom-
up Poisson inputs (at a rate of 100 Hz) to layer 4. In the absence of top-
down beta (A), these inputs lead to intermittent gamma, appearing at alpha
frequency. In the presence of top-down beta inputs to layer 5 (B), persistent
gamma is seen in the superficial layers. Effects have been exaggerated for
clarity; see Lee et al. (129) for actual computational data.
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extents (112). In the ventral striatum, schizophrenia-associated
abnormalities may decrease hippocampal θ modulation
(113,114). In rat dorsal striatum, dopamine agonism changes
low-frequency phase modulation of high-frequency power
from the δ to the θ band (115), suggesting coordination with
hippocampus rather than PFC (109). This is intriguing, given
the dorsoventral gradient of functional hypoconnectivity to
hyperconnectivity with frontal cortex observed in the striatum
in schizophrenia (116): in ventral striatum, decreased hippo-
campal input may be tied to increased cortical input, while
similar mechanisms may have opposite effects in dorsal
striatum, contributing to an altered interplay between cortical
and limbic influences on striatum (117).

Gamma frequency may also play a role in determining the
flow of information into ventral striatal circuits, in a manner
similar to that observed in CA1. Both a slow (�50 Hz) γ
coherent with limbic networks (e.g., piriform cortex) and a fast
(�80–100 Hz) γ coherent with frontal cortex are observed in
rat ventral striatum (118). Both amphetamine and apomorphine
switch γ frequency in striatum from slow to fast (118). In
schizophrenia, hyperdopaminergia may thus contribute to
inappropriate cortical dominance of ventral striatal input.

Cortico-Thalamo-Hippocampal Network Dysfunction
Leads to Impaired Rhythmic Coordination During
Sleep and Waking

Thalamic activity and thalamocortical connectivity are implicated
in many NMDA-hypofunction induced changes observed in the
rodent prefrontal cortex (119,120), and a positive feedback loop
between δ-frequency rhythmicity in the thalamus and hyper-
activity in hippocampal networks has been suggested to trigger
the psychotic break (121). Increased δ-frequency rhythmicity
and subsequently altered cortico-thalamo-hippocampal connec-
tivity during waking may mirror sleep disturbances in schizo-
phrenia. In schizophrenia patients, α-frequency sleep spindles
are less prevalent (122,123) and less coordinated across the
cortex (123) than in control subjects. In a developmental mouse
model of schizophrenia, the coordination between spindles, δ-
frequency slow waves, and very high frequency ripples is
disrupted, even as each oscillation remains measurably intact
(124). This disturbed coordination is related to impaired prop-
agation of slow waves across the cortex (124).

Top-Down Signaling Requires β Coordination

Recently, experimental and modeling results have converged to
indicate roles for the β and γ rhythms in top-down and bottom-
up signaling, respectively. Deep cortical layers, whose anatom-
ical projections are mainly top-down (125), produce α and β
rhythms (126,127), while superficial cortical layers, whose
anatomical projections are mainly bottom-up (125), produce a
γ rhythm (41,126,127). Measures of Granger causal influence
between primate visual areas suggest feedforward influences
are carried mainly in the θ and γ bands, while feedback
influences are carried mainly in the β band (128). Recent
modeling has indicated how top-down β signals may provide
gain-modulation of bottom-up γ signals (129): β-frequency
rhythms targeting deep layers are able to effectively recruit
deep layer circuits having β resonance; these deep layer
networks, when engaged in a β rhythm, enhance gamma power
1024 Biological Psychiatry June 15, 2015; 77:1020–1030 www.sobp.o
in the input layers, more effectively transmitting signals up the
cortical hierarchy (Figure 5) (129). Both top-down signaling and
β coherence are disturbed in schizophrenia (49,130).

COGNITION (AND ITS DYSFUNCTION) EMERGES
FROM (RHYTHMIC) COORDINATION (AND ITS
DYSFUNCTION)

There is broad agreement that normal cognition emerges from the
coordinated activity of spatially distributed neuronal ensembles.
Below, we discuss how rhythm-associated impairments in local
processing and large-scale coordination contribute to the cogni-
tive and perceptual aberrations seen in schizophrenia. We organ-
ize our discussion around the relevant domains of the MATRICS-
National Institute of Mental Health consensus cognitive battery
(Matrics Assessment Inc., Los Angeles, California) (131), a tool
intended to accelerate the search for treatments of cognitive
dysfunction in schizophrenia, then depart from this framework to
discuss how positive symptoms may arise from some of the same
rhythmic impairments as cognitive deficits.

Attention and Vigilance Depend on Rhythmic Gain
Control of Sensory Signals

Schizophrenia patients are impaired at tasks that require contin-
uous monitoring of stimulus streams and appropriate responses
to cued stimuli (131). The preferential processing of salient stimuli
is one component of vigilance that may be rhythm-dependent. In
the auditory cortex in schizophrenia, NMDA hypofunction may
alter the response to salient stimuli by attenuating the layer 4 γ
rhythm (93). Schizophrenia patients also show deficits in the
enhancement of rare stimuli and the suppression of repeated
stimuli, phenomena tied to insufficient β power (132,133).

Working Memory Relies on Rhythmic Coordination
Across Functional Networks

Altered rhythms at multiple frequencies have been related to
working memory deficits in schizophrenia (20,134). The cou-
pling of prefrontal and hippocampal networks via the θ rhythm
is implicated in memory processing (86,109,135), and working
memory deficits in a genetic mouse model of schizophrenia
rg/journal
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have been related to deficits in hippocampo-prefrontal θ
coordination (110).

Verbal and Visual Learning and Memory Are Impaired
at Multiple Levels of Processing

Schizophrenia patients show impairments in recall of visual
and verbal information independent of working memory (131).
Encoding and recall depend on low-level perceptual mecha-
nisms, the recognition and encoding of salient stimuli, and the
maintenance of memory systems through sleep-dependent
memory consolidation and synaptic homeostasis.

Impairments in Gestalt perception (49) and multimodal
integration (136–139) seen in schizophrenia may be rhythm-
dependent. Patient errors in Gestalt perception have been
correlated with decreased β-band (49) and altered γ-band (52)
phase coherence. Models suggest that the parietal β1 rhythm
is NMDA dependent (95) and may mediate multimodal inte-
gration (96). In schizophrenia, NMDA hypofunction combined
with altered inhibition may weaken β1 expression, contributing
to deficits in multimodal integration.

Hippocampal circuits are implicated in the entry of salient
(i.e., novel and reward-predictive) information into long-term
memory (140,141). By changing the direction of information
flow within hippocampal circuits (78,92), NMDA hypofunction
may impair detection and encoding of salient stimuli.

Finally, coordinated non-rapid eye movement sleep rhythms
are thought to mediate the transformation, consolidation, and
the level of local activity (compare with the marked regions in A). Bottom: The dif
corresponding canonical computations that underlie cognitive processes. [Repro
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transfer of episodic memories from hippocampus to neocortex;
patients show deficits in the overnight consolidation of procedural
memories relative to control subjects (142), and overnight
improvement on a procedural task is positively correlated to
spindle number and density in patients (123).

Reasoning and Problem Solving Require Intact
Rhythmic Coordination

Many high-level cognitive tasks, such as set shifting—the ability
to switch between sets of rules determining behavioral
response to a cue—and pattern completion, are impaired in
schizophrenia (131). The coordinated function of prefrontal,
thalamic, hippocampal, and basal ganglia networks is involved
in decision making, reward-seeking behavior, and cognitive
flexibility (17,117,143), and set-shifting impairments in schizo-
phrenia (17) and NMDA hypofunction (144) are consistent with
altered rhythmic connectivity in these networks (17). Recent
work suggests that θ-rhythmic activity may be a signature of the
coordination of multiple sources of information during decision
points in complex goal-directed behavior (145). In schizophre-
nia, regional alterations in θ rhythmicity may decrease θ
coherence across brain regions and impair decision making.

Psychoses are Manifestations of Rhythmic
Dysfunction

While cognitive symptoms are primarily associated with
reduced task-related oscillatory power and coherence in
Figure 6. Schematic illustration of
how coherent oscillations provide
spectral fingerprints for regrouping of
cognitive processes (A–E). Top: Stu-
dies of neuronal activity in individual
brain regions (circles) elucidate the
activation of different regions (bold
circles) and the encoding of various
cognitive variables (Roman numerals)
during different cognitive processes.
Several cognitive variables (for exam-
ple, different sensory features) are
simultaneously encoded in each
region, but for simplicity, only one
variable is depicted per region. Note
that the pattern of local activity and
encoding can be similar between pro-
cesses. Middle: Coherent oscillations
allow for the characterization of the
interactions between different brain
regions (colored lines) during different
cognitive processes. The frequency of
these oscillations (indicated by the
colors) allows the corresponding net-
work interactions to be classified and,
thus, for the cognitive processes to be
regrouped. For simplicity, only inter-
actions in one frequency range are
depicted between pairs of regions.
The two regions marked by asterisks
illustrate that different frequency-spe-
cific interactions (yellow versus green
lines) can dissociate cognitive pro-
cesses that show identical effects at

ferent frequencies of coherent oscillations may allow for the identification of
duced with permission from Siegel et al. (34)].
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patients (24,49,51–53,133,134), psychosis is associated with
increased spontaneous rhythmicity at multiple frequencies
(146) and increased sensory-induced gamma (50). Animal
models also show increased spontaneous cortical and hippo-
campal gamma (5,61–63).

Both reduced task-related and increased spontaneous
oscillations have been proposed as mechanisms of auditory
verbal hallucinations (147). In patients, fronto-temporal delta,
theta, and beta coherence relaying the predicted sensory
outcomes of motor execution are diminished (148). The
absence of this efference copy or corollary discharge may
lead to misattribution of the sensory consequences of speech
production and planning to external sources, resulting in
auditory hallucinations (148). Alternatively, instabilities in sen-
sory cortical areas may lead to spontaneous activation
producing a coordinated percept only in individuals with
preserved gamma synchrony (147). Intriguingly, gamma syn-
chrony, while reduced in schizophrenia, is positively correlated
with the severity of hallucinations in patients (52).

More generally, altered cortical, thalamic, and hippocampal
rhythmicity and coordination may result in unbalanced input to
basal ganglia structures such as the ventral tegmental area
(121) and the ventral striatum (116,117), leading to the
emergence of the chief pathophysiology of psychosis, dop-
aminergic dysfunction (121).
CONCLUSION

From the current literature on schizophrenia and brain
rhythms, the causal links of the pathophysiology of schizo-
phrenia—from cellular and molecular biology, through proc-
essing in local circuits and large-scale coordination of brain
activity, to cognition and perception—are becoming discern-
ible. Temporal dynamics, mediated by the activity of diverse
populations of inhibitory interneurons (37) and indexed by
rhythms and their coordination, provides key ties among these
levels of organization.

This explanatory framework has broad applicability: inhib-
itory dysfunction, impaired oscillations, and cognitive deficits
are not unique to schizophrenia, and comparative approaches,
while still rare (146,149), are feasible and important. It also has
great translational potential: electrophysiological signals are
recorded in vitro and in vivo across the animal kingdom, and
oscillatory phenomena are robust, heritable, and—increasingly
—modifiable.

The web of causality in schizophrenia is tangled because,
within a given frequency, brain rhythms play multiple, non-
overlapping, task-specific cognitive roles (34). As shown
above, the functional significance of a given rhythm depends
on its particular biophysics, on how and why it structures
activity in local and large-scale networks (40,90). Thus, bio-
physical modeling is key to parsing the functions of brain
rhythms.

The repetitive patterning of cortical networks suggests that
the brain combines and iterates certain canonical mesoscale
computations to perform cognitive tasks. Rhythms, which
sculpt population behavior and appear in nearly all cognitive
tasks, may be signatures of these mesoscale computations
(34). Attempts to associate rhythms with psychologically
intuitive task components may not be fruitful (34). Instead,
1026 Biological Psychiatry June 15, 2015; 77:1020–1030 www.sobp.o
allowing the functions of rhythms to emerge from their
biophysics and their deployment (Figure 6) (31,34,102) may
better illuminate both the successful performance of cognitive
tasks and the failures that result when mesoscale computa-
tions are disrupted by disease.
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